1
|
Tomatsu S, Abbott SM, Attarian H. Clinical Chronobiology: Circadian Rhythms in Health and Disease. Semin Neurol 2025. [PMID: 39961369 DOI: 10.1055/a-2538-3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Circadian rhythms (CRs) are entrainable endogenous rhythms that respond to external stimuli and regulate physiological functions. The suprachiasmatic nucleus (SCN) in the hypothalamus is the mammalian master clock that synchronizes all other tissue-specific peripheral clocks, primarily through gamma-aminobutyric acid (GABA) and vasoactive intestinal polypeptide (VIP). The SCN follows Earth's 24-hour cycle by light entrainment through the retinohypothalamic tract. At the cellular level, the core clock genes CLOCK, BMAL1, PER1-PER3, CRY1, and CRY2 regulate CRs in a negative feedback loop. The circadian disruption of the sleep-wake cycle manifests in at least six distinct clinical conditions. These are the circadian rhythm sleep-wake disorders (CRSWDs). Their diagnosis is made by history, sleep diaries, and actigraphy. Treatment involves a combination of timed light exposure, melatonin/melatonin agonists, and behavioral interventions. In addition, CR disturbances and subsequent misalignment can increase the risk of a variety of illnesses. These include infertility and menstrual irregularities as well as diabetes, obesity, fatty liver disease, and other metabolic syndromes. In addition, a disruption in the gut microbiome creates a proinflammatory environment. CR disturbances increase the risk for mood disorders, hence the utility of light-based therapies in depression. People with neurodegenerative disorders demonstrate significant disturbances in their CRs, and in their sleep-wake cycles. Circadian realignment therapies can also help decrease the symptomatic burden of these disorders. Certain epilepsy syndromes, such as juvenile myoclonic epilepsy (JME), have a circadian pattern of seizures. Circadian disturbances in epilepsy can be both the consequence and cause for breakthrough seizures. The immune system has its own CR. Disturbances in these due to shift work, for instance, can increase the risk of infections. CR disturbances can also increase the risk of cancer by impacting DNA repair, apoptosis, immune surveillance, and cell cycle regulation. Moreover, the timing of chemotherapeutic agents has been shown to increase their therapeutic impact in certain cancers.
Collapse
Affiliation(s)
- Shizuka Tomatsu
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sabra M Abbott
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hrayr Attarian
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
2
|
Colita CI, Hermann DM, Filfan M, Colita D, Doepnner TR, Tica O, Glavan D, Popa-Wagner A. Optimizing Chronotherapy in Psychiatric Care: The Impact of Circadian Rhythms on Medication Timing and Efficacy. Clocks Sleep 2024; 6:635-655. [PMID: 39584972 PMCID: PMC11586979 DOI: 10.3390/clockssleep6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
In many medical settings, medications are typically administered in the morning or evening, aligning with patients' daily routines. This practice does not stem from chronotherapy, which involves scheduling drug administration to enhance its effectiveness, but rather from the way clinical operations are structured. The timing of drug administration can significantly affect a medication's effectiveness and side effects, with the impact varying by up to ten times based on circadian rhythms. Disorders such as major depression, bipolar disorder, and schizophrenia are linked to disruptions in these rhythms. Recent studies have found that circadian dysfunctions, including genetic and neurohumoral changes, underlie many psychiatric conditions. Issues such as an altered glucocorticoid rhythm due to impaired HPA axis function, disturbed melatonin balance, and sleep disturbances have been noted in psychotic disorders. Furthermore, mood disorders have been associated with changes in the expression of circadian rhythm genes such as Clock, Bmal1, and Per. Considering that the absorption, biodistribution, effects on target organs, half-life, metabolism, and elimination of drugs are all influenced by the body's circadian rhythms, this narrative review explores the optimal timing of medication administration to maximize efficacy and minimize side effects in the treatment of psychiatric disorders. By closely monitoring circadian variations in cortisol, melatonin, and key clock genes, as well as by deepening our understanding of the metabolisms and pharmacokinetics of antipsychotic medications, we propose a chronotherapy approach for psychiatric patients that could significantly enhance patient care.
Collapse
Affiliation(s)
- Cezar-Ivan Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Madalina Filfan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Thorsten R. Doepnner
- Department of Neurology, University Medical Center, Klinikstraße 33, 35392 Gießen, Germany;
| | - Oana Tica
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Aurel Popa-Wagner
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
3
|
Kisamore CO, Elliott BD, DeVries AC, Nelson RJ, Walker WH. Chronotherapeutics for Solid Tumors. Pharmaceutics 2023; 15:2023. [PMID: 37631237 PMCID: PMC10459260 DOI: 10.3390/pharmaceutics15082023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Circadian rhythms are internal manifestations of the 24-h solar day that allow for synchronization of biological and behavioral processes to the external solar day. This precise regulation of physiology and behavior improves adaptive function and survival. Chronotherapy takes advantage of circadian rhythms in physiological processes to optimize the timing of drug administration to achieve maximal therapeutic efficacy and minimize negative side effects. Chronotherapy for cancer treatment was first demonstrated to be beneficial more than five decades ago and has favorable effects across diverse cancer types. However, implementation of chronotherapy in clinic remains limited. The present review examines the evidence for chronotherapeutic treatment for solid tumors. Specifically, studies examining chrono-chemotherapy, chrono-radiotherapy, and alternative chronotherapeutics (e.g., hormone therapy, TKIs, antiangiogenic therapy, immunotherapy) are discussed. In addition, we propose areas of needed research and identify challenges in the field that remain to be addressed.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
| | - Brittany D. Elliott
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (C.O.K.); (B.D.E.); (A.C.D.); (R.J.N.)
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| |
Collapse
|
4
|
Fujimura A, Ushijima K. Understanding the role of chronopharmacology for drug optimization: what do we know? Expert Rev Clin Pharmacol 2023; 16:655-668. [PMID: 37403790 DOI: 10.1080/17512433.2023.2233438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Circadian rhythm influences the pharmacokinetics and pharmacodynamics of a number of drugs and affects their therapeutic efficacy and toxicity depending on the time of day they are administered. Chronopharmacology is a method for incorporating knowledge about circadian rhythm into pharmacotherapy. Chronotherapy, which is the clinical application of chronopharmacology, is particularly relevant when the risk and/or severity of symptoms of a disease change in a predictable manner over time. Chronotherapy has potential benefits in the treatment of many diseases. AREAS COVERED Although a considerable amount of knowledge about chronopharmacology and chronotherapy has been accumulated, its therapeutic application in clinical practice remains limited in terms of therapy optimization. Resolution of these issues will improve our ability to deliver adequate drug treatment. EXPERT OPINION We propose four approaches for promoting chronotherapy-based drug treatment in clinical practice: targeting drug development and regulatory authorities; education about chronotherapy; drug information for both health professionals and consumers; and a chronotherapy network.
Collapse
Affiliation(s)
- Akio Fujimura
- Department of Clinical Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| |
Collapse
|
5
|
Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, Gul S, Gazioglu I, Pala Kara Z, Lévi F, Kavakli IH, Okyar A. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice. J Biol Rhythms 2023; 38:171-184. [PMID: 36762608 PMCID: PMC10037547 DOI: 10.1177/07487304221148779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine (5'DFCR), 5'-deoxy-5-fluorouridine (5'DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5'DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, Cmax and AUC0-6h values of 5'DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5'DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.
Collapse
Affiliation(s)
- Yasemin Kubra Akyel
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Narin Ozturk Seyhan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Seref Gul
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Isil Gazioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Zeliha Pala Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Francis Lévi
- UPR "Chronotherapy, Cancer and Transplantation," Medical School, Paris-Saclay University, Villejuif, France
- Medical Oncology Department, Paul Brousse Hospital, Villejuif, France
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Santos-Leite ÉGD, Sacramento LV, Santana AM, Dantas JBDL, Carrera M, Martins GB. Oral hyperpigmentation as an initial clinical aspect of hand foot syndrome. Braz Dent J 2022; 33:97-102. [PMID: 36043574 PMCID: PMC9645187 DOI: 10.1590/0103-6440202204711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Hand-foot syndrome (HFS) is a common adverse effect of anticancer therapy. It is
known to cause dermatological symptoms including acral erythema and dysesthesia
of the palms and soles of the feet, swelling, pain, itching, and scaling. Some
drugs, like capecitabine, are known to trigger this condition. However,
pigmentation of the oral mucosa is a rare adverse effect. This study aims to
report a case of oral mucosa hyperpigmentation caused by capecitabine therapy
before the clinical diagnosis of HFS. A 58-year-old female, diagnosed with
invasive breast duct carcinoma, had the central nervous system, liver, skin, and
lung metastasis, using capecitabine every day for 14 cycles. Oral examination
revealed multifocal black macules on the hard palate, bilateral buccal mucosa,
gingival mucosa, and dorsum of the tongue. The clinical hypothesis was oral
mucosa hyperpigmentation by capecitabine use and only periodic follow-up was
necessary. Hyperpigmentation of oral mucosa by capecitabine is a rare
consequence of neoplastic therapy and your association with HFS is unclear, and
poorly reported. The report of these events is important to alert oncology
health teams about the individual tolerance to capecitabine therapy.
Collapse
Affiliation(s)
| | | | | | - Juliana Borges de Lima Dantas
- Program in Interactive Processes of Organs and Systems at the Institute of Health Sciences of the Federal University of Bahia. Salvador, Bahia, Brazil.,Adventist College of Bahia. Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Manoela Carrera
- Department of Life Sciences at the State University of Bahia, Salvador, Bahia, Brazil.,Faculty of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Gabriela Botelho Martins
- Multidisciplinary Institute of Rehabilitation and Health. Program in Interactive Processes of Organs an Systems at the Institute of Health Sciences at the Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
7
|
Liu H, Liu Y, Hai R, Liao W, Luo X. The role of circadian clocks in cancer: Mechanisms and clinical implications. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
9
|
Printezi MI, Kilgallen AB, Bond MJG, Štibler U, Putker M, Teske AJ, Cramer MJ, Punt CJA, Sluijter JPG, Huitema ADR, May AM, van Laake LW. Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncol 2022; 23:e129-e143. [DOI: 10.1016/s1470-2045(21)00639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
|
10
|
Najafi M, Majidpoor J, Toolee H, Mortezaee K. The current knowledge concerning solid cancer and therapy. J Biochem Mol Toxicol 2021; 35:e22900. [PMID: 34462987 DOI: 10.1002/jbt.22900] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022]
Abstract
Solid cancers comprise a large number of new cases and deaths from cancer each year globally. There are a number of strategies for addressing tumors raised from solid organs including surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, combinational therapy, and stem cell and extracellular vesicle (EV) therapy. Surgery, radiotherapy, and chemotherapy are the dominant cures, but are not always effective, in which even in a localized tumor there is a possibility of tumor relapse after surgical resection. Over half of the cancer patients will receive radiotherapy as a part of their therapeutic schedule. Radiotherapy can cause an abscopal response for boosting the activity of the immune system outside the local field of radiation, but it may also cause an unwanted bystander effect, predisposing nonradiated cells into carcinogenesis. In the context of immunotherapy, immune checkpoint inhibition is known as the standard-of-care, but the major concern is in regard with cold cancers that show low responses to such therapy. Stem-cell therapy can be used to send prodrugs toward the tumor area; this strategy, however, has its own predicaments, such as unwanted attraction toward the other sites including healthy tissues and its instability. A substitute to such therapy and quite a novel strategy is to use EVs, by virtue of their stability and potential to cross biological barriers and long-term storage of contents. Combination therapy is the current focus. Despite advances in the field, there are still unmet concerns in the area of effective cancer therapy, raising challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
11
|
Janssen JM, Jacobs BAW, Roosendaal J, Derissen EJB, Marchetti S, Beijnen JH, Huitema ADR, Dorlo TPC. Population Pharmacokinetics of Intracellular 5-Fluorouridine 5'-Triphosphate and its Relationship with Hand-and-Foot Syndrome in Patients Treated with Capecitabine. AAPS JOURNAL 2021; 23:23. [PMID: 33417061 DOI: 10.1208/s12248-020-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites. We characterised the pharmacokinetics (PK) of 5-fluorouridine 5'-triphosphate (FUTP) in peripheral blood mononuclear cells (PBMCs) and assessed the relationship between exposure to capecitabine or its metabolites and the development of HFS. Plasma and intracellular capecitabine PK data and ordered categorical HFS data was available. A previously developed model describing the PK of capecitabine and metabolites was extended to describe the intracellular FUTP concentrations. Subsequently, a continuous-time Markov model was developed to describe the development of HFS during treatment with capecitabine. The influences of capecitabine and metabolite concentrations on the development of HFS were evaluated. The PK of intracellular FUTP was described by an one-compartment model with first-order elimination (ke,FUTP was 0.028 h-1 (95% confidence interval 0.022-0.039)) where the FUTP influx rate was proportional to the 5-FU plasma concentrations. The predicted individual intracellular FUTP concentration was identified as a significant predictor for the development and severity of HFS. Simulations demonstrated a clear exposure-response relationship. The intracellular FUTP concentrations were successfully described and a significant relationship between these intracellular concentrations and the development and severity of HFS was identified. This model can be used to simulate future dosing regimens and thereby optimise treatment with capecitabine.
Collapse
Affiliation(s)
- Julie M Janssen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Bart A W Jacobs
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jeroen Roosendaal
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ellen J B Derissen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Serena Marchetti
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|