1
|
Lochocki EB, Salesse-Smith CE, McGrath JM. PhotoGEA: An R Package for Closer Fitting of Photosynthetic Gas Exchange Data With Non-Gaussian Confidence Interval Estimation. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159707 DOI: 10.1111/pce.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Fitting mechanistic models, such as the Farquhar-von-Caemmerer-Berry model, to experimentally measured photosynthetic CO2 response curves (A-Ci curves) is a widely used technique for estimating the values of key leaf biochemical parameters and determining limitations to photosynthesis in vivo. Here, we present PhotoGEA, an R package with tools for C3 A-Ci, C3 Variable J and C4 A-Ci curve fitting. In contrast to existing software, these automated tools use derivative-free optimizers to ensure close fits and they calculate non-Gaussian confidence intervals to indicate which parameter values are most reliable. Results from PhotoGEA's C3 A-Ci curve fitting tool are compared against other available tools, where it is found to achieve the closest fits and most reasonable parameter estimates across a range of curves with different characteristics. PhotoGEA's C3 Variable J and C4 A-Ci fitting tools are also presented, demonstrating how they can provide insights into mesophyll conductance and the processes limiting C4 photosynthesis at high CO2 concentrations. PhotoGEA enables users to develop data analysis pipelines for efficiently reading, processing, fitting and analysing photosynthetic gas exchange measurements. It includes extensive documentation and example scripts to help new users become proficient as quickly as possible.
Collapse
Affiliation(s)
- Edward B Lochocki
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Coralie E Salesse-Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Justin M McGrath
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Plant Biology Department, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois, USA
| |
Collapse
|
2
|
Grizza LHE, Contesoto IDC, Mendonça APDS, Comar AC, Boromelo AP, Ferro AP, Constantin RP, dos Santos WD, Marchiosi R, Ferrarese-Filho O. Assessment of 3-Cyanobenzoic Acid as a Possible Herbicide Candidate: Effects on Maize Growth and Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 14:1. [PMID: 39795261 PMCID: PMC11722850 DOI: 10.3390/plants14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (Zea mays), a representative C4 plant, cultivated hydroponically over 14 days. The results showed a significant reduction in plant growth and notable disruptions in gas exchange and chlorophyll a fluorescence due to the application of 3-cyanobenzoic acid, indicating compromised photosynthetic activity. Parameters such as the chlorophyll index, net assimilation (A), stomatal conductance (gs), intercellular CO2 concentration (Ci), maximum effective photochemical efficiency (Fv'/Fm'), photochemical quenching coefficient (qP), quantum yield of photosystem II photochemistry (ϕPSII), and electron transport rate through PSII (ETR) all decreased. The A/PAR curve revealed reductions in the maximum net assimilation rate (Amax) and apparent quantum yield (ϕ), alongside an increased light compensation point (LCP). Moreover, 3-cyanobenzoic acid significantly decreased the carboxylation rates of RuBisCo (Vcmax) and PEPCase (Vpmax), electron transport rate (J), and mesophilic conductance (gm). Overall, 3-cyanobenzoic acid induced substantial changes in plant growth, carboxylative processes, and photochemical activities. The treated plants also exhibited heightened susceptibility to intense light conditions, indicating a significant and potentially adverse impact on their physiological functions. These findings suggest that 3-cyanobenzoic acid or its analogs could be promising for future research targeting photosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá 87020-900, Brazil; (L.H.E.G.); (I.d.C.C.); (A.P.d.S.M.); (A.C.C.); (A.P.B.); (A.P.F.); (R.P.C.); (W.D.d.S.)
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá 87020-900, Brazil; (L.H.E.G.); (I.d.C.C.); (A.P.d.S.M.); (A.C.C.); (A.P.B.); (A.P.F.); (R.P.C.); (W.D.d.S.)
| |
Collapse
|
3
|
Jin C, Zha T, Bourque CPA, Di K, Zhang W, Jiao Y, Fan Z, Hu Z. Water use efficiency in tropical plants based on a set of newly created leaf photosynthesis-related parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177657. [PMID: 39579903 DOI: 10.1016/j.scitotenv.2024.177657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Water use efficiency (WUE) quantifies the amount of water expended per unit of dry leaf matter accumulated, reflecting the trade-offs between water consumption and carbon uptake. It is also a critical parameter for understanding plant responses to environmental changes. This study introduced an innovative set of WUE-related parameters, including maximum water use efficiency (WUEmax) and associated coefficients of water potential, loss, strategic usage, and total usage (WPC, WLC, WSC, and WTC, respectively) in providing a comprehensive evaluation of water use strategies in 48 common tropical plant species during the natural light fluctuations. These parameters exhibited significant differences among plant types, with sun-adapted and shade-tolerant plants (both C3) showing mean of WUEmax values of 3.81 ± 0.63 and 5.42 ± 1.61 μmol mmol-1, respectively, whereas C4 plants demonstrated a greater WUEmax of 7.04 ± 1.77 μmol mmol-1. Compared to C3 plants, particularly shade-tolerant types, C4 plants exhibited significantly higher WPC and WTC (p < 0.05). Furthermore, shade-tolerant plants displayed lower WLC and higher WSC than sun-adapted plants, suggestive of their specialized adaptations to variations in light intensity. The sensitivity of stomatal and mesophyll conductance (i.e., gs and gm) to incident light (Iinc) and/or intercellular CO2 concentration (Ci) helped clarify the source of variation in WUE-related parameters. In sun-adapted plants, gs was sensitive to changes in both Iinc and Ci. In terms of gm, shade-tolerant plants exhibited the lowest overall sensitivity to Iinc. Increasing atmospheric CO2 concentrations from 400 to 450 ppm caused WUE-related parameters to vary, with this response differing among plant types. These insights emphasize the significance of plant adaptation strategies in tropical rainforest ecosystems.
Collapse
Affiliation(s)
- Chuan Jin
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China; School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Faculty of Forestry and Environmental Management, 28 Dineen Drive, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Tianshan Zha
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Charles P-A Bourque
- Faculty of Forestry and Environmental Management, 28 Dineen Drive, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Kai Di
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Weirong Zhang
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Yue Jiao
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Zehao Fan
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China
| | - Zhongmin Hu
- Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Foletto-Felipe MDP, Abrahão J, Contesoto IDC, Ferro AP, Grizza LHE, Menezes PVMDC, Wagner ALS, Seixas FAV, de Oliveira MAS, Tomazini LF, Constantin RP, Dos Santos WD, Ferrarese-Filho O, Marchiosi R. Inhibition of sulfur assimilation by S-benzyl-L-cysteine: Impacts on growth, photosynthesis, and leaf proteome of maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109173. [PMID: 39362125 DOI: 10.1016/j.plaphy.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Sulfur is an essential nutrient for various physiological processes, including protein synthesis and enzyme activation. We aimed to evaluate how S-benzyl-L-cysteine (SBC), an inhibitor of the sulfur assimilation pathway, affects maize plants' growth, photosynthesis, and leaf proteomic profile. Thus, maize plants were grown for 14 days in vermiculite supplemented with SBC. Photosynthesis was assessed using light and CO2 response curves and chlorophyll a fluorescence. Leaf proteome analysis was conducted to evaluate photosynthetic protein biosynthesis, and ROS content was quantified to assess oxidative stress. Applying SBC resulted in a significant decrease in the growth of maize plants. The gas exchange analysis revealed that maize plants exhibited a diminished rate of CO2 assimilation attributable to both stomatal and non-stomatal limitations. Furthermore, SBC suppressed the activity of important elements involved in the photosynthetic electron transport chain (including photosystems I and II, cytochrome b6f, and ATP synthase) and enzymes responsible for the Calvin cycle, some of which have sulfur-containing prosthetic groups. Consequently, the diminished electron flow rate resulted in a substantial increase in the levels of ROS within the leaves. Our research highlights the crucial role of SBC in disrupting maize photosynthesis by limiting L-cysteine and assimilated sulfur availability, which are essential for the synthesis of protein and prosthetic groups and photosynthetic processes, emphasizing the potential of OAS-TL as a new herbicide site of action.
Collapse
Affiliation(s)
- Marcela de Paiva Foletto-Felipe
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil; Coordination of Degree in Biological Sciences, Federal Technological University of Paraná, Campus Dois Vizinhos, Paraná, Brazil
| | - Josielle Abrahão
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Ana Paula Ferro
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Luiz Henryque Escher Grizza
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Ana Luiza Santos Wagner
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Larissa Fonseca Tomazini
- Laboratory of Molecular Biology of Prokaryotes, Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Rodrigo Polimeni Constantin
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Wanderley Dantas Dos Santos
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
5
|
Stainbrook S, Aubuchon L, Chen A, Johnson E, Si A, Walton L, Ahrendt AJ, Strenkert D, Jez J. C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress. Biosci Rep 2024; 44:BSR20240353. [PMID: 39361893 PMCID: PMC11499382 DOI: 10.1042/bsr20240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.
Collapse
Affiliation(s)
- Sarah C. Stainbrook
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | | - Amanda Chen
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Emily Johnson
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Audrey Si
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Laila Walton
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | | | - Daniela Strenkert
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
6
|
Wu A, Truong SH, McCormick R, van Oosterom EJ, Messina CD, Cooper M, Hammer GL. Contrasting leaf-scale photosynthetic low-light response and its temperature dependency are key to differences in crop-scale radiation use efficiency. THE NEW PHYTOLOGIST 2024; 241:2435-2447. [PMID: 38214462 DOI: 10.1111/nph.19537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
Radiation use efficiency (RUE) is a key crop adaptation trait that quantifies the potential amount of aboveground biomass produced by the crop per unit of solar energy intercepted. But it is unclear why elite maize and grain sorghum hybrids differ in their RUE at the crop level. Here, we used a non-traditional top-down approach via canopy photosynthesis modelling to identify leaf-level photosynthetic traits that are key to differences in crop-level RUE. A novel photosynthetic response measurement was developed and coupled with use of a Bayesian model fitting procedure, incorporating a C4 leaf photosynthesis model, to infer cohesive sets of photosynthetic parameters by simultaneously fitting responses to CO2 , light, and temperature. Statistically significant differences between leaf photosynthetic parameters of elite maize and grain sorghum hybrids were found across a range of leaf temperatures, in particular for effects on the quantum yield of photosynthesis, but also for the maximum enzymatic activity of Rubisco and PEPc. Simulation of diurnal canopy photosynthesis predicted that the leaf-level photosynthetic low-light response and its temperature dependency are key drivers of the performance of crop-level RUE, generating testable hypotheses for further physiological analysis and bioengineering applications.
Collapse
Affiliation(s)
- Alex Wu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
| | - Sandra Huynh Truong
- Predictive Agriculture, Research & Development, Corteva Agriscience, Johnston, IA, 50131, USA
| | - Ryan McCormick
- Predictive Agriculture, Research & Development, Corteva Agriscience, Johnston, IA, 50131, USA
- Gro Intelligence, New York, NY, 10022, USA
| | - Erik J van Oosterom
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
| | - Carlos D Messina
- Predictive Agriculture, Research & Development, Corteva Agriscience, Johnston, IA, 50131, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
| | - Graeme L Hammer
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St. Lucia, Brisbane, Qld, 4072, Australia
| |
Collapse
|
7
|
Xu Y, Liu J, Ren C, Niu X, Zhang T, Huo K. Mulched Drip Fertigation with Growth Inhibitors Reduces Bundle-Sheath Cell Leakage and Improves Photosynthesis Capacity and Barley Production in Semi-Arid Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:239. [PMID: 38256791 PMCID: PMC10819993 DOI: 10.3390/plants13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
A better understanding of the factors that reduce bundle-sheath cell leakage to CO2 (Փ), enhance 13C carbon isotope discrimination, and enhance the photosynthetic capacity of barley leaves will be useful to develop a nutrient- and water-saving strategy for dry-land farming systems. Therefore, barley plants were exposed to a novel nitrification inhibitor (NI) (3,4-dimethyl-1H-pyrazol-1-yl succinic acid) (DMPSA) and a urease inhibitor (UI) (N-butyl thiophosphorictriamide (NBPT)) with mulched drip fertigation treatments, which included HF (high-drip fertigation (370 mm) under a ridge furrow system), MF (75% of HF, moderate-drip fertigation under a ridge furrow system), LF (50% of HF, low-drip fertigation under a ridge furrow system), and TP (traditional planting with no inhibitors or drip fertigation strategies). The results indicated that the nitrification inhibitor combined with mulched drip fertigation significantly reduced bundle-sheath cell leakage to CO2 (Փ) as a result of increased soil water content; this was demonstrated by the light and CO2 response curves of the photosynthesis capacity (An), the apparent quantum efficiency (α), and the 13C-photosynthate distribution. In the inhibitor-based strategy, the use of the urease and nitrification inhibitors reduced Փ by 35% and 39% compared with TP. In the NI-HF strategy, it was found that barley could retain the maximum photosynthesis capacity by increasing the leaf area index (LAI), An, rubisco content, soluble protein, dry matter per plant, and productivity. The CO2 and light response curves were considerably improved in the NI-HF and NI-MF treatments due to a higher 13C carbon isotope (Δ‱), respiration rate (Rd), and Ci/Ca, therefore obtaining the minimum Փ value. With both inhibitors, there was a significant difference between HF and LF drip fertigation. The NI-MF treatment significantly increased the grain yield, total chlorophyll content, WUE, and NUE by 52%, 47%, 57%, and 45%, respectively. Collectively, the results suggest that the new nitrification inhibitor (DMPSA) with HF or MF mulched drip fertigation could be promoted in semi-arid regions in order to mitigate bundle-sheath cell leakage to CO2 (Փ), without negatively affecting barley production and leading to the nutrient and water use efficiency of barley.
Collapse
Affiliation(s)
| | | | | | | | | | - Kecang Huo
- Institute of Industrial Crops and Malting Barley, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (Y.X.); (J.L.); (C.R.); (X.N.); (T.Z.)
| |
Collapse
|
8
|
Zhang Q, Tian S, Chen G, Tang Q, Zhang Y, Fleming AJ, Zhu XG, Wang P. Regulatory NADH dehydrogenase-like complex optimizes C 4 photosynthetic carbon flow and cellular redox in maize. THE NEW PHYTOLOGIST 2024; 241:82-101. [PMID: 37872738 DOI: 10.1111/nph.19332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023]
Abstract
C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.
Collapse
Affiliation(s)
- Qiqi Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shilong Tian
- University of Chinese Academy of Sciences, Beijing, China
| | - Genyun Chen
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qiming Tang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Andrew J Fleming
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Xin-Guang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Ren H, Zhang F, Zhu X, Lamlom SF, Liu X, Wang X, Zhao K, Wang J, Sun M, Yuan M, Gao Y, Wang J, Zhang B. Cultivation model and deficit irrigation strategy for reducing leakage of bundle sheath cells to CO 2, improve 13C carbon isotope, photosynthesis and soybean yield in semi-arid areas. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153979. [PMID: 37086696 DOI: 10.1016/j.jplph.2023.153979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
A better understanding of the photosynthesis and soil water storage regulation of soybean production will be helpful to develop a water conservation strategy under a rain-fed farming system. Reducing the leakage of CO2 bundle sheath cells and improving the photosynthesis capacity and gas exchange characteristics of soybean leaves will contribute to increase yield under the dryland agricultural system and provide a scientific basis. Therefore, during 2019 and 2020, soybean exposed to different cultivation modes to analyze the response curves of photosynthesis and CO2 under different deficit irrigation strategies. In this study, we used two cultivation models: RB: ridge covered with biodegradable film and furrow area not covered; CF: conventional flat land planting under four deficit irrigation modes (R: rainwater irrigation; IB: branch stage irrigation (220 mm); IP: Irrigation during podding (220 mm); IBP: branch stage irrigation (110 mm), podding stage irrigation (110 mm). Compared with CF-IBP treatment, RB-IBP had significant effects on rainwater collection, SWS, and soybean yield. Photo-response curve analysis showed that RB-IBP treatment a significant increase in Pn, Gs, Ci, Tr, leaf WUE, and chlorophyll ab content. Under different irrigation strategies, maximum net photosynthetic rate (Pnmax), light saturation point (LSP), and apparent quantum efficiency under RB-IBP treatment (α), Pn under respiration rate and CO2 response curve were significantly higher than that under CF cultivation mode. Compared with RB culture mode under different irrigation strategies, CF cultivation mode significantly increases Δ13C and CO2 sheath cell leakage (Փ); it also led to a significant decline in the ratio of Ci/Ca concentration. This study shows that RB-IBP treatment is the best water-saving strategy because it means reducing the leakage of CO2 from the bundle sheath, thus significantly increasing soil water storage, photosynthetic capacity, and soybean yield.
Collapse
Affiliation(s)
- Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Fengyi Zhang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Xiao Zhu
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China; Heilongjiang University, Harbin, 150086, China
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Xiulin Liu
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Xueyang Wang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Kezhen Zhao
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Jinsheng Wang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Mingming Sun
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, China
| | - Yuan Gao
- Heilongjiang Seed Industry Technical Service Center, Harbin, 150080, China
| | - Jiajun Wang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China.
| | - Bixian Zhang
- Soybean Research Institute, Heilongjiang Academy of Agriculture Sciences / Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs /Heilongjiang Provincial Key Laboratory of Soybean Cultivation, Harbin, 150086, China.
| |
Collapse
|
10
|
Arslan AM, Wang X, Liu BY, Xu YN, Li L, Gong XY. Photosynthetic resource-use efficiency trade-offs triggered by vapour pressure deficit and nitrogen supply in a C 4 species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107666. [PMID: 37001304 DOI: 10.1016/j.plaphy.2023.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Trade-offs in resource-use efficiency (including water-, nitrogen-, and light-use efficiency, i.e., WUE, NUE, and LUE) are an important acclimation strategy of plants to environmental stresses. C4 photosynthesis, featured by a CO2 concentrating mechanism, is believed to be more efficient in using resources compared to C3 photosynthesis. However, response of photosynthetic resource-use efficiency trade-offs in C4 plants to vapour pressure deficit (VPD) and N supply has rarely been studied. Here, we studied the photosynthetic acclimation of Cleistogenes squarrosa, a perennial C4 grass, to controlled growth conditions with high or low VPD and N supply. High VPD increased WUE by 12% and decreased NUE by 16%, the ratio of net photosynthetic rate (A) to electron transport rate (J) (A/J) by 7% and the apparent quantum yield by 6%. High N supply tended to reduce NUE and increased maximum phosphoenol pyruvate carboxylation rate by 71% and slightly increased WUE. Stomatal conductance showed acclimation to VPD according to the Ball-Berry model, while a balanced cost of carboxylation and transpiration capacity was found across VPD and N treatments based on the least-cost model. WUE correlated negatively with NUE and LUE indicating that there was a trade-off between them, which is likely associated with acclimations in stomatal conductance and CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Ashraf Muhammad Arslan
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| | - Bo Ya Liu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yi Ning Xu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| |
Collapse
|
11
|
Zhou H, Akçay E, Helliker B. Optimal coordination and reorganization of photosynthetic properties in C 4 grasses. PLANT, CELL & ENVIRONMENT 2023; 46:796-811. [PMID: 36478594 DOI: 10.1111/pce.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each of >20 independent evolutions of C4 photosynthesis in grasses required reorganization of the Calvin-Benson-cycle (CB-cycle) within the leaf, along with coordination of C4 -cycle enzymes with the CB-cycle to maximize CO2 assimilation. Considering the vast amount of time over which C4 evolved, we hypothesized (i) trait divergences exist within and across lineages with both C4 and closely related C3 grasses, (ii) trends in traits after C4 evolution yield the optimization of C4 through time, and (iii) the presence/absence of trends in coordination between the CB-cycle and C4 -cycle provides information on the strength of selection. To address these hypotheses, we used a combination of optimality modelling, physiological measurements and phylogenetic-comparative-analysis. Photosynthesis was optimized after the evolution of C4 causing diversification in maximal assimilation, electron transport, Rubisco carboxylation, phosphoenolpyruvate carboxylase and chlorophyll within C4 lineages. Both theory and measurements indicated a higher light-reaction to CB-cycle ratio (Jatpmax /Vcmax ) in C4 than C3 . There were no evolutionary trends with photosynthetic coordination between the CB-cycle, light reactions and the C4 -cycle, suggesting strong initial selection for coordination. The coordination of CB-C4 -cycles (Vpmax /Vcmax ) was optimal for CO2 of 200 ppm, not to current conditions. Our model indicated that a higher than optimal Vpmax /Vcmax affects assimilation minimally, thus lessening recent selection to decrease Vpmax /Vcmax .
Collapse
Affiliation(s)
- Haoran Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brent Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Arce Cubas L, Vath RL, Bernardo EL, Sales CRG, Burnett AC, Kromdijk J. Activation of CO 2 assimilation during photosynthetic induction is slower in C 4 than in C 3 photosynthesis in three phylogenetically controlled experiments. FRONTIERS IN PLANT SCIENCE 2023; 13:1091115. [PMID: 36684779 PMCID: PMC9848656 DOI: 10.3389/fpls.2022.1091115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/05/2022] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Despite their importance for the global carbon cycle and crop production, species with C4 photosynthesis are still somewhat understudied relative to C3 species. Although the benefits of the C4 carbon concentrating mechanism are readily observable under optimal steady state conditions, it is less clear how the presence of C4 affects activation of CO2 assimilation during photosynthetic induction. METHODS In this study we aimed to characterise differences between C4 and C3 photosynthetic induction responses by analysing steady state photosynthesis and photosynthetic induction in three phylogenetically linked pairs of C3 and C4 species from Alloteropsis, Flaveria, and Cleome genera. Experiments were conducted both at 21% and 2% O2 to evaluate the role of photorespiration during photosynthetic induction. RESULTS Our results confirm C4 species have slower activation of CO2 assimilation during photosynthetic induction than C3 species, but the apparent mechanism behind these differences varied between genera. Incomplete suppression of photorespiration was found to impact photosynthetic induction significantly in C4 Flaveria bidentis, whereas in the Cleome and Alloteropsis C4 species, delayed activation of the C3 cycle appeared to limit induction and a potentially supporting role for photorespiration was also identified. DISCUSSION The sheer variation in photosynthetic induction responses observed in our limited sample of species highlights the importance of controlling for evolutionary distance when comparing C3 and C4 photosynthetic pathways.
Collapse
Affiliation(s)
- Lucía Arce Cubas
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| | - Richard L. Vath
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| | - Emmanuel L. Bernardo
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
- University of the Philippines Los Baños, Institute of Crop Science, College of Agriculture and Food Science, College, Laguna, Philippines
| | | | - Angela C. Burnett
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| | - Johannes Kromdijk
- The University of Cambridge, Department of Plant Sciences, Cambridge, United Kingdom
| |
Collapse
|
13
|
Kabir MY, Nambeesan SU, Díaz-Pérez JC. Carbon dioxide and light curves and leaf gas exchange responses to shade levels in bell pepper (Capsicum annuum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111532. [PMID: 36347336 DOI: 10.1016/j.plantsci.2022.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Vegetable crops grown under shade nets typically show increased yield and quality. However, little is known about the photosynthetic responses at various CO2 and light levels under nets. This study aimed to determine carbon dioxide (A/Cc) and light (A/I) curves and leaf gas exchange response of bell pepper plants grown under nets at various shade levels. Experiments were conducted in the spring-summer of 2016 and 2018 in Tifton, Georgia (GA), USA, with five shade treatments [0 % (open field), 30 %, 47 %, 63 %, and 80 %]. The A/Cc curves revealed that plants grown at 30 % shade and in the open field had similar carboxylation, electron transport, and triose phosphate utilization rates. The A/I curves showed that gross and net photosynthesis were highest at 30 % shade. The 30 % shade had similar stomatal conductance, intercellular CO2, electron transport rate, and water use efficiency compared to the open field. The A/Cc and A/I curves and the leaf gas exchange parameters explained the intrinsic causes for the higher net photosynthesis at 30 % shade than in open-field bell pepper. The information from A/Cc-curves, A/I-curves, and leaf gas exchange is applicable in modeling photosynthesis and predicting primary productivity for C3 plants in elevated-CO2 and altered-light environments.
Collapse
Affiliation(s)
- M Yamin Kabir
- Department of Horticulture, University of Georgia, Tifton, GA 31793, USA; Agrotechnology Discipline, Khulna University, Khulna 9208, Bangladesh.
| | | | - Juan C Díaz-Pérez
- Department of Horticulture, University of Georgia, Tifton, GA 31793, USA.
| |
Collapse
|
14
|
Mousavi SS, Karami A, Maggi F. Photosynthesis and chlorophyll fluorescence of Iranian licorice ( Glycyrrhiza glabra l.) accessions under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984944. [PMID: 36275588 PMCID: PMC9585319 DOI: 10.3389/fpls.2022.984944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
While salinity is increasingly becoming a prominent concern in arable farms around the globe, various treatments can be used for the mitigation of salt stress. Here, the effective presence of Azotobacter sp. inoculation (A1) and absence of inoculation (A0) was evaluated on Iranian licorice plants under NaCl stress (0 and 200 mM) (S0 and S1, respectively). In this regard, 16 Iranian licorice (Glycyrrhiza glabra L.) accessions were evaluated for the effects on photosynthesis and chlorophyll fluorescence. Leaf samples were measured for photosynthetic pigments (via a spectrophotometer), stomatal and trichome-related features (via SEM), along with several other morphological and biochemical features. The results revealed an increase in the amount of carotenoids that was caused by bacterial inoculation, which was 28.3% higher than the non-inoculated treatment. Maximum initial fluorescence intensity (F0) (86.7) was observed in the 'Bardsir' accession. Meanwhile, the highest variable fluorescence (Fv), maximal fluorescence intensity (Fm), and maximum quantum yield (Fv/Fm) (0.3, 0.4, and 0.8, respectively) were observed in the 'Eghlid' accession. Regarding anatomical observations of the leaf structure, salinity reduced stomatal density but increased trichome density. Under the effect of bacterial inoculation, salinity stress was mitigated. With the effect of bacterial inoculation under salinity stress, stomatal length and width increased, compared to the condition of no bacterial inoculation. Minimum malondialdehyde content was observed in 'Mahabad' accession (17.8 μmol/g FW). Principle component analysis (PCA) showed that 'Kashmar', 'Sepidan', 'Bajgah', 'Kermanshah', and 'Taft' accessions were categorized in the same group while being characterized by better performance in the aerial parts of plants. Taken together, the present results generally indicated that selecting the best genotypes, along with exogenous applications of Azotobacter, can improve the outcomes of licorice cultivation for industrial purposes under harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
15
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
von Caemmerer S. Updating the steady-state model of C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6003-6017. [PMID: 34173821 PMCID: PMC8411607 DOI: 10.1093/jxb/erab266] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
C4 plants play a key role in world agriculture. For example, C4 crops such as maize and sorghum are major contributors to food production in both developed and developing countries, and the C4 grasses sugarcane, miscanthus, and switchgrass are major plant sources of bioenergy. In the challenge to manipulate and enhance C4 photosynthesis, steady-state models of leaf photosynthesis provide an important tool for gas exchange analysis and thought experiments that can explore photosynthetic pathway changes. Here a previous C4 photosynthetic model developed by von Caemmerer and Furbank has been updated with new kinetic parameterization and temperature dependencies added. The parameterization was derived from experiments on the C4 monocot, Setaria viridis, which for the first time provides a cohesive parameterization. Mesophyll conductance and its temperature dependence have also been included, as this is an important step in the quantitative correlation between the initial slope of the CO2 response curve of CO2 assimilation and in vitro phosphoenolpyruvate carboxylase activity. Furthermore, the equations for chloroplast electron transport have been updated to include cyclic electron transport flow, and equations have been added to calculate the electron transport rate from measured CO2 assimilation rates.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
- Correspondence:
| |
Collapse
|
17
|
Lawrence EH, Springer CJ, Helliker BR, Scott Poethig R. MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. THE NEW PHYTOLOGIST 2021; 231:1008-1022. [PMID: 33064860 PMCID: PMC8299463 DOI: 10.1111/nph.17007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 05/09/2023]
Abstract
Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Clint J. Springer
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, PA 19131, USA
| | - Brent R. Helliker
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Pandey B, Singh S, Roy LB, Shekhar S, Singh RK, Prasad B, Singh KKK. Phytostabilization of coal mine overburden waste, exploiting the phytoremedial efficacy of lemongrass under varying level of cow dung manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111757. [PMID: 33396080 DOI: 10.1016/j.ecoenv.2020.111757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
A pot study was performed to assess the phytoremedial potential of Cymbopogon citratus (D.C.) Staf. for reclamation of coal mine overburden dump wastes, emphasizing the outcome of amendment practices using cow dung manure (CM) and garden soil mixtures on the revegetation of over-burden wastes (OB). Wastes amendment with cow dung manure and garden soil resulted in a significant increase in soil health and nutrient status along with an increment in the phytoavailability of Zn and Cu which are usually considered as micronutrients, essential for plant growth. A significant increment in the total biomass of lemongrass by 38.6% under CM20 (OB: CM 80:20) was observed along with improved growth parameters under amended treatments as compared to OB (100% waste). Furthermore, the proportionate increases in the assimilative rate, water use efficiency, and chlorophyll fluorescence have been observed with the manure application rates. Lemongrass emerged out to be an efficient metal-tolerant herb species owing to its high metal-tolerance index (>100%). Additionally, lemongrass efficiently phytostablized Pb and Ni in the roots. Based on the strong plant performances, the present study highly encourages the cultivation of lemongrass in coal mining dumpsites for phytostabilization coupled with cow-dung manure application (20% w/w).
Collapse
Affiliation(s)
- Bhanu Pandey
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| | - Siddharth Singh
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| | - Lal Babu Roy
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| | - Sameer Shekhar
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| | - Ranjeet Kumar Singh
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| | - Bably Prasad
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| | - Krishna Kant Kumar Singh
- Natural Resources and Environment Management, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, Jharkhand 826 015, India.
| |
Collapse
|
19
|
Fu L, Ren H, Xu S, Hu S, Yang J, Liu C. Planting models and mulching material strategies to reduce bundle sheath cell leakage and improve photosynthetic capacity and maize production in semi-arid climate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2315-2327. [PMID: 32885335 DOI: 10.1007/s11356-020-10611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Better understanding of soil water storage and photosynthetic regulation of maize production will be useful to develop a water-saving strategy in rain-fed conditions. Therefore, maize crop was grown under the different cultivation practices for analyzed light and CO2-response curves under various mulching strategies during 2017-2018 years. Six different treatments were used such as the following: PP, ridges and furrows zone covered with plastic film mulching; PS, ridges covered with plastic film and furrows zone with stalk mulching; PN, ridges covered with plastic film and furrows zone without mulching; TP, conventional flat planting with plastic film mulching; TS, conventional flat planting with stalk mulching; and TN, conventional flat planting without mulching. The PP treatment had considerable effects on rainwater collection, improved SWS, and maize productivity than that of TP treatment. Significantly increase of SWS was observed under the PP treatment as a result photosynthetic capacity (An) improved under light and CO2-response curves, apparent quantum efficiency (α), respiration rate, total chlorophyll ab content, and 13C-photosynthates distribution in different organs. Under the PP and TP treatments, the maize might keep a great photosynthetic capacity at the post-flowering stage through improving An, LAI, soluble protein, Rubisco contents, and grain yield. The CO2 and light-response curves were significantly enhanced at the PP treatment due to higher 13C carbon isotope (Δ‰) and Ci/Ca as a result lower bundle sheath to leakiness of CO2 (ɸ) compared with the rest of all treatments. The results suggested that PP cultivation practice was the best water-saving strategy because it reduced bundle sheath leakiness to CO2 (ɸ); as a result there's a significant improvement in soil water storage, LAI, 13C-photosynthates distribution, photosynthetic capacity parameters, and maize production.
Collapse
Affiliation(s)
- Lixin Fu
- Institute of Maize Research, Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China.
| | - Honglei Ren
- Institute of Maize Research, Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Shengjun Xu
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Shaoxin Hu
- Institute of Maize Research, Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Jianfei Yang
- Institute of Maize Research, Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Chang Liu
- Institute of Maize Research, Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| |
Collapse
|
20
|
Pignon CP, Long SP. Retrospective analysis of biochemical limitations to photosynthesis in 49 species: C 4 crops appear still adapted to pre-industrial atmospheric [CO 2 ]. PLANT, CELL & ENVIRONMENT 2020; 43:2606-2622. [PMID: 32743797 DOI: 10.1111/pce.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Leaf CO2 uptake (A) in C4 photosynthesis is limited by the maximum apparent rate of PEPc carboxylation (Vpmax ) at low intercellular [CO2 ] (ci ) with a sharp transition to a ci -saturated rate (Vmax ) due to co-limitation by ribulose-1:5-bisphosphate carboxylase/oxygenase (Rubisco) and regeneration of PEP. The response of A to ci has been widely used to determine these two parameters. Vmax and Vpmax depend on different enzymes but draw on a shared pool of leaf resources, such that resource distribution is optimized, and A maximized, when Vmax and Vpmax are co-limiting. We collected published A/ci curves in 49 C4 species and assessed variation in photosynthetic traits between phylogenetic groups, and as a function of atmospheric [CO2 ]. The balance of Vmax -Vpmax varied among evolutionary lineages and C4 subtypes. Operating A was strongly Vmax -limited, such that re-allocation of resources from Vpmax towards Vmax was predicted to improve A by 12% in C4 crops. This would not require additional inputs but rather altered partitioning of existing leaf nutrients, resulting in increased water and nutrient-use efficiency. Optimal partitioning was achieved only in plants grown at pre-industrial atmospheric [CO2 ], suggesting C4 crops have not adjusted to the rapid increase in atmospheric [CO2 ] of the past few decades.
Collapse
Affiliation(s)
- Charles P Pignon
- Carl Woese Institute for Genomic Biology and Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Stephen P Long
- Carl Woese Institute for Genomic Biology and Departments of Crop Sciences and Plant Biology, University of Illinois, Urbana, Illinois, USA
- Lancaster Environment Centre, University of Lancaster, UK
| |
Collapse
|
21
|
Zhu L, Cernusak LA, Song X. Dynamic responses of gas exchange and photochemistry to heat interference during drought in wheat and sorghum. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:611-627. [PMID: 32393434 DOI: 10.1071/fp19242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Drought and heat stress significantly affect crop growth and productivity worldwide. It is unknown how heat interference during drought affects physiological processes dynamically in crops. Here we focussed on gas exchange and photochemistry in wheat and sorghum in response to simulated heat interference via +15°C of temperature during ~2 week drought and re-watering. Results showed that drought decreased net photosynthesis (Anet), stomatal conductance (gs), maximum velocity of ribulose-1, 5-bisphosphate carboxylase/oxygenase carboxylation (Vcmax) and electron transport rate (J) in both wheat and sorghum. Heat interference did not further reduce Anet or gs. Drought increased non-photochemical quenching (Φnpq), whereas heat interference decreased Φnpq. The δ13C of leaf, stem and roots was higher in drought-treated wheat but lower in drought-treated sorghum. The results suggest that (1) even under drought conditions wheat and sorghum increased or maintained gs for transpirational cooling to alleviate negative effects by heat interference; (2) non-photochemical quenching responded differently to drought and heat stress; (3) wheat and sorghum responded in opposing patterns in δ13C. These findings point to the importance of stomatal regulation under heat crossed with drought stress and could provide useful information on development of better strategies to secure crop production for future climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Xin Song
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Corresponding author.
| |
Collapse
|
22
|
Cousins AB, Mullendore DL, Sonawane BV. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:816-830. [PMID: 31960507 DOI: 10.1111/tpj.14664] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/19/2019] [Indexed: 05/24/2023]
Abstract
The conductance of carbon dioxide (CO2 ) from the substomatal cavities to the initial sites of CO2 fixation (gm ) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm , (iii) the technical limitation of estimating gm , which cannot be directly measured, and (iv) how gm responds to long- and short-term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two-resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three-dimensional (3-D) reaction-diffusion models and 3-D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm . Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.
Collapse
Affiliation(s)
- Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Daniel L Mullendore
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Balasaheb V Sonawane
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
23
|
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:858-873. [PMID: 31659806 DOI: 10.1111/tpj.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Collapse
Affiliation(s)
- Jürgen Knauer
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|