1
|
Pal A, Rai HM, Frej MBH, Razaque A. Advanced Segmentation of Gastrointestinal (GI) Cancer Disease Using a Novel U-MaskNet Model. Life (Basel) 2024; 14:1488. [PMID: 39598286 PMCID: PMC11595444 DOI: 10.3390/life14111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The purpose of this research is to contribute to the development of approaches for the classification and segmentation of various gastrointestinal (GI) cancer diseases, such as dyed lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal Z line, polyps, and ulcerative colitis. This research is relevant and essential because of the current challenges related to the absence of efficient diagnostic tools for early diagnostics of GI cancers, which are fundamental for improving the diagnosis of these common diseases. To address the above challenges, we propose a new hybrid segmentation model, U-MaskNet, which is a combination of U-Net and Mask R-CNN models. Here, U-Net is utilized for pixel-wise classification and Mask R-CNN for instance segmentation, together forming a solution for classifying and segmenting GI cancer. The Kvasir dataset, which includes 8000 endoscopic images of various GI cancers, is utilized to validate the proposed methodology. The experimental results clearly demonstrated that the novel proposed model provided superior segmentation compared to other well-known models, such as DeepLabv3+, FCN, and DeepMask, as well as improved classification performance compared to state-of-the-art (SOTA) models, including LeNet-5, AlexNet, VGG-16, ResNet-50, and the Inception Network. The quantitative analysis revealed that our proposed model outperformed the other models, achieving a precision of 98.85%, recall of 98.49%, and F1 score of 98.68%. Additionally, the novel model achieved a Dice coefficient of 94.35% and IoU of 89.31%. Consequently, the developed model increased the accuracy and reliability in detecting and segmenting GI cancer, and it was proven that the proposed model can potentially be used for improving the diagnostic process and, consequently, patient care in the clinical environment. This work highlights the benefits of integrating the U-Net and Mask R-CNN models, opening the way for further research in medical image segmentation.
Collapse
Affiliation(s)
- Aditya Pal
- Department of Information Technology, Dronacharya Group of Institutions, Greater Noida 201306, India;
| | - Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Mohamed Ben Haj Frej
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Abdul Razaque
- Department of Electrical, Computer Engineering and Computer Science, Ohio Northern University, Ada, OH 45810, USA
| |
Collapse
|
2
|
Hussain MA, LaMay D, Grant E, Ou Y. Deep learning of structural MRI predicts fluid, crystallized, and general intelligence. Sci Rep 2024; 14:27935. [PMID: 39537706 PMCID: PMC11561325 DOI: 10.1038/s41598-024-78157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Can brain structure predict human intelligence? T1-weighted structural brain magnetic resonance images (sMRI) have been correlated with intelligence. However, the population-level association does not fully account for individual variability in intelligence. To address this, studies have emerged recently to predict individual subject's intelligence or neurocognitive scores. However, they are mostly on predicting fluid intelligence (the ability to solve new problems). Studies are lacking to predict crystallized intelligence (the ability to accumulate knowledge) or general intelligence (fluid and crystallized intelligence combined). This study tests whether deep learning of sMRI can predict an individual subject's verbal, comprehensive, and full-scale intelligence quotients (VIQ, PIQ, and FSIQ), which reflect fluid and crystallized intelligence. We performed a comprehensive set of 432 experiments, using different input image channels, six deep learning models, and two outcome settings, in 850 healthy and autistic subjects 6-64 years of age. Our findings indicate a statistically significant potential of T1-weighted sMRI in predicting intelligence, with a Pearson correlation exceeding 0.21 (p < 0.001). Interestingly, we observed that an increase in the complexity of deep learning models does not necessarily translate to higher accuracy in intelligence prediction. The interpretations of our 2D and 3D CNNs, based on GradCAM, align well with the Parieto-Frontal Integration Theory (P-FIT), reinforcing the theory's suggestion that human intelligence is a result of interactions among various brain regions, including the occipital, temporal, parietal, and frontal lobes. These promising results invite further studies and open new questions in the field.
Collapse
Affiliation(s)
- Mohammad Arafat Hussain
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA
| | - Danielle LaMay
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA
- Khoury College of Computer and Information Science, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Ellen Grant
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA
- Department of Radiology, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA
| | - Yangming Ou
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA.
- Department of Radiology, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA.
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Kim S, Park H, Park SH. A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies. Biomed Eng Lett 2024; 14:1221-1242. [PMID: 39465106 PMCID: PMC11502678 DOI: 10.1007/s13534-024-00425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/29/2024] Open
Abstract
Accelerated magnetic resonance imaging (MRI) has played an essential role in reducing data acquisition time for MRI. Acceleration can be achieved by acquiring fewer data points in k-space, which results in various artifacts in the image domain. Conventional reconstruction methods have resolved the artifacts by utilizing multi-coil information, but with limited robustness. Recently, numerous deep learning-based reconstruction methods have been developed, enabling outstanding reconstruction performances with higher acceleration. Advances in hardware and developments of specialized network architectures have produced such achievements. Besides, MRI signals contain various redundant information including multi-coil redundancy, multi-contrast redundancy, and spatiotemporal redundancy. Utilization of the redundant information combined with deep learning approaches allow not only higher acceleration, but also well-preserved details in the reconstructed images. Consequently, this review paper introduces the basic concepts of deep learning and conventional accelerated MRI reconstruction methods, followed by review of recent deep learning-based reconstruction methods that exploit various redundancies. Lastly, the paper concludes by discussing the challenges, limitations, and potential directions of future developments.
Collapse
Affiliation(s)
- Seonghyuk Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - HyunWook Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hong Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
4
|
Ullah Z, Jamjoom M, Thirumalaisamy M, Alajmani SH, Saleem F, Sheikh-Akbari A, Khan UA. A Deep Learning Based Intelligent Decision Support System for Automatic Detection of Brain Tumor. Biomed Eng Comput Biol 2024; 15:11795972241277322. [PMID: 39238891 PMCID: PMC11375672 DOI: 10.1177/11795972241277322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Brain tumor (BT) is an awful disease and one of the foremost causes of death in human beings. BT develops mainly in 2 stages and varies by volume, form, and structure, and can be cured with special clinical procedures such as chemotherapy, radiotherapy, and surgical mediation. With revolutionary advancements in radiomics and research in medical imaging in the past few years, computer-aided diagnostic systems (CAD), especially deep learning, have played a key role in the automatic detection and diagnosing of various diseases and significantly provided accurate decision support systems for medical clinicians. Thus, convolution neural network (CNN) is a commonly utilized methodology developed for detecting various diseases from medical images because it is capable of extracting distinct features from an image under investigation. In this study, a deep learning approach is utilized to extricate distinct features from brain images in order to detect BT. Hence, CNN from scratch and transfer learning models (VGG-16, VGG-19, and LeNet-5) are developed and tested on brain images to build an intelligent decision support system for detecting BT. Since deep learning models require large volumes of data, data augmentation is used to populate the existing dataset synthetically in order to utilize the best fit detecting models. Hyperparameter tuning was conducted to set the optimum parameters for training the models. The achieved results show that VGG models outperformed others with an accuracy rate of 99.24%, average precision of 99%, average recall of 99%, average specificity of 99%, and average f1-score of 99% each. The results of the proposed models compared to the other state-of-the-art models in the literature show better performance of the proposed models in terms of accuracy, sensitivity, specificity, and f1-score. Moreover, comparative analysis shows that the proposed models are reliable in that they can be used for detecting BT as well as helping medical practitioners to diagnose BT.
Collapse
Affiliation(s)
- Zahid Ullah
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mona Jamjoom
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Samah H Alajmani
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Farrukh Saleem
- School of Built Environment, Engineering, and Computing, Leeds Beckett University, Leeds, UK
| | - Akbar Sheikh-Akbari
- School of Built Environment, Engineering, and Computing, Leeds Beckett University, Leeds, UK
| | - Usman Ali Khan
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Iqbal MS, Belal Bin Heyat M, Parveen S, Ammar Bin Hayat M, Roshanzamir M, Alizadehsani R, Akhtar F, Sayeed E, Hussain S, Hussein HS, Sawan M. Progress and trends in neurological disorders research based on deep learning. Comput Med Imaging Graph 2024; 116:102400. [PMID: 38851079 DOI: 10.1016/j.compmedimag.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
In recent years, deep learning (DL) has emerged as a powerful tool in clinical imaging, offering unprecedented opportunities for the diagnosis and treatment of neurological disorders (NDs). This comprehensive review explores the multifaceted role of DL techniques in leveraging vast datasets to advance our understanding of NDs and improve clinical outcomes. Beginning with a systematic literature review, we delve into the utilization of DL, particularly focusing on multimodal neuroimaging data analysis-a domain that has witnessed rapid progress and garnered significant scientific interest. Our study categorizes and critically analyses numerous DL models, including Convolutional Neural Networks (CNNs), LSTM-CNN, GAN, and VGG, to understand their performance across different types of Neurology Diseases. Through particular analysis, we identify key benchmarks and datasets utilized in training and testing DL models, shedding light on the challenges and opportunities in clinical neuroimaging research. Moreover, we discuss the effectiveness of DL in real-world clinical scenarios, emphasizing its potential to revolutionize ND diagnosis and therapy. By synthesizing existing literature and describing future directions, this review not only provides insights into the current state of DL applications in ND analysis but also covers the way for the development of more efficient and accessible DL techniques. Finally, our findings underscore the transformative impact of DL in reshaping the landscape of clinical neuroimaging, offering hope for enhanced patient care and groundbreaking discoveries in the field of neurology. This review paper is beneficial for neuropathologists and new researchers in this field.
Collapse
Affiliation(s)
- Muhammad Shahid Iqbal
- Department of Computer Science and Information Technology, Women University of Azad Jammu & Kashmir, Bagh, Pakistan.
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| | - Saba Parveen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | - Mohamad Roshanzamir
- Department of Computer Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, VIC 3216, Australia.
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Eram Sayeed
- Kisan Inter College, Dhaurahara, Kushinagar, India.
| | - Sadiq Hussain
- Department of Examination, Dibrugarh University, Assam 786004, India.
| | - Hany S Hussein
- Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha 61411, Saudi Arabia; Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81528, Egypt.
| | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Moqurrab SA, Rai HM, Yoo J. HRIDM: Hybrid Residual/Inception-Based Deeper Model for Arrhythmia Detection from Large Sets of 12-Lead ECG Recordings. ALGORITHMS 2024; 17:364. [DOI: 10.3390/a17080364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Heart diseases such as cardiovascular and myocardial infarction are the foremost reasons of death in the world. The timely, accurate, and effective prediction of heart diseases is crucial for saving lives. Electrocardiography (ECG) is a primary non-invasive method to identify cardiac abnormalities. However, manual interpretation of ECG recordings for heart disease diagnosis is a time-consuming and inaccurate process. For the accurate and efficient detection of heart diseases from the 12-lead ECG dataset, we have proposed a hybrid residual/inception-based deeper model (HRIDM). In this study, we have utilized ECG datasets from various sources, which are multi-institutional large ECG datasets. The proposed model is trained on 12-lead ECG data from over 10,000 patients. We have compared the proposed model with several state-of-the-art (SOTA) models, such as LeNet-5, AlexNet, VGG-16, ResNet-50, Inception, and LSTM, on the same training and test datasets. To show the effectiveness of the computational efficiency of the proposed model, we have only trained over 20 epochs without GPU support and we achieved an accuracy of 50.87% on the test dataset for 27 categories of heart abnormalities. We found that our proposed model outperformed the previous studies which participated in the official PhysioNet/CinC Challenge 2020 and achieved fourth place as compared with the 41 official ranking teams. The result of this study indicates that the proposed model is an implying new method for predicting heart diseases using 12-lead ECGs.
Collapse
Affiliation(s)
- Syed Atif Moqurrab
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
7
|
Ding X, Jiang X, Zheng H, Shi H, Wang B, Chan S. MARes-Net: multi-scale attention residual network for jaw cyst image segmentation. Front Bioeng Biotechnol 2024; 12:1454728. [PMID: 39161348 PMCID: PMC11330813 DOI: 10.3389/fbioe.2024.1454728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Jaw cyst is a fluid-containing cystic lesion that can occur in any part of the jaw and cause facial swelling, dental lesions, jaw fractures, and other associated issues. Due to the diversity and complexity of jaw images, existing deep-learning methods still have challenges in segmentation. To this end, we propose MARes-Net, an innovative multi-scale attentional residual network architecture. Firstly, the residual connection is used to optimize the encoder-decoder process, which effectively solves the gradient disappearance problem and improves the training efficiency and optimization ability. Secondly, the scale-aware feature extraction module (SFEM) significantly enhances the network's perceptual abilities by extending its receptive field across various scales, spaces, and channel dimensions. Thirdly, the multi-scale compression excitation module (MCEM) compresses and excites the feature map, and combines it with contextual information to obtain better model performance capabilities. Furthermore, the introduction of the attention gate module marks a significant advancement in refining the feature map output. Finally, rigorous experimentation conducted on the original jaw cyst dataset provided by Quzhou People's Hospital to verify the validity of MARes-Net architecture. The experimental data showed that precision, recall, IoU and F1-score of MARes-Net reached 93.84%, 93.70%, 86.17%, and 93.21%, respectively. Compared with existing models, our MARes-Net shows its unparalleled capabilities in accurately delineating and localizing anatomical structures in the jaw cyst image segmentation.
Collapse
Affiliation(s)
- Xiaokang Ding
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Huixia Zheng
- Department of Stomatology, Quzhou People’s Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Hualuo Shi
- College of Mechanical Engineering, Quzhou University, Quzhou, China
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Ban Wang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Sixian Chan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
S SP, A S, T K, S D. Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification. Electromagn Biol Med 2024:1-15. [PMID: 38369844 DOI: 10.1080/15368378.2024.2312363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a SAGAN optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time.The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging. The accuracy acquired for the brain tumor identification from the proposed method is 99.29%. The proposed BTC-SAGAN-CHA-MRI technique achieves 18.29%, 14.09% and 7.34% higher accuracy and 67.92%,54.04%, and 59.08% less Computation Time when analyzed to the existing models, like Brain tumor diagnosis utilizing deep learning convolutional neural network with transfer learning approach (BTC-KNN-SVM-MRI); M3BTCNet: multi model brain tumor categorization under metaheuristic deep neural network features optimization (BTC-CNN-DEMFOA-MRI), and efficient method depending upon hierarchical deep learning neural network classifier for brain tumour categorization (BTC-Hie DNN-MRI) respectively.
Collapse
Affiliation(s)
- Senthil Pandi S
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India
| | - Senthilselvi A
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kumaragurubaran T
- Department of Computer Science and Engineering, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Dhanasekaran S
- Department of Information Technology, Kalasalingam Academy of Research and Education (Deemed to be University), Srivilliputtur, Tamilnadu, India
| |
Collapse
|
9
|
Zhang Q, Cheng J, Zhou C, Jiang X, Zhang Y, Zeng J, Liu L. PDC-Net: parallel dilated convolutional network with channel attention mechanism for pituitary adenoma segmentation. Front Physiol 2023; 14:1259877. [PMID: 37711463 PMCID: PMC10498772 DOI: 10.3389/fphys.2023.1259877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Accurate segmentation of the medical image is the basis and premise of intelligent diagnosis and treatment, which has a wide range of clinical application value. However, the robustness and effectiveness of medical image segmentation algorithms remains a challenging subject due to the unbalanced categories, blurred boundaries, highly variable anatomical structures and lack of training samples. For this reason, we present a parallel dilated convolutional network (PDC-Net) to address the pituitary adenoma segmentation in magnetic resonance imaging images. Firstly, the standard convolution block in U-Net is replaced by a basic convolution operation and a parallel dilated convolutional module (PDCM), to extract the multi-level feature information of different dilations. Furthermore, the channel attention mechanism (CAM) is integrated to enhance the ability of the network to distinguish between lesions and non-lesions in pituitary adenoma. Then, we introduce residual connections at each layer of the encoder-decoder, which can solve the problem of gradient disappearance and network performance degradation caused by network deepening. Finally, we employ the dice loss to deal with the class imbalance problem in samples. By testing on the self-established patient dataset from Quzhou People's Hospital, the experiment achieves 90.92% of Sensitivity, 99.68% of Specificity, 88.45% of Dice value and 79.43% of Intersection over Union (IoU).
Collapse
Affiliation(s)
- Qile Zhang
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Jianzhen Cheng
- Department of Rehabilitation, Quzhou Third Hospital, Quzhou, China
| | - Chun Zhou
- Department of Rehabilitation, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xiaoliang Jiang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Yuanxiang Zhang
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Jiantao Zeng
- College of Mechanical Engineering, Quzhou University, Quzhou, China
| | - Li Liu
- Department of Thyroid and Breast Surgery, Kecheng District People’s Hospital, Quzhou, China
| |
Collapse
|
10
|
Ullah N, Khan MS, Khan JA, Choi A, Anwar MS. A Robust End-to-End Deep Learning-Based Approach for Effective and Reliable BTD Using MR Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:7575. [PMID: 36236674 PMCID: PMC9570935 DOI: 10.3390/s22197575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Detection of a brain tumor in the early stages is critical for clinical practice and survival rate. Brain tumors arise in multiple shapes, sizes, and features with various treatment options. Tumor detection manually is challenging, time-consuming, and prone to error. Magnetic resonance imaging (MRI) scans are mostly used for tumor detection due to their non-invasive properties and also avoid painful biopsy. MRI scanning of one patient's brain generates many 3D images from multiple directions, making the manual detection of tumors very difficult, error-prone, and time-consuming. Therefore, there is a considerable need for autonomous diagnostics tools to detect brain tumors accurately. In this research, we have presented a novel TumorResnet deep learning (DL) model for brain detection, i.e., binary classification. The TumorResNet model employs 20 convolution layers with a leaky ReLU (LReLU) activation function for feature map activation to compute the most distinctive deep features. Finally, three fully connected classification layers are used to classify brain tumors MRI into normal and tumorous. The performance of the proposed TumorResNet architecture is evaluated on a standard Kaggle brain tumor MRI dataset for brain tumor detection (BTD), which contains brain tumor and normal MR images. The proposed model achieved a good accuracy of 99.33% for BTD. These experimental results, including the cross-dataset setting, validate the superiority of the TumorResNet model over the contemporary frameworks. This study offers an automated BTD method that aids in the early diagnosis of brain cancers. This procedure has a substantial impact on improving treatment options and patient survival.
Collapse
Affiliation(s)
- Naeem Ullah
- Department of Software Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
| | - Mohammad Sohail Khan
- Department of Computer Software Engineering, University of Engineering and Technology Mardan, Mardan 23200, Pakistan
| | - Javed Ali Khan
- Department of Software Engineering, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Ahyoung Choi
- Department of AI, Software Gachon University, Seongnem-si 13120, Korea
| | | |
Collapse
|
11
|
An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain tumors are considered one of the most serious, prominent and life-threatening diseases globally. Brain tumors cause thousands of deaths every year around the globe because of the rapid growth of tumor cells. Therefore, timely analysis and automatic detection of brain tumors are required to save the lives of thousands of people around the globe. Recently, deep transfer learning (TL) approaches are most widely used to detect and classify the three most prominent types of brain tumors, i.e., glioma, meningioma and pituitary. For this purpose, we employ state-of-the-art pre-trained TL techniques to identify and detect glioma, meningioma and pituitary brain tumors. The aim is to identify the performance of nine pre-trained TL classifiers, i.e., Inceptionresnetv2, Inceptionv3, Xception, Resnet18, Resnet50, Resnet101, Shufflenet, Densenet201 and Mobilenetv2, by automatically identifying and detecting brain tumors using a fine-grained classification approach. For this, the TL algorithms are evaluated on a baseline brain tumor classification (MRI) dataset, which is freely available on Kaggle. Additionally, all deep learning (DL) models are fine-tuned with their default values. The fine-grained classification experiment demonstrates that the inceptionresnetv2 TL algorithm performs better and achieves the highest accuracy in detecting and classifying glioma, meningioma and pituitary brain tumors, and hence it can be classified as the best classification algorithm. We achieve 98.91% accuracy, 98.28% precision, 99.75% recall and 99% F-measure values with the inceptionresnetv2 TL algorithm, which out-performs the other DL algorithms. Additionally, to ensure and validate the performance of TL classifiers, we compare the efficacy of the inceptionresnetv2 TL algorithm with hybrid approaches, in which we use convolutional neural networks (CNN) for deep feature extraction and a Support Vector Machine (SVM) for classification. Similarly, the experiment’s results show that TL algorithms, and inceptionresnetv2 in particular, out-perform the state-of-the-art DL algorithms in classifying brain MRI images into glioma, meningioma, and pituitary. The hybrid DL approaches used in the experiments are Mobilnetv2, Densenet201, Squeeznet, Alexnet, Googlenet, Inceptionv3, Resnet50, Resnet18, Resnet101, Xception, Inceptionresnetv3, VGG19 and Shufflenet.
Collapse
|
12
|
Abstract
Recently, deep learning algorithms have become one of the most popular methods and forms of algorithms used in the medical imaging analysis process. Deep learning tools provide accuracy and speed in the process of diagnosing and classifying lumbar spine problems. Disk herniation and spinal stenosis are two of the most common lower back diseases. The process of diagnosing pain in the lower back can be considered costly in terms of time and available expertise. In this paper, we used multiple approaches to overcome the problem of lack of training data in disc state classification and to enhance the performance of disc state classification tasks. To achieve this goal, transfer learning from different datasets and a proposed region of interest (ROI) technique were implemented. It has been demonstrated that using transfer learning from the same domain as the target dataset may increase performance dramatically. Applying the ROI method improved the disc state classification results in VGG19 2%, ResNet50 16%, MobileNetV2 5%, and VGG16 2%. The results improved VGG16 4% and in VGG19 6%, compared with the transfer from ImageNet. Moreover, it has been stated that the closer the data to be classified is to the data that the system trained on, the better the achieved results will be.
Collapse
|