1
|
Fais P, Leopizzi M, Di Maio V, Longo L, Della Rocca C, Tagliaro F, Bortolotti F, Lo Vasco VR. Phosphoinositide-specific phospholipase C in normal human liver and in alcohol abuse. J Cell Biochem 2019; 120:7907-7917. [PMID: 30426534 DOI: 10.1002/jcb.28067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The phosphoinositide (PI) signal transduction pathway participates in liver metabolism. Abnormal activity or expression of PI-specific phospholipase C (PLC) enzymes has been described in different liver diseases. We resume the role of the PI metabolism in liver and PLC abnormalities in different liver diseases. Moreover, we present the results of PLC analyses in a normal human liver and an alcohol-damaged liver. PLC enzymes and the expression of the corresponding genes in liver biopsies from individuals deceased for complications of the alcoholic liver disease (ALD) at different stages compared with normal controls (deceased individuals with histologically normal livers without alcohol addiction anamnesis) were analyzed by using immunohistochemistry and molecular biology techniques. The expression panel of PLCs was described in normal and alcohol abuse liver. Our observations suggest that the regulation of PLC expression might be due to posttranscriptional events and that alcohol affects the epigenetic control of PLC expression belonging to PI signaling. We also describe the alternate expression of PLCB1 and PLCH1 genes in liver. Our results corroborate literature data suggesting that PLC enzymes are differently expressed in normal versus pathological liver, playing a role in the histopathogenesis of liver tissue damage. The expression and/or localization of selected PLC isoforms is especially affected in alcohol-related liver tissue histopathology. Our present observations confirm that the modulation of protein synthesis plays a role in the regulation of PLC enzymes. We also suggest that this modulation might act at the transcription level. Further studies are required to investigate related epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Lucia Longo
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Franco Tagliaro
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Federica Bortolotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
2
|
Lo Vasco VR, Leopizzi M, Di Maio V, Di Raimo T, Cesa S, Masci A, Rocca CD. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells. J Cell Commun Signal 2017; 11:317-327. [PMID: 28452007 PMCID: PMC5704039 DOI: 10.1007/s12079-017-0391-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022] Open
Abstract
Endothelial cells (EC) act as leading actors in angiogenesis. Understanding the complex network of signal transduction pathways which regulate angiogenesis might offer insights in the regulation of normal and pathological events, including tumours, vascular, inflammatory and immune diseases. The effects of olive oil and of Blueberry extracts upon the phosphoinositide (PI)-specific phospholipase C (PLC) enzymes were evaluated both in quiescent and inflammatory stimulated human umbilical vein EC (HUVEC) using molecular biology (multiliquid bioanalysis) and immunofluorescence techniques. Oleuropein significantly increased the number of surviving HUVEC compared to untreated controls, suggesting that it favours the survival and proliferation of EC. Our results suggest that Oleuropein might be useful to induce EC proliferation, an important event during angiogenesis, with special regard to wound healing. Blueberry extracts increased the number of surviving HUVEC, although the comparison to untreated controls did not result statistically significant. Lipopolysaccharide (LPS) administration significantly reduced the number of live HUVEC. LPS can also modify the expression of selected PLC genes. Adding Blueberry extracts to LPS treated HUVEC cultures did not significantly modify the variations of PLC expression induced by LPS. Oleuropein increased or reduced the expression of PLC genes, and statistically significant results were identified for selected PLC isoforms. Oleuropein also modified the effects of LPS upon PLC genes' expression. Thus, our results corroborate the hypothesis that Oleuropein owns anti-inflammatory activity. The intracellular localization of PLC enzymes was modified by the different treatments we used. Podosome-like structures were observed in differently LPS treated HUVEC.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Policlinico Umberto I, Sapienza University of Rome, viale dell'Università 33, 00161, Rome, Italy.
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Latina, Rome, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Latina, Rome, Italy
| | - Tania Di Raimo
- Medical Oncology Unit, San Filippo Neri Hospital, ASL Roma 1, Rome, Italy
| | - Stefania Cesa
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Alessandra Masci
- Department of Experimental Medicine, Research Unit on Food Science and Human Nutrition, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Latina, Rome, Italy
| |
Collapse
|
3
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
4
|
Lo Vasco VR, Leopizzi M, Scotto d’Abusco A, Rocca CD. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2017. [DOI: 10.15171/ajmb.2017.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI) pathway and related phospholipase C (PLC) enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES) and synovial sarcoma (SS). Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts
Collapse
Affiliation(s)
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| |
Collapse
|
5
|
Different expression and subcellular localization of Phosphoinositide-specific Phospholipase C enzymes in differently polarized macrophages. J Cell Commun Signal 2016; 10:283-293. [PMID: 27394153 DOI: 10.1007/s12079-016-0335-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 10/25/2022] Open
Abstract
Macrophages' phenotypic and functional diversity depends on differentiating programs related to local environmental factors. Recent interest was deserved to the signal transduction pathways acting in macrophage polarization, including the phosphoinositide (PI) system and related phospholipase C (PLC) family of enzymes. The expression panel of PLCs and the subcellular localization differs in quiescent cells compared to the pathological counterpart. We analyzed the expression of PLC enzymes in unpolarized (M0), as well as in M1 and M2 macrophages to list the expressed isoforms and their subcellular localization. Furthermore, we investigated whether inflammatory stimulation modified the basal panel of PLCs' expression and subcellular localization. All PLC enzymes were detected within both M1 and M2 cells, but not in M0 cells. M0, as well as M1 and M2 cells own a specific panel of expression, different for both genes' mRNA expression and intracellular localization of PLC enzymes. The panel of PLC genes' expression and PLC proteins' presence slightly changes after inflammatory stimulation. PLC enzymes might play a complex role in macrophages during inflammation and probably also during polarization.
Collapse
|
6
|
Lo Vasco VR, Leopizzi M, Scotto d'abusco A, Della Rocca C. Comparison of Phosphoinositide-Specific Phospholipase C Expression Panels of Human Osteoblasts Versus MG-63 and Saos Osteoblast-Like Cells. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-34104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Lo Vasco VR, Leopizzi M, Della Rocca C, Fais P, Montisci M, Cecchetto G. Impairment and reorganization of the phosphoinositide-specific phospholipase C enzymes in suicide brains. J Affect Disord 2015; 174:324-328. [PMID: 25532079 DOI: 10.1016/j.jad.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
A number of studies suggested that suicide may be associated with specific neurobiological abnormalities. Neurobiology studies focused upon abnormalities of signalling mechanisms with special regard to the serotonin system and the related Phosphoinositide (PI) signalling system. Previous data suggested the involvement of the PI-specific phospholipase C (PLC) family in neuropsychiatric disorders. By using PCR and morphological microscopy observation we examined the whole panel of expression of PLC isoforms in the brains of 28 individuals who committed suicide and in normal controls in order to evaluate the involvement of specific PLC isoforms. The overall PLC expression was reduced and a complex reorganization of the isoforms was observed. The knowledge of the complex network of neurobiological molecules and interconnected signal transduction pathways in the brain of suicide victims might be helpful to understand the natural history and the pathogenesis of the suicidal behavior. That might lead to obtain prognostic suggestions in order to prevent suicide and to new therapeutic agents targeting specific sites in this signalling cascade.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Sense Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale del Policlinico 155, 00185 Rome, Italy.
| | - M Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University- Polo Pontino, Rome, Italy
| | - C Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University- Polo Pontino, Rome, Italy
| | - P Fais
- Unit of Forensic Medicine, Department of Public Health and Community, Policlinico G.B. Rossi, Verona University, Verona, Italy
| | - M Montisci
- Department of Cardiological, Thoracic and Vascular Sciences, Institute of Legal Medicine, Padova University, Padova, Italy
| | - G Cecchetto
- Department of Cardiological, Thoracic and Vascular Sciences, Institute of Legal Medicine, Padova University, Padova, Italy
| |
Collapse
|
8
|
Lo Vasco VR, Leopizzi M, Della Rocca C. Ezrin-related Phosphoinositide pathway modifies RhoA and Rac1 in human osteosarcoma cell lines. J Cell Commun Signal 2015; 9:55-62. [PMID: 25618778 PMCID: PMC4414842 DOI: 10.1007/s12079-015-0265-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 11/24/2022] Open
Abstract
Selected Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes occupy the convergence point of the broad range of pathways that promote Rho and Ras GTPase mediated signalling, which also regulate the activation of ezrin, a member of the ezrin-radixin-moesin (ERM) proteins family involved in the metastatic osteosarcoma spread. Previous studies described that in distinct human osteosarcoma cell lines ezrin networks the PI-PLC with complex interplay controlling the expression of the PLC genes, which codify for PI-PLC enzymes. In the present study, we analyzed the expression and the sub-cellular distribution of RhoA and Rac1 respectively after ezrin silencing and after PI-PLC ε silencing, in order to investigate whether ezrin-RhoGTPAses signalling might involve one or more specific PI-PLC isoforms in cultured 143B and Hs888 human osteosarcoma cell lines. In the present experiments, both ezrin and PLCE gene silencing had different effects upon RhoA and Rac1 expression and sub-cellular localization. Displacements of Ezrin and of RhoA localization were observed, probably playing functional roles.
Collapse
Affiliation(s)
- V R Lo Vasco
- Organi di Senso Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | |
Collapse
|
9
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells. Mol Cell Biochem 2014; 394:43-52. [PMID: 24903829 DOI: 10.1007/s11010-014-2079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes' production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.
Collapse
Affiliation(s)
- V R Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicina e Odontoiatria, Sapienza University of Rome, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|
10
|
Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 2014; 8:219-29. [PMID: 25073508 DOI: 10.1007/s12079-014-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Ezrin, a protein belonging to the Ezrin, radixin and moesin (ERM) family, was engaged in the metastatic spread of osteosarcoma. The Protein 4.1, Ezrin, radixin, moesin (FERM) domain of Ezrin binds the membrane Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to the Phosphoinositide (PI) signal transduction pathway. The cytoskeleton cross-linker function of Ezrin largely depends on membrane PIP2 levels, and thus upon the activity of related enzymes belonging to the PI-specific phospholipase C (PI-PLC) family. Based on the role of Ezrin in tumour progression and metastasis, we silenced the expression of Vil2 (OMIM *123900), the gene which codifies for Ezrin, in cultured human osteosarcoma 143B and Hs888 cell lines. After Ezrin silencing, the growth rate of both cell lines was significantly reduced and morphogical changes were observed. We also observed moderate variations both of selected PI-PLC enzymes within the cell and of expression of the corresponding PLC genes. In 143B cell line the transcription of PLCB1 decreased, of PLCG2 increased and of PLCE differed in a time-dependent manner. In Hs888, the expression of PLCB1 and of PLCD4 significantly increased, of PLCE moderately increased in a time dependent manner; the expression of PLCG2 was up-regulated. These observations indicate that Ezrin silencing affects the transcription of selected PLC genes, suggesting that Ezrin might influence the expression regulation of PI-PLC enzymes.
Collapse
|