1
|
Rashed SA, Hammad SF, Eldakak MM, Khalil IA, Osman A. Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) - Delivered Phycocyanobilin. J Pharm Sci 2023; 112:213-224. [PMID: 36087776 DOI: 10.1016/j.xphs.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Phycocyanin (C-PC) is a constitutive chromoprotein of Arthrospira platensis, which exhibits promising efficacy against different types of cancer. In this study, we cleaved C-PC's chromophore phycocyanobilin (PCB) and demonstrated its ability as an anti-cancer drug for Colorectal cancer (CRC). PCB displayed an anti-cancer effect for CRC (HT-29) cells with IC50 of 108 µg/ml. Assessing the transcripts levels of some biomarkers revealed that the PCB caused an upregulation in the anti-metastatic gene NME1 level and downregulation of the COX-2 level. The flow cytometric results showed the effect of PCB on the arrest of the cell cycle's G1 phase. In addition, we successfully synthesized the UiO-66 (Zr-MOF). We incorporated the PCB into UiO-66 nanoparticles with a loading percentage of 46 %. Assessment of the cytotoxic effects of UiO-66@PCB showed a 2-fold improvement in the IC50 compared to the free PCB. In conclusion, we have shown that PCB displayed a promising potential as an anti-cancer agent. Yet, it is considered a safe and natural substance that can help to mitigate cancer spread and symptoms. In the meantime, UiO-66 can be used as a safe nano-delivery tool for PCB.
Collapse
Affiliation(s)
- Suzan A Rashed
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherif F Hammad
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Moustafa M Eldakak
- Genetics Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Islam A Khalil
- Pharmaceutics Department, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6 October, Egypt
| | - Ahmed Osman
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Department of Biochemistry, Faculty of Science, Ain shams University, Cairo, Egypt
| |
Collapse
|
2
|
Dagnino-Leone J, Figueroa CP, Castañeda ML, Youlton AD, Vallejos-Almirall A, Agurto-Muñoz A, Pavón Pérez J, Agurto-Muñoz C. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput Struct Biotechnol J 2022; 20:1506-1527. [PMID: 35422968 PMCID: PMC8983314 DOI: 10.1016/j.csbj.2022.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Phycobiliproteins (PBPs) are fluorescent proteins of various colors, including fuchsia, purple-blue and cyan, that allow the capture of light energy in auxiliary photosynthetic complexes called phycobilisomes (PBS). PBPs have several highly preserved structural and physicochemical characteristics. In the PBS context, PBPs function is capture luminous energy in the 450-650 nm range and delivers it to photosystems allowing photosynthesis take place. Besides the energy harvesting function, PBPs also have shown to have multiple biological activities, including antioxidant, antibacterial and antitumours, making them an interesting focus for different biotechnological applications in areas like biomedicine, bioenergy and scientific research. Nowadays, the main sources of PBPs are cyanobacteria and micro and macro algae from the phylum Rhodophyta. Due to the diverse biological activities of PBPs, they have attracted the attention of different industries, such as food, biomedical and cosmetics. This is why a large number of patents related to the production, extraction, purification of PBPs and their application as cosmetics, biopharmaceuticals or diagnostic applications have been generated, looking less ecological impact in the natural prairies of macroalgae and less culture time or higher productivity in cyanobacteria to satisfy the markets and applications that require high amounts of these molecules. In this review, we summarize the main structural characteristics of PBPs, their biosynthesys and biotechnological applications. We also address current trends and future perspectives of the PBPs market.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristina Pinto Figueroa
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Mónica Latorre Castañeda
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrea Donoso Youlton
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrés Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Jessy Pavón Pérez
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| |
Collapse
|
3
|
Salgado MTSF, Lopes AC, Fernandes E Silva E, Cardoso JQ, Vidal RS, Cavalcante-Silva LHA, Carvalho DCM, Machado KDS, Rodrigues-Mascarenhas S, Rumjanek VM, Votto APDS. Relation between ABCB1 overexpression and COX2 and ALOX5 genes in human erythroleukemia cell lines. Prostaglandins Other Lipid Mediat 2021; 155:106553. [PMID: 33975019 DOI: 10.1016/j.prostaglandins.2021.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to characterize the relationship between the COX2 and ALOX5 genes, as well as their link with the multidrug resistance (MDR) phenotype in sensitive (K562) and MDR (K562-Lucena and FEPS) erythroleukemia cells. For this, the inhibitors of 5-LOX (zileuton) and COX-2 (acetylsalicylic acid-ASA) and cells with the silenced ABCB1 gene were used. The treatment with ASA caused an increase in the gene expression of COX2 and ABCB1 in both MDR cell lines, and a decrease in the expression of ALOX5 in the FEPS cells. Silencing the ABCB1 gene induced a decrease in COX2 expression and an increase in the ALOX5 gene. Treatment with zileuton did not alter the expression of COX2 and ABCB1. Cytometry data showed that there was an increase in ABCB1 protein expression after exposure to ASA. In addition, the increased activity of ABCB1 in the K562-Lucena cell line indicates that ASA may be a substrate for this efflux pump, corroborating the molecular docking that showed that ASA can bind to ABCB1. Regardless of the genetic alteration in COX2 and ABCB1, the direct relationship between these genes and the inverse relationship with ALOX5 remained in the MDR cell lines. We assume that ABCB1 can play a regulatory role in COX2 and ALOX5 during the transformation of the parental cell line K562, explaining the increased gene expression of COX2 and decreased ALOX5 in the MDR cell lines.
Collapse
MESH Headings
- Humans
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Arachidonate 5-Lipoxygenase/metabolism
- Arachidonate 5-Lipoxygenase/genetics
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/metabolism
- Hydroxyurea/pharmacology
- Hydroxyurea/analogs & derivatives
- Cell Line, Tumor
- K562 Cells
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
Collapse
Affiliation(s)
| | - Alessandra Costa Lopes
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Escola de Química e Alimentos, EQA, FURG, RS, Brazil
| | | | | | | | | | | | | | | | | | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, RS, Brazil.
| |
Collapse
|
4
|
Amarante MCAD, Braga ARC, Sala L, Moraes CC, Kalil SJ. Design strategies for C-phycocyanin purification: Process influence on purity grade. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|