1
|
Cioanca O, Lungu II, Batir-Marin D, Lungu A, Marin GA, Huzum R, Stefanache A, Sekeroglu N, Hancianu M. Modulating Polyphenol Activity with Metal Ions: Insights into Dermatological Applications. Pharmaceutics 2025; 17:194. [PMID: 40006561 PMCID: PMC11858937 DOI: 10.3390/pharmaceutics17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The skin represents the first barrier of defense, and its integrity is crucial for overall health. Skin wounds present a considerable risk seeing how their progression is rapid and sometimes they are caused by comorbidities like diabetes and venous diseases. Nutraceutical combinations like the ones between polyphenols and metal ions present considerable applications thanks to their increased bioavailability and their ability to modulate intrinsic molecular pathways. METHODS The research findings presented in this paper are based on a systematic review of the current literature with an emphasis on nanotechnology and regenerative medicine strategies that incorporate polyphenols and metallic nanoparticles (NPs). The key studies which described the action mechanisms, efficacy, and safety of these hybrid formulations were reviewed. RESULTS Nanocomposites of polyphenol and metal promote healing by activating signaling pathways such as PI3K/Akt and ERK1/2, which in turn improve fibroblast migration and proliferation. Nanoparticles of silver and copper have antibacterial, angiogenesis-promoting, inflammation-modulating capabilities. With their ability to induce apoptosis and restrict cell growth, these composites have the potential to cure skin malignancies in addition to facilitating wound healing. CONCLUSIONS Nanocomposites of polyphenols and metals provide hope for the treatment of cancer and chronic wounds. Their antimicrobial capabilities, capacity to modulate inflammatory responses, and enhancement of fibroblast activity all point to their medicinal potential. Furthermore, these composites have the ability to decrease inflammation associated with tumors while simultaneously inducing cell death in cancer cells. Clarifying their mechanisms, guaranteeing stability, and enhancing effective delivery techniques for clinical usage should be the focus of future studies.
Collapse
Affiliation(s)
- Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut-Iulian Lungu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania
| | - Andreea Lungu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania
| | - George-Alexandru Marin
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Riana Huzum
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania
| | - Alina Stefanache
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nazim Sekeroglu
- Department of Food Engineering, Faculty of Engineering and Architecture, Kilis 7 Aralık University, 79000 Kilis, Turkey
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Mohd H, Michniak-Kohn B. Synergistic Anti-Cancer Effects of Curcumin and Thymoquinone Against Melanoma. Antioxidants (Basel) 2024; 13:1573. [PMID: 39765900 PMCID: PMC11672881 DOI: 10.3390/antiox13121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Combining anti-cancer agents in cancer therapies is becoming increasingly common because of their improved efficacy, reduced toxicity, and decreased risk of resistance development. Melanoma, a highly aggressive form of skin cancer characterized by limited treatment options due to chemoresistance, poses a considerable challenge for effective management. Here, we test the hypothesis that dietary supplements such as thymoquinone (TQ) and curcumin (CU) cooperatively modulate cancer-associated cellular mechanisms to inhibit melanoma progression. Through a series of in vitro experiments utilizing the A375 melanoma cell line, including assessments of cell viability, apoptosis, multicellular tumor spheroid models, reactive oxygen species (ROS) quantification, metabolomics analysis, and RNA sequencing, we established that the combined application of TQ and CU exhibited superior anti-tumor effects compared to their individual use. Our results indicate that the combination treatment significantly inhibited cell viability and induced apoptosis more effectively than either agent alone, with optimal synergy observed at concentrations of 25 µM CU and 10 µM TQ against A375 cells. Additionally, the combination treatment markedly elevated ROS levels, selectively activating the mitochondrial apoptotic pathway via caspase-9. Differential gene expression analysis further revealed a unique synergistic effect of the combination treatment, with enhanced regulation of genes related to oxidative stress and apoptosis. Notably, pathways such as mitochondrial apoptotic signaling and redox homeostasis were more effectively influenced by the combination, with genes such as GPX3, CYP4F11, and HSPB8 cooperatively regulated. Overall, the findings suggest that, in combination, TQ and CU acts synergistically against melanoma; however, further experimental and clinical studies are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Hana Mohd
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Center for Dermal Research, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Guo QH, Jian LY, Hu Y, Wang S. A comprehensive and systematic review on Curcumin as a promising candidate for the inhibition of melanoma growth: From pre-clinical evidence to molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156073. [PMID: 39515103 DOI: 10.1016/j.phymed.2024.156073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Melanoma, a highly malignant skin tumor, can develop systemic metastases during the early stage. Several studies of melanoma animal models indicate that curcumin, a natural plant extract, inhibits melanoma growth through various mechanisms. To evaluate the relationships among different experimental conditions, curcumin itself, its derivatives, and special formulations, it is necessary to conduct a systematic review and meta-analysis. PURPOSE This meta-analysis aims to evaluate the potential of Curcumin as a drug for inhibiting the growth of melanoma and to determine the optimal dosage range and treatment duration for Curcumin administration. METHODS A systematic search of studies published from inception to December 2023 was conducted across six databases (PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data, and VIP). Methodological quality was assessed using SYRCLE's RoB tool. Study heterogeneity was assessed using Cochran's Q test and I2 statistics. Publication bias risk was evaluated using a funnel plot. All analyses were performed using R (version 4.3.3). Additionally, three-dimensional effect analysis and machine learning techniques were utilized to determine the optimal dosage range and treatment duration for Curcumin administration. RESULTS Forty studies involving 989 animals were included. The results demonstrated that, relative to the control group, administration of Curcumin resulted in a significant reduction in tumor volume. [SMD=-3.44; 95 % CI (-4.25, -2.63); P<0.01; I2 = 79 %] and tumor weight [SMD=-1.93; 95 % CI (-2.41, -1.45); P<0.01; I2 = 75 %]. Additionally, Curcumin demonstrated a significant capacity to decrease the number of lung tumor nodules and microangiogenesis, as well as to extend survival time, in animal models. The results from three-dimensional effect analysis and machine learning emphasize that the optimal dosage range for Curcumin is 25-50 mg/kg, with an intervention duration of 10-20 days. CONCLUSION Curcumin can inhibit the growth of melanoma, and the dose-response relationship is not linear. However, further large-scale animal and clinical studies are required to confirm these conclusions.
Collapse
Affiliation(s)
- Qi-Hao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yihan Hu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
4
|
Sudarshan K, Yarlagadda S, Sengupta S. Recent Advances in the Synthesis of Diarylheptanoids. Chem Asian J 2024; 19:e202400380. [PMID: 38744677 DOI: 10.1002/asia.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
In the quest for synthesizing biologically important natural products, medicinal chemists embark on an endless journey. This review focuses on the reports published towards the syntheses of diarylheptanoids, classifying them into linear, tetrahydropyran, diarylether, and biphenyl categories. The synthesis methods for each class from 2013 to 2023 are discussed, providing a comprehensive overview of the advancements in the field. Representative natural product examples are highlighted for each category. The review emphasizes the importance of diarylheptanoids in the realms of chemistry and medicine, showcasing their potential as valuable compounds for medicinal and synthetic chemists.
Collapse
Affiliation(s)
- Kasireddy Sudarshan
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Suresh Yarlagadda
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| | - Sagnik Sengupta
- Kasireddy Sudarshan, Suresh Yarlagadda, Sagnik Sengupta, Department of Chemistry, Institute for Drug Discovery, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
5
|
Kargar B, Fazeli M, Sobhani Z, Hosseinzadeh S, Solhjoo A, Akbarizadeh AR. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci Rep 2024; 14:10117. [PMID: 38698033 PMCID: PMC11066107 DOI: 10.1038/s41598-024-57612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.
Collapse
Affiliation(s)
- Bahareh Kargar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Solhjoo
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Razali NSC, Lam KW, Rajab NF, Jamal ARA, Kamaludin NF, Chan KM. Curcumin piperidone derivatives induce caspase-dependent apoptosis and suppress miRNA-21 expression in LN-18 human glioblastoma cells. Genes Environ 2024; 46:4. [PMID: 38303058 PMCID: PMC10832295 DOI: 10.1186/s41021-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Previously, we have reported on the two curcuminoid analogues with piperidone derivatives, namely FLDP-5 and FLDP-8 have more potent anti-proliferative and anti-migration effects than curcumin. In this study, we further investigated the mode of cell death and the mechanism involved in the cell death process induced by these analogues on human glioblastoma LN-18 cells. RESULTS The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process. CONCLUSION The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.
Collapse
Affiliation(s)
- Nur Syahirah Che Razali
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Nor Fadilah Rajab
- Center for Health Ageing and Wellness Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - A Rahman A Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Cheras, 56000, Malaysia
| | - Nurul Farahana Kamaludin
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia.
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| |
Collapse
|
7
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
8
|
Peterle L, Sanfilippo S, Borgia F, Li Pomi F, Vadalà R, Costa R, Cicero N, Gangemi S. The Role of Nutraceuticals and Functional Foods in Skin Cancer: Mechanisms and Therapeutic Potential. Foods 2023; 12:2629. [PMID: 37444367 DOI: 10.3390/foods12132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancer is a prevalent type of cancer worldwide and has a high growth rate compared to other diseases. Although modern targeted therapies have improved the management of cutaneous neoplasms, there is an urgent requirement for a safer, more affordable, and effective chemoprevention and treatment strategy for skin cancer. Nutraceuticals, which are natural substances derived from food, have emerged as a potential alternative or adjunctive treatment option. In this review, we explore the current evidence on the use of omega-3 fatty acids and polyphenols (curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein) for the treatment of melanoma and non-melanoma skin cancer (NMSC), as well as in their prevention. We discuss the mechanisms of action of the aforementioned nutraceuticals and their probable therapeutic benefits in skin cancer. Omega-3 fatty acids, curcumin, epigallocatechin gallate, apigenin, resveratrol, and genistein have several properties, among which are anti-inflammatory and anti-tumor, which can help to prevent and treat skin cancer. However, their effectiveness is limited due to poor bioavailability. Nanoparticles and other delivery systems can improve their absorption and targeting. More research is needed to evaluate their safety and effectiveness as a natural approach to skin cancer prevention and treatment. These compounds should not replace conventional cancer treatments, but may be used as complementary therapy under the guidance of a healthcare professional.
Collapse
Affiliation(s)
- Lucia Peterle
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Serena Sanfilippo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Francesco Borgia
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Federica Li Pomi
- School and Operative Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rosaria Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria-Gazzi, 98125 Messina, Italy
| |
Collapse
|
9
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
10
|
Lee YJ, Heo JY, Kim DS, Choi YS, Kim S, Nam HS, Lee SH, Cho MK. Curcumin Enhances the Anticancer Effects of Binimetinib on Melanoma Cells by Inducing Mitochondrial Dysfunction and Cell Apoptosis with Necroptosis. Ann Dermatol 2023; 35:217-228. [PMID: 37290955 DOI: 10.5021/ad.22.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Recent studies suggest that MEK1/2 inhibitors, including binimetinib, significantly improve malignant melanoma (MM) patient survival. Growing evidence suggests that phytochemicals, especially curcumin, can overcome drug resistance in cancer cells through a variety of mechanisms. OBJECTIVE This study aims to examine curcumin's efficacy in vitro combined with binimetinib in human MM cells. METHODS We used 2D monolayer and 3D spheroid human epidermal melanocyte culture models, HEMn-MP (human epidermal melanocytes, neonatal, moderately pigmented), and two human MM cell lines, G361 and SK-MEL-2, to evaluate cell viability, proliferation, migration, death, and reactive oxygen species (ROS) production following single therapy treatment, with either curcumin or binimetinib, or a combination of both. RESULTS Compared to MM cells treated with single therapy, those with combination therapy showed significantly decreased cell viability and increased ROS production. We observed apoptosis following both single and combination therapies. However only those who had had combination therapy had necroptosis. CONCLUSION Collectively, our data demonstrates that curcumin exerts significant synergistic anticancer effects on MM cells by inducing ROS and necroptosis when combined with binimetinib. Therefore, a strategy of adding curcumin to conventional anticancer agents holds promise for treating MM.
Collapse
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hae Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Sang Han Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
11
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
12
|
Ma EZ, Khachemoune A. Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res 2023; 315:321-331. [PMID: 36129522 DOI: 10.1007/s00403-022-02395-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer's disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
13
|
Abstract
Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer's disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
14
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
15
|
The theranostic potentialities of bioavailable nanocurcumin in oral cancer management. BMC Complement Med Ther 2022; 22:309. [PMID: 36424593 PMCID: PMC9685877 DOI: 10.1186/s12906-022-03770-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Oral cancer, one of the most common cancers, has unimproved 5-years survival rate in the last 30 years and the chemo/radiotherapy-associated morbidity. Therefore, intervention strategies that evade harmful side effects of the conventional treatment modalities are of need. Herbal therapy as a complementary preventive/therapeutic modality has gained attention. Curcumin is one of the herbal compounds possessing unique anticancer activity and luminescent optical properties. However, its low water solubility limits its efficacy. In contrast, curcumin at the nanoscale shows altered physical properties with enhancing bioavailability. METHODS The current study evaluated the impact of nanocurcumin as an anti-oral cancer herbal remedy, comparing its efficacy against the native curcumin complement and conventional chemotherapeutic. An optimized polymeric-stabilized nanocurcumin was synthesized using the solvent-antisolvent precipitation technique. After assuring the solubility and biocompatibility of nanocurcumin, we determined its cytotoxic dose in treating the squamous cell carcinoma cell line. We then evaluated the anti-tumorigenic activity of the nano-herb in inhibiting wound closure and the cytological alterations of the treated cancer cells. Furthermore, the cellular uptake of the nanocurcumin was assessed depending on its autofluorescence. RESULTS The hydrophilic optimized nanocurcumin has a potent cancerous cytotoxicity at a lower dose (60.8 µg/mL) than the native curcumin particles (212.4 µg/mL) that precipitated on high doses hindering their cellular uptake. Moreover, the nanocurcumin showed differential targeting of the cancer cells over the normal fibroblasts with a selectivity index of 4.5. With the confocal microscopy, the luminescent nanoparticles showed gradual nuclear and cytoplasmic uptake with apparent apoptotic cell death, over the fluorescent doxorubicin with its necrotic effect. Furthermore, the nanocurcumin superiorly inhibited the migration of cancer cells by -25%. CONCLUSIONS The bioavailable nanocurcumin has better apoptotic cytotoxicity. Moreover, its superior luminescence promotes the theranostic potentialities of the nano-herb combating oral cancer.
Collapse
|
16
|
Khoshakhlagh A, Abroun S, Aghaei SS, Soleimani M, Zolfaghari MR. Analysis of the A549 cell line affected by anticancer bioactive compounds of Actinomycetes isolated from saline soils. Arch Microbiol 2022; 204:641. [PMID: 36149504 DOI: 10.1007/s00203-022-03258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Actinomycetes are filamentous bacteria and the residents of the soil, prone to produce bioactive metabolites. This research aimed to isolate, classify, and investigate the anticancer properties of Actinomycetes secondary metabolites from various saline soils of Qom province. Actinomycetes isolates were molecularly recognized by 16SrRNA gene sequencing after the PCR procedure. The A549 cell line was then exposed to bacterial metabolites to find their cytotoxicity by MTT assay and their capacity to cause apoptosis by Flow cytometry. The expression levels of the bax and bcl-2 genes were determined using Real-time PCR. Bacterial metabolites were distinct by HPLC and GC-MS assays. Sequencing identified three novel Actinomycetes strains, Streptomyces griseoflavus, Streptomyces calvus, and Kitasatospora phosalacineus. The IC50 doses of bacterial metabolites were discovered equal to 1337, 2619, and 4874 µg/ml, respectively. Flow cytometric assay revealed that their secondary metabolites were capable of inducing apoptosis in A549 cells by 25%, 14.5%, and 7.58%, respectively. Real-time PCR findings displayed that the bax gene expression in A549 cells treated with S. griseoflavus and S. calvus, comparatively increased (P < 0.0008, P < 0.00056). The expression of the bcl-2 gene was significantly reduced in cells treated with S. griseoflavus and K. phosalacineus (P < 0.0006, P < 0.0004). The findings of this analysis showed the presence of new isolates in a soil sample from Qom province which can produce new anticancer agents and can be considered appropriate candidates for further research to employ as anticancer drugs.
Collapse
Affiliation(s)
- Amin Khoshakhlagh
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-11, Iran.
| | | | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Ilimaquinone (Marine Sponge Metabolite) Induces Apoptosis in HCT-116 Human Colorectal Carcinoma Cells via Mitochondrial-Mediated Apoptosis Pathway. Mar Drugs 2022; 20:md20090582. [PMID: 36135771 PMCID: PMC9503335 DOI: 10.3390/md20090582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Ilimaquinone (IQ), a metabolite found in marine sponges, has been reported to have a number of biological properties, including potential anticancer activity against colon cancer. However, no clear understanding of the precise mechanism involved is known. The aim of this study was to examine the molecular mechanism by which IQ acts on HCT-116 cells. The anticancer activity of IQ was investigated by means of a cell viability assay followed by the determination of induction of apoptosis by means of the use of acridine orange–ethidium bromide (AO/EB) staining, Annexin V/PI double staining, DNA fragmentation assays, and TUNEL assays. The mitochondrial membrane potential (ΔΨm) was detected using the JC-1 staining technique, and the apoptosis-associated proteins were analyzed using real-time qRT-PCR. A molecular docking study of IQ with apoptosis-associated proteins was also conducted in order to assess the interaction between IQ and them. Our results suggest that IQ significantly suppressed the viability of HCT-116 cells in a dose-dependent manner. Fluorescent microscopy, flow cytometry, DNA fragmentation and the TUNEL assay in treated cells demonstrated apoptotic death mode. As an additional confirmation of apoptosis, the increased level of caspase-3 and caspase-9 expression and the downregulation of Bcl-2 and mitochondrial dysfunction were observed in HCT-116 cells after treatment with IQ, which was accompanied by a decrease in mitochondrial membrane potential (ΔΨm). Overall, the results of our studies demonstrate that IQ could trigger mitochondria-mediated apoptosis as demonstrated by a decrease in ΔΨm, activation of caspase-9/-3, damage of DNA and a decrease in the proportion of Bcl-2 through the mitochondrial-mediated apoptosis pathway.
Collapse
|
18
|
Ojo OA, Adeyemo TR, Rotimi D, Batiha GES, Mostafa-Hedeab G, Iyobhebhe ME, Elebiyo TC, Atunwa B, Ojo AB, Lima CMG, Conte-Junior CA. Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Front Oncol 2022; 12:881641. [PMID: 35530318 PMCID: PMC9072734 DOI: 10.3389/fonc.2022.881641] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and reoccurring diseases, as well as the world’s second largest cause of mortality. Despite existing preventative, diagnostic, and treatment methods, such as chemotherapy, the number of instances rises year after year. As a result, new effective medications targeting specific checkpoints should be developed to combat CRC. Natural compounds, such as curcumin, have shown significant anti-colorectal cancer characteristics among medications that can be used to treat CRC. These chemicals are phenolic compounds that belong to the curcuminoids category. Curcumin exerts its anti-proliferative properties against CRC cell lines in vitro and in vivo via a variety of mechanisms, including the suppression of intrinsic and extrinsic apoptotic signaling pathways, the stoppage of the cell cycle, and the activation of autophagy. Curcumin also has anti-angiogenesis properties. Thus, this review is aimed at emphasizing the biological effect and mode of action of curcumin on CRC. Furthermore, the critical role of these substances in CRC chemoprevention was emphasized.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Bowen University, Iwo, Nigeria
- *Correspondence: Oluwafemi Adeleke Ojo,
| | - Temiloluwa Rhoda Adeyemo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Damilare Rotimi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Matthew Eboseremen Iyobhebhe
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Tobiloba Christiana Elebiyo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Bukola Atunwa
- Department of Physical Sciences, Chemistry Unit, Landmark University, Omu-Aran, Nigeria
| | | | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETED), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R, Wu YS, Sathasivam KV, Lum PT, Meenakshi DU, Kumarasamy V, Azad AK, Fuloria NK. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front Pharmacol 2022; 13:820806. [PMID: 35401176 PMCID: PMC8990857 DOI: 10.3389/fphar.2022.820806] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aditi Chandel
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Yuan Seng Wu
- Department of Biological Sciences and Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | | - Vinoth Kumarasamy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Perak, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
20
|
Kubczak M, Szustka A, Rogalińska M. Molecular Targets of Natural Compounds with Anti-Cancer Properties. Int J Mol Sci 2021; 22:ijms222413659. [PMID: 34948455 PMCID: PMC8708931 DOI: 10.3390/ijms222413659] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in humans. Despite rapid developments in diagnostic methods and therapies, metastasis and resistance to administrated drugs are the main obstacles to successful treatment. Therefore, the main challenge should be the diagnosis and design of optimal therapeutic strategies for patients to increase their chances of responding positively to treatment and increase their life expectancy. In many types of cancer, a deregulation of multiple pathways has been found. This includes disturbances in cellular metabolism, cell cycle, apoptosis, angiogenesis, or epigenetic modifications. Additionally, signals received from the microenvironment may significantly contribute to cancer development. Chemical agents obtained from natural sources seem to be very attractive alternatives to synthetic compounds. They can exhibit similar anti-cancer potential, usually with reduced side effects. It was reported that natural compounds obtained from fruits and vegetables, e.g., polyphenols, flavonoids, stilbenes, carotenoids and acetogenins, might be effective against cancer cells in vitro and in vivo. Several published results indicate the activity of natural compounds on protein expression by its influence on transcription factors. They could also be involved in alterations in cellular response, cell signaling and epigenetic modifications. Such natural components could be used in our diet for anti-cancer protection. In this review, the activities of natural compounds, including anti-cancer properties, are described. The influence of natural agents on cancer cell metabolism, proliferation, signal transduction and epigenetic modifications is highlighted.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Łódź, Poland;
- Correspondence:
| |
Collapse
|
21
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
22
|
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:95-118. [PMID: 33357071 DOI: 10.1080/10937404.2020.1860842] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| |
Collapse
|
23
|
Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, Kuderinova N, Moldabayeva Z, Shariati MA, Rauf A, Rengasamy KRR. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021; 135:111078. [PMID: 33433356 DOI: 10.1016/j.biopha.2020.111078] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants are being used for therapeutic purposes since the dawn of human civilization. The therapeutic efficacy of medicinal plants is due to the presence of wide range phytochemical constituents or secondary metabolites. The medicinal plants are traditionally used for several types of ailments. Even in those pathological conditions where other methods of treatment fail to work. Curcuma longa Linn is very common ingredient used as spice in foods as preservative and coloring material in different part of the world. It has been used as a home remedy for a variety of diseases. Curcuma longa and its isolated constituent curcumin are widely evaluated for anticancer activity. Curcumin possesses broad remedial potential due to its multi-targeting effect against many different carcinoma including leukemia, genitourinary cancers, gastrointestinal cancers and breast cancer etc. Hence, Curcumin has potential for the development of new medicine for the treatment of several diseases.
Collapse
Affiliation(s)
- Sabira Sultana
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Zahed Mahmood
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of RussianAcademy of Sciences, Moscow, Russian Federation; Prokhorov General Physics Institute, Russian Academy of Sciences,Moscow, Russian Federation; K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | | | | | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation; Shakarim State University of Semey, Semey, Kazakhstan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa.
| |
Collapse
|
24
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Zhang H, Chen B, Zhu Y, Sun C, Adu-Frimpong M, Deng W, Yu J, Xu X. Enhanced oral bioavailability of self-assembling curcumin–vitamin E prodrug-nanoparticles by co-nanoprecipitation with vitamin E TPGS. Drug Dev Ind Pharm 2020; 46:1800-1808. [DOI: 10.1080/03639045.2020.1821049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Baoding Chen
- Department of Ultrasound, The Affiliated Hospital of Jiangsu University, Zhenjiang, PR China
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Congyong Sun
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
26
|
Biochemistry, Safety, Pharmacological Activities, and Clinical Applications of Turmeric: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7656919. [PMID: 32454872 PMCID: PMC7238329 DOI: 10.1155/2020/7656919] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Turmeric (Curcuma longa L.) is a popular natural drug, traditionally used for the treatment of a wide range of diseases. Its root, as its most popular part used for medicinal purposes, contains different types of phytochemicals and minerals. This review summarizes what is currently known on biochemistry, safety, pharmacological activities (mechanistically), and clinical applications of turmeric. In short, curcumin is considered as the fundamental constituent in ground turmeric rhizome. Turmeric possesses several biological activities including anti-inflammatory, antioxidant, anticancer, antimutagenic, antimicrobial, antiobesity, hypolipidemic, cardioprotective, and neuroprotective effects. These reported pharmacologic activities make turmeric an important option for further clinical research. Also, there is a discussion on its safety and toxicity.
Collapse
|
27
|
Al Saqr A, Majrashi M, Alrbyawi H, Govindarajulu M, Fujihashi A, Gottumukkala S, Poudel I, Arnold RD, Babu RJ, Dhanasekaran M. Elucidating the anti-melanoma effect and mechanisms of Hispolon. Life Sci 2020; 256:117702. [PMID: 32387411 DOI: 10.1016/j.lfs.2020.117702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
There is a rapid increase in the incidence of melanoma which has led to a global crisis. Thus, there is a great need for developing novel, safe and effective drugs for the treatment of melanoma. Hispolon is a small molecular weight polyphenol derived from Phellinus linteus, which has antioxidant, anti-inflammatory and anti-proliferative activities. Hispolon has been reported to induce apoptosis in gastric cancer, hepatocellular carcinoma, and myeloid leukemia. However, the anticancer effect in melanoma is not well elucidated. Thus, our present study was to investigate the anti-cancer effect of hispolon on melanoma cancer cells. B16BL6 cells were treated with different concentrations of hispolon for 24 h and the effect on oxidative stress, mitochondrial functions, apoptosis and cell proliferation were studied. Hispolon is a potent generator of reactive oxygen species, nitrite and lipid peroxide levels. Furthermore, it significantly inhibits the expression of Bcl-2 and promotes the expression of Bax, increases the activity of caspase 1 and 3, inhibits mitochondrial Complex I and IV activities. By the above mechanisms, hispolon dose-dependently exhibited the antimelanoma effect similar to the well established pharmacological agent, curcumin. Thus, hispolon can be a potent anti-melanoma drug in the future if the pharmacodynamic effects and the toxicological studies are appropriately carried out.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849; Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849; Department of Pharmacology, Faculty of Medicine, University of Jeddah, Saudi Arabia
| | - Hamad Alrbyawi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849; Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Saudi Arabia
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849
| | | | - Ishwor Poudel
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL 36849.
| | | |
Collapse
|
28
|
Khan FA, Lammari N, Muhammad Siar AS, Alkhater KM, Asiri S, Akhtar S, Almansour I, Alamoudi W, Haroun W, Louaer W, Meniai AH, Elaissari A. Quantum dots encapsulated with curcumin inhibit the growth of colon cancer, breast cancer and bacterial cells. Nanomedicine (Lond) 2020; 15:969-980. [PMID: 32223518 DOI: 10.2217/nnm-2019-0429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To synthesize and examine the impact of free Eudragit® RS 100 nanoparticles (LN01), Quantum dots curcumin-loaded Eudragit RS 100 nanoparticles (LN04), and un-encapsulated curcumin nanoparticles (LN06) on cancerous and bacterial cells. Materials & methods: The LN01, LN04, LN06 were synthesized and characterized by Fourier transform infrared, ζ potential, UV-Vis spectroscopy, transmission electron microscopy and scanning electron microscopy and their biological activities were evaluated. Results: LN04 profoundly inhibited the growth of colon (HCT-116) cancerous cells (10.64% cell viability) and breast cancer (MCF-7) cells (10.32% cell viability) with compared to LN01 and LN06. Normal cells (HEK-293) did not show any inhibition after treatments. In addition, LN04 show better inhibitory action on bacterial growth compared with LN01 and LN06. Conclusion: We suggest that LN04 selectively target cancerous and bacterial cells and therefore possess potential anticancer and antibacterial capabilities.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Narimane Lammari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France.,Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Adeeb Shezad Muhammad Siar
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Khulood Mohammed Alkhater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sarah Asiri
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Iman Almansour
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Widyan Alamoudi
- Department of Neuroscience, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Woroud Haroun
- Department of Stem Cell Biology, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Wahida Louaer
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University of Constantine 3, Salah Boubnider, Constantine, 25000, Algeria
| | - Abdelhamid Elaissari
- University of Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, Lyon, F-69622, France
| |
Collapse
|
29
|
Pakizehkar S, Ranji N, Naderi Sohi A, Sadeghizadeh M. Curcumin loaded PEG
400
‐OA nanoparticles: A suitable system to increase apoptosis, decrease migration, and deregulate miR‐125b/miR182 in MDA‐MB‐231 human breast cancer cells. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Safura Pakizehkar
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Alireza Naderi Sohi
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center Tehran Iran
| | - Majid Sadeghizadeh
- Department of GeneticsSchool of Biological Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
30
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
31
|
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int J Biol Sci 2019; 15:1200-1214. [PMID: 31223280 PMCID: PMC6567807 DOI: 10.7150/ijbs.33710] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant progressions in treatment modalities over the last decade, either cancer incidence or mortality is continuously on the rise throughout the world. Current anticancer agents display limited efficacy, accompanied by severe side effects. In order to improve therapeutic outcomes in patients with cancer, it is crucial to identify novel, highly efficacious pharmacological agents. Curcumin, a hydrophobic polyphenol extracted from turmeric, has gained increasing attention due to its powerful anticancer properties. Curcumin can inhibit the growth, invasion and metastasis of various cancers. The anticancer mechanisms of curcumin have been extensively studied. The anticancer effects of curcumin are mainly mediated through its regulation of multiple cellular signaling pathways, including Wnt/β-catenin, PI3K/Akt, JAK/STAT, MAPK, p53 and NF-ĸB signaling pathways. Moreover, curcumin also orchestrates the expression and activity of oncogenic and tumor-suppressive miRNAs. In this review, we summarized the regulation of these signaling pathways by curcumin in different cancers. We also discussed the modulatory function of curcumin in the downregulation of oncogenic miRNAs and the upregulation of tumor-suppressive miRNAs. An in-depth understanding of the anticancer mechanisms of curcumin will be helpful for developing this promising compound as a therapeutic agent in clinical management of cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan 430071, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Meng Zhou
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
32
|
Martins-Gomes C, Souto EB, Cosme F, Nunes FM, Silva AM. Thymus carnosus extracts induce anti-proliferative activity in Caco-2 cells through mechanisms that involve cell cycle arrest and apoptosis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
33
|
Jin F, Jin Y, Du J, Jiang L, Zhang Y, Zhao Z, Yang B, Luo P, He Q. Bisdemethoxycurcumin protects against renal fibrosis via activation of fibroblast apoptosis. Eur J Pharmacol 2019; 847:26-31. [PMID: 30660576 DOI: 10.1016/j.ejphar.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Renal fibrosis is the common final outcome of nearly all progressive chronic kidney diseases (CKD) that eventually develop into end-stage renal failure, which threatens the lives of patients. Currently, there are no effective drugs for the treatment of renal fibrosis. However, studies have shown that certain plant natural products have a fibrosis-alleviating effect. Thus, we have screened a large number of natural products for their ability to protect against renal fibrosis and found that bisdemethoxycurcumin has a good therapeutic effect in renal fibrosis according to the data obtained in a mouse model of unilateral ureteral obstruction (UUO). The results indicate that bisdemethoxycurcumin can efficiently attenuate renal fibrosis induced by UUO. Additional studies of the bisdemethoxycurcumin mechanism of action in the treatment of renal fibrosis demonstrated that the therapeutic effect of bisdemethoxycurcumin is mediated by the specific induction of fibroblast apoptosis at a concentration of 20 μM. bisdemethoxycurcumin can efficiently protect against renal fibrosis both in vitro and in vivo. This discovery will provide new ideas for renal fibrosis treatment in clinics and a new direction for the development of effective drug therapy of renal fibrosis.
Collapse
Affiliation(s)
- Fuquan Jin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Jin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxia Du
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyu Jiang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziying Zhao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Jamali T, Kavoosi G, Safavi M, Ardestani SK. In-vitro evaluation of apoptotic effect of OEO and thymol in 2D and 3D cell cultures and the study of their interaction mode with DNA. Sci Rep 2018; 8:15787. [PMID: 30361692 PMCID: PMC6202332 DOI: 10.1038/s41598-018-34055-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Oliveria decumbens is an Iranian endemic plant used extensively in traditional medicine. Recently, some studies have been performed on biological effects of Oliveria essential oil (OEO). However, to our knowledge, the anticancer activity of OEO has not been reported. Based on our GC/MS analysis, the basic ingredients of OEO are thymol, carvacrol, p-cymene and γ-terpinene. Therefore, we used OEO and its main component, thymol, to explore their effects on cell growth inhibition and anticancer activity. Despite having a limited effect on L929 normal cells, OEO/thymol induced cytotoxicity in MDA-MB231 breast cancer monolayers (2D) and to a lesser extent in MDA-MB231 spheroids (3D). Flow cytometry, caspase-3 activity assay in treated monolayers/spheroids and also fluorescence staining and DNA fragmentation in treated monolayers demonstrated apoptotic death mode. Indeed, OEO/thymol increased the Reactive Oxygen Species (ROS) level leading to mitochondrial membrane potential (MMP, ΔΨm) loss, caspase-3 activation and DNA damage caused S-phase cell cycle arrest. Furthermore, immunoblotting studies revealed the activation of intrinsic and maybe extrinsic apoptosis pathways by OEO/thymol. Additionally, in-vitro experiments, indicated that OEO/thymol interacts with DNA via minor grooves confirmed by docking method. Altogether, our reports underlined the potential of OEO to be considered as a new candidate for cancer therapy.
Collapse
Affiliation(s)
- Tahereh Jamali
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Susan K Ardestani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
35
|
Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, Sahebkar A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2018; 234:1165-1178. [PMID: 30073647 DOI: 10.1002/jcp.27096] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Curcumin, a natural polyphenolic and yellow pigment obtained from the spice turmeric, has strong antioxidative, anti-inflammatory, and antibacterial properties. Due to these properties, curcumin has been used as a remedy for the prevention and treatment of skin aging and disorders such as psoriasis, infection, acne, skin inflammation, and skin cancer. Curcumin has protective effects against skin damage caused by chronic ultraviolet B radiation. One of the challenges in maximizing the therapeutic potential of curcumin is its low bioavailability, limited aqueous solubility, and chemical instability. In this regard, the present review is focused on recent studies concerning the use of curcumin for the treatment of skin diseases, as well as offering new and efficient strategies to optimize its pharmacokinetic profile and increase its bioavailability.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Omid Fazlolahzadeh
- Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Subhapriya S, Gomathipriya P. Induction of apoptotic effects of anti-proliferative zeolite X from coal fly ash on cervical cancer (HeLa) cell lines. Mol Biol Rep 2018; 45:1077-1087. [PMID: 30047039 DOI: 10.1007/s11033-018-4259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
The synthesised zeolite X from coal fly ash showed significant cytotoxic activity in contradiction of HeLa cells (cervical cancer) in a concentration-dependent way at concentrations ranges from 200 µg to 0.781 µg/ml as shown by MTT assay and failed to cause cytotoxic effect in normal cells (Gh239). Cell cycle analysis exposed that zeolite X (10 and 15 µg/ml) endorses cell growth inhibition by inducing G2/M phase arrest in HeLa cells as observed using flow cytometry. The confocal microscopic results depicted increased early apoptotic related changes in HeLa cell lines induced by zeolite X at a dosage of 10, 15 and 20 µg/ml. Zeolite X at a dosage of 10, 15 and 20 µg/ml in HeLa cells showed fragmentation of DNA by ladder pattern thereby indicates that cell death is related with apoptosis. By the increase of Bax/Bcl-2 ratio, zeolite X leads to the caspase-3 and caspase-9 activation and allow the cells to enter apoptosis. These collective results evidently showed that the influence of mitochondria-mediated signalling pathway in zeolite X induced apoptosis and intensely delivered investigational suggestion for the use of zeolite X as a significant curative agent in the preclusion and therapy of human cervical carcinoma.
Collapse
Affiliation(s)
- S Subhapriya
- Department of Chemical Engineering, Anna University, A.C. Tech Campus, Chennai, Tamil Nadu, 600 025, India
| | - P Gomathipriya
- Department of Chemical Engineering, Anna University, A.C. Tech Campus, Chennai, Tamil Nadu, 600 025, India.
| |
Collapse
|
37
|
Molecular Mechanisms Underlying Curcumin-Mediated Therapeutic Effects in Type 2 Diabetes and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9698258. [PMID: 29743988 PMCID: PMC5884026 DOI: 10.1155/2018/9698258] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 01/14/2023]
Abstract
The growing prevalence of age-related diseases, especially type 2 diabetes mellitus (T2DM) and cancer, has become global health and economic problems. Due to multifactorial nature of both diseases, their pathophysiology is not completely understood so far. Compelling evidence indicates that increased oxidative stress, resulting from an imbalance between production of reactive oxygen species (ROS) and their clearance by antioxidant defense mechanisms, as well as the proinflammatory state contributes to the development and progression of the diseases. Curcumin (CUR; diferuloylmethane), a well-known polyphenol derived from the rhizomes of turmeric Curcuma longa, has attracted a great deal of attention as a natural compound with beneficial antidiabetic and anticancer properties, partly due to its antioxidative and anti-inflammatory actions. Although this polyphenolic compound is increasingly being recognized for its growing number of protective health effects, the precise molecular mechanisms through which it reduces diabetes- and cancer-related pathological events have not been fully unraveled. Hence, CUR is the subject of intensive research in the fields Diabetology and Oncology as a potential candidate in the treatment of both T2DM and cancer, particularly since current therapeutic options for their treatment are not satisfactory in clinics. In this review, we summarize the recent progress made on the molecular targets and pathways involved in antidiabetic and anticancer activities of CUR that are responsible for its beneficial health effects.
Collapse
|
38
|
Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH. Role of Curcumin in Disease Prevention and Treatment. Adv Biomed Res 2018; 7:38. [PMID: 29629341 PMCID: PMC5852989 DOI: 10.4103/abr.abr_147_16] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treatment based on traditional medicine is very popular in developing world due to inexpensive properties. Nowadays, several types of preparations based on medicinal plants at different dose have been extensively recognized in the diseases prevention and treatment. In this vista, latest findings support the effect of Curcuma longa and its chief constituents curcumin in a broad range of diseases cure via modulation of physiological and biochemical process. In addition, various studies based on animal mode and clinical trials showed that curcumin does not cause any adverse complications on liver and kidney function and it is safe at high dose. This review article aims at gathering information predominantly on pharmacological activities such as anti-diabetic, anti-microbial, hepato-protective activity, anti-inflammatory, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Salah M Aly
- Department of Pathology, College of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| |
Collapse
|
39
|
Martínez-Castillo M, Villegas-Sepúlveda N, Meraz-Rios MA, Hernández-Zavala A, Berumen J, Coleman MA, Orozco L, Cordova EJ. Curcumin differentially affects cell cycle and cell death in acute and chronic myeloid leukemia cells. Oncol Lett 2018; 15:6777-6783. [PMID: 29616136 DOI: 10.3892/ol.2018.8112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a phytochemical with potent anti-neoplastic properties. The antitumoral effects of curcumin in cells derived from chronic or acute myeloid leukemia have been already described. However, a comparative study of the cytostatic and cytotoxic effects of curcumin on chronic and acute myeloid leukemia cells has not yet been performed. In the present study, the cellular effects of curcumin on cell lines derived from chronic or acute myeloid leukemia were examined. Dose and time-response assays were performed with curcumin on HL-60 and K562 cells. Cell viability was evaluated with trypan blue exclusion test and cell death by flow cytometry using a fluorescent molecular probe. A cell cycle profile was analyzed, and protein markers of cell cycle progression and cell death were investigated. In the present study, the K562 cells showed a higher sensitivity to the cytostatic and cytotoxic effects of curcumin compared with HL-60. In addition, curcumin induced G1 phase arrest in HL-60 cells and G2/M phase arrest in K562 cells. Furthermore, curcumin-related cell death in HL-60 was associated with the processed forms of caspases-9 and -3 proteins, whereas in K562 cells, both the processed and the unprocessed forms were present. Accordingly, activity of these caspases was significantly higher in HL-60 cells compared with that in K562. In conclusion, curcumin elicits different cellular mechanisms in chronic or acute myeloid leukemia cells and the powerful antitumoral effect was more potent in K562 compared with HL-60 cells.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Department of Molecular Biomedicine, Center of Studies and Advance Research, 07360 Mexico City, Mexico
| | | | - Marco A Meraz-Rios
- Department of Molecular Biomedicine, Center of Studies and Advance Research, 07360 Mexico City, Mexico
| | - Araceli Hernández-Zavala
- Section of Research and Postgraduate, Superior School of Medicine, National Institute Polytechnique, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomás, 11350 Mexico City, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), AP, 04510 Mexico City, Mexico.,Unit of Genomic Medicine, Hospital General, 06720 Mexico City, Mexico
| | - Mathew A Coleman
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.,Department of Radiation Oncology, University of California Davis, School of Medicine, Davis, CA 95817, USA
| | - Lorena Orozco
- National Institute of Genomic Medicine, Clinic Research, 14610 Mexico City, Mexico
| | - Emilio J Cordova
- National Institute of Genomic Medicine, Clinic Research, 14610 Mexico City, Mexico
| |
Collapse
|
40
|
Yin L, Meng Z, Zhang Y, Hu K, Chen W, Han K, Wu BY, You R, Li CH, Jin Y, Guan YQ. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer. J Control Release 2018; 271:31-44. [DOI: 10.1016/j.jconrel.2017.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
|
41
|
Rajagopal C, Lankadasari MB, Aranjani JM, Harikumar KB. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacol Res 2018; 130:273-291. [PMID: 29305909 DOI: 10.1016/j.phrs.2017.12.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 12/31/2017] [Indexed: 02/06/2023]
Abstract
Inflammation is one of the major causative factor of cancer and chronic inflammation is involved in all the major steps of cancer initiation, progression metastasis and drug resistance. The molecular mechanism of inflammation driven cancer is the complex interplay between oncogenic and tumor suppressive transcription factors which include FOXM1, NF-kB, STAT3, Wnt/β- Catenin, HIF-1α, NRF2, androgen and estrogen receptors. Several products derived from natural sources modulate the expression and activity of multiple transcription factors in various tumor models as evident from studies conducted in cell lines, pre-clinical models and clinical samples. Further combination of these natural products along with currently approved cancer therapies added an additional advantage and they considered as promising targets for prevention and treatment of inflammation and cancer. In this review we discuss the application of multi-targeting natural products by analyzing the literature and future directions for their plausible applications in drug discovery.
Collapse
Affiliation(s)
- Chitra Rajagopal
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Jesil Mathew Aranjani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
42
|
Chen YC, Chen BH. Preparation of curcuminoid microemulsions fromCurcuma longaL. to enhance inhibition effects on growth of colon cancer cells HT-29. RSC Adv 2018; 8:2323-2337. [PMID: 35541476 PMCID: PMC9077335 DOI: 10.1039/c7ra12297g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022] Open
Abstract
The objectives of this study were to extract curcuminoids from a vital medicinal plantCurcuma longaL. and prepare the curcuminoid extract and microemulsion for studying the inhibition mechanism of HT-29 colon cancer cells.
Collapse
Affiliation(s)
- Yen Chu Chen
- Department of Food Science
- Fu Jen Catholic University
- New Taipei City 242
- Taiwan
| | - Bing Huei Chen
- Department of Food Science
- Fu Jen Catholic University
- New Taipei City 242
- Taiwan
| |
Collapse
|
43
|
Bo LJ, Miao Z, Wang ZF, Zhang KZ, Gao Z. A study on effect of curcumin on anticerebral aneurysm in the male albino rats. Brain Behav 2017; 7:e00729. [PMID: 28948066 PMCID: PMC5607535 DOI: 10.1002/brb3.729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION This study investigated the curcumin effect on the cerebral aneurysm. Apoptosis is known to play a fundamental role in the pathogenesis of a cerebral aneurysm. Therefore, we investigated the effect of curcumin on apoptosis of smooth muscle cells of a cerebral aneurysm-induced male albino rats. METHODS In this study, the cerebral aneurysm has been induced in the male albino rats by the CaCl2 administration. After cerebral aneurysm induction, smooth muscle cells were isolated. Cells were treated with curcumin (25 & 50 mg/kg bwt) for 48 hr. RESULTS Curcumin reduced altered mitochondrial morphology significantly, evidenced through fluorescence and confocal study. Curcumin treatment reduced the expression of p53, caspase-3, and bax/bxl-2 ratio significantly. Curcumin treatment also reversed the cellular architecture of smooth muscle cell wall significantly. Fluorescence and the confocal study confirmed the reduction in apoptosis in a cerebral aneurysm-induced smooth muscle cells of male albino rats. CONCLUSION Taking all these data together, it may suggest that the curcumin could significantly reduce the CaCl2-induced cerebral aneurysm through the inhibition of cell apoptosis in the cells.
Collapse
Affiliation(s)
- Li-Juan Bo
- Department of Infectious Disease China-Japan Union Hospital Ji Lin University Changchun China
| | - Zhuang Miao
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Zhan-Feng Wang
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Kai-Zhi Zhang
- Department I of Neurosurgery China-Japan Union Hospital Ji Lin University Changchun China
| | - Zheng Gao
- Department of Neurosurgery People's Hospital of Dandong City Dandong China
| |
Collapse
|
44
|
Imran M, Ullah A, Saeed F, Nadeem M, Arshad MU, Suleria HAR. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit Rev Food Sci Nutr 2017; 58:1271-1293. [PMID: 27874279 DOI: 10.1080/10408398.2016.1252711] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurmin, a naturally yellow component isolated from turmeric, ability to prevent various life-style related disorders. The current review article mainly emphasizes on different anticancer perspectives of cucurmin, i.e., colon, cervical, uterine, ovarian, prostate head and neck, breast, pulmonary, stomach and gastric, pancreatic, bladder oral, oesophageal, and bone cancer. It holds a mixture of strong bioactive molecule known as cucurminoids that has ability to reduce cancer/tumor at initial, promotion and progression stages of tumor development. In particular, these compounds block several enzymes required for the growth of tumors and may therefore involve in tumor treatments. Moreover, it modulates an array of cellular progressions, i.e., nitric oxide synthetase activity, protein kinase C activity, epidermal growth factor (EGF) receptor intrinsic kinase activity, nuclear factor kappa (NF-kB) activity, inhibiting lipid peroxidation and production of reactive oxygen species. However, current manuscript summarizes most of the recent investigations of cucurmin but still further research should be conducted to explore the role of curcumin to mitigate various cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- a Department of Diet and Nutritional Sciences , Imperial College of Business Studies , Lahore , Pakistan.,b National Institute of Food Science and Technology , University of Agriculture Faisalabad , Pakistan
| | - Azmat Ullah
- e Department of Food Science and Human Nutrition , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farhan Saeed
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | - Muhammad Nadeem
- d Department of Environmental Sciences , COMSATS Institute of Information Technology Vehari , Pakistan
| | - Muhammad Umair Arshad
- c Institute of Home & Food Sciences , Government College University Faisalabad , Pakistan
| | | |
Collapse
|
45
|
Loganes C, Lega S, Bramuzzo M, Vecchi Brumatti L, Piscianz E, Valencic E, Tommasini A, Marcuzzi A. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage. Nutrients 2017; 9:578. [PMID: 28587282 PMCID: PMC5490557 DOI: 10.3390/nu9060578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Claudia Loganes
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Sara Lega
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Matteo Bramuzzo
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Liza Vecchi Brumatti
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Elisa Piscianz
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| | - Erica Valencic
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell'Istria 65/1, Trieste 34137, Italy.
| | - Annalisa Marcuzzi
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste 34100, Italy.
| |
Collapse
|
46
|
Moshari S, Nejati V, Najafi G, razi M. Nanomicelle curcumin-induced DNA fragmentation in testicular tissue; Correlation between mitochondria dependent apoptosis and failed PCNA-related hemostasis. Acta Histochem 2017; 119:372-381. [PMID: 28385400 DOI: 10.1016/j.acthis.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
Current study was done to assess possible anti-proliferative effect of nanomicelle curcumin (NMCM) against germ cells in testicular tissue. For this purpose, 24 mature male Wistar rats were divided into control and test groups. The animals in test groups received 7.5mg/kg, 15mg/kg and 30mg/kg of NMC (NO=6 rats in each group). Following 48days, the expression of Bcl-2, Bax, caspase-3, P53 and proliferating cell nuclear antigen (PCNA) were evaluated by using reverse transcription-PCR and immunohistochemistry. Histological changes, tubular differentiation index (TDI), tissue cellularity and serum level of testosterone were analyzed. Finally, the DNA laddering test was used to assess the DNA fragmentation as hallmark for apoptosis. The NMCM significantly (P<0.05) diminished the Bcl-2, p53 and PCNA and enhanced the Bax and caspase-3 mRNA levels. The NMCM significantly (P<0.05) elevated the percentage of Bax and caspase-3-positive tubules and remarkably reduced the percentage of tubules with positive reaction for Bcl-2, p53 and PCNA. The NCMN-received animals exhibited remarkable (P<0.05) reduction in cell population, TDI ratio and serum level of testosterone. Severe DNA fragmentation was observed in 30mg/kg NMCM-received group. In conclusion, the NMCM by reducing the testicular endocrine status, down-regulating Bcl-2 expression and by enhancing the Bax and caspase-3 expression initiates the intrinsic apoptosis pathway. On the other hand, inhibited expression of p53 and PCNA (at dose level of 30mg/kg) suppresses the p53 and PCNA-related hemostasis/preservative reactions. All these alterations adversely affect the spermatogenesis.
Collapse
|
47
|
Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin Cancer Biol 2016; 40-41:35-47. [DOI: 10.1016/j.semcancer.2016.03.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
|
48
|
Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:275-286. [PMID: 27565688 DOI: 10.1016/j.nano.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/12/2016] [Indexed: 01/31/2023]
Abstract
Dual imaging dramatically improves detection and early diagnosis of cancer. In this work we present an oil in water (O/W) nano-emulsion stabilized with lecithin and loaded with cobalt ferrite oxide (Co0.5Fe2.5O4) nanocubes for photo-acoustic and magnetic resonance dual imaging. The nanocarrier is responsive in in vitro photo-acoustic and magnetic resonance imaging (MRI) tests. A clear and significant time-dependent accumulation in tumor tissue is shown in in vivo photo-acoustic studies on a murine melanoma xenograft model. The proposed O/W nano-emulsion exhibits also high values of r2/r1 (ranging from 45 to 85, depending on the magnetic field) suggesting a possible use as T2 weighted image contrast agents. In addition, viability and cellular uptake studies show no significant cytotoxicity on the fibroblast cell line. We also tested the O/W nano-emulsion loaded with curcumin against melanoma cancer cells demonstrating a significant cytotoxicity and thus showing possible therapeutic effects in addition to the in vivo imaging.
Collapse
|
49
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
50
|
Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A. Curcumin: A new candidate for melanoma therapy? Int J Cancer 2016; 139:1683-95. [PMID: 27280688 DOI: 10.1002/ijc.30224] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023]
Abstract
Melanoma remains among the most lethal cancers and, in spite of great attempts that have been made to increase the life span of patients with metastatic disease, durable and complete remissions are rare. Plants and plant extracts have long been used to treat a variety of human conditions; however, in many cases, effective doses of herbal remedies are associated with serious adverse effects. Curcumin is a natural polyphenol that shows a variety of pharmacological activities including anti-cancer effects, and only minimal adverse effects have been reported for this phytochemical. The anti-cancer effects of curcumin are the result of its anti-angiogenic, pro-apoptotic and immunomodulatory properties. At the molecular and cellular level, curcumin can blunt epithelial-to-mesenchymal transition and affect many targets that are involved in melanoma initiation and progression (e.g., BCl2, MAPKS, p21 and some microRNAs). However, curcumin has a low oral bioavailability that may limit its maximal benefits. The emergence of tailored formulations of curcumin and new delivery systems such as nanoparticles, liposomes, micelles and phospholipid complexes has led to the enhancement of curcumin bioavailability. Although in vitro and in vivo studies have demonstrated that curcumin and its analogues can be used as novel therapeutic agents in melanoma, curcumin has not yet been tested against melanoma in clinical practice. In this review, we summarized reported anti-melanoma effects of curcumin as well as studies on new curcumin formulations and delivery systems that show increased bioavailability. Such tailored delivery systems could pave the way for enhancement of the anti-melanoma effects of curcumin.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Naseri
- Department of Anatomical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohsen Mohammadi
- Razi Herbal Medicines Research Center and Department of pharmaceutical biotechnology, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zarrin Banikazemi
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Peyvandi
- Department of Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|