1
|
Zeng Y, Wang S, Huang F, Luo Q, Ren B, Abo El-Maati MF, El-Sappah AH. Fate of polycyclic aromatic hydrocarbons in the phytoremediation of different hydrocarbon contaminated soils with cotton, ryegrass, tall fescue, and wheat. FRONTIERS IN PLANT SCIENCE 2025; 16:1550234. [PMID: 40330126 PMCID: PMC12053178 DOI: 10.3389/fpls.2025.1550234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025]
Abstract
Introduction Phytoremediation is a promising strategy for cleaning up polycyclic aromatic hydrocarbon (PAH)-contaminated soils. This study investigated the effectiveness of four plant species-cotton, ryegrass, tall fescue, and wheat-in enhancing PAH removal from soils contaminated with diesel oil, PAHs, and aged oily sludge. Methods Aged oily sludge-contaminated soil was artificially prepared, and the selected plants were cultivated in different hydrocarbon-contaminated soils (diesel oil, PAHs, and oily sludge). The fate of PAHs was analyzed by measuring their distribution in rhizospheric soil and plant tissues. Root concentration factors (RCFs) and transpiration stream concentration factors (TSCFs) were used to evaluate PAH translocation and accumulation in plant tissues and their interactions with the rhizosphere. Results The study demonstrated that plants enhanced PAH removal by 20%-80%, with wheat showing the highest efficiency. PAH removal was generally more effective in oily sludge-contaminated soil than in diesel oil or PAH-contaminated soil. Plant uptake of PAHs accounted for 2%-10% of total removal and exhibited a strong linear correlation with root weight. RCFs were linearly correlated with LogKow (3-6), indicating that the four plant species did not significantly concentrate PAHs in their roots. Discussion The findings confirm the potential of phytoremediation for PAH-contaminated soils, particularly using wheat as an effective species. The low RCFs and TSCFs suggest that PAH uptake was limited, implying that rhizodegradation and microbial interactions may play a more critical role than direct plant accumulation. This study supports phytoremediation as a cost-effective and eco-friendly alternative to conventional soil remediation methods, reducing economic and environmental burdens.
Collapse
Affiliation(s)
- Yunmin Zeng
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, China
- Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai, China
| | - Shijie Wang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, China
| | - Fan Huang
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, China
| | - Qiang Luo
- Sichuan Tongyi Environmental Science & Technology Group Co., Ltd, Yibin, China
| | - Bing Ren
- Sichuan Tongyi Environmental Science & Technology Group Co., Ltd, Yibin, China
| | | | - Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Liu C, Liu J, Mei X, Zheng J, Zheng K, Li O, Chio C, Khatiwada J, Zhang X, Wang D, Hu H, Qin W, Zhuang J. Effects of nitrogen regulation on heavy metal phytoextraction efficiency (Leucaena leucocephala): Application of a nitrogen fertilizer and a fungal agent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124102. [PMID: 38710362 DOI: 10.1016/j.envpol.2024.124102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.
Collapse
Affiliation(s)
- Chao Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Jiayi Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoli Mei
- The Third Construction Co., Ltd. of China Construction First Group, Beijing, China
| | - Jiaxin Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Kang Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Ou Li
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Janak Khatiwada
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Xiaoxia Zhang
- China Construction First Group Co., Ltd., Beijing, China
| | - Dong Wang
- The Third Construction Co., Ltd. of China Construction First Group, Beijing, China
| | - Haibo Hu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Jiayao Zhuang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Zheng X, Chen F, Zhu Y, Zhang X, Li Z, Ji J, Wang G, Guan C. Laccase as a useful assistant for maize to accelerate the phenanthrene degradation in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4848-4863. [PMID: 38105330 DOI: 10.1007/s11356-023-31515-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollution has attracted much attention due to their wide distribution in soil environment and serious harm to human health. In order to establish an efficient and eco-friendly technology for remediation of PAH-contaminated soil, phytoremediation utilizing maize assisted with enzyme remediation was explored in this study. The results showed that the participation of laccase could promote the degradation of phenanthrene (PHE) from soil and significantly reduce the accumulation of PHE in maize. The degradation efficiency of PHE in soil could reach 77.19% under laccase-assisted maize remediation treatment, while the accumulation of PHE in maize roots and leaves decreased by 41.23% and 74.63%, respectively, compared to that without laccase treatment, after 24 days of maize cultivation. Moreover, it was found that laccase addition shifted the soil microbial community structure and promoted the relative abundance of some PAH degrading bacteria, such as Pseudomonas and Sphingomonas. In addition, the activities of some enzymes that were involved in PAH degradation process and soil nutrient cycle increased with the treatment of laccase enzyme. Above all, the addition of laccase could not only improve the removal efficiency of PHE in soil, but also alter the soil environment and reduce the accumulation of PHE in maize. This study provided new perspective for exploring the efficiency of the laccase-assisted maize in the remediation of contaminated soil, evaluating the way for reducing the risk of secondary pollution of plants in the phytoremediation process.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
4
|
Chen X, Zhu Y, Chen F, Li Z, Zhang X, Wang G, Ji J, Guan C. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167305. [PMID: 37742959 DOI: 10.1016/j.scitotenv.2023.167305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic organic pollutants widely distributed in terrestrial environments and laccase was considered as an effective enzyme in PAHs bioremediation. However, laccase-assisted phytoremediation of PAHs-contaminated soil has not been reported. Moreover, the overuse of plastic films in agriculture greatly increased the risk of co-existence of PAHs and microplastics in soil. Microplastics can adsorb hydrophobic organics, thus altering the bioavailability of PAHs and ultimately affecting the removal of PAHs from soil. Therefore, this study aimed to evaluate the efficiency of laccase-assisted maize (Zea mays L.) in the remediation of phenanthrene (PHE)-contaminated soil and investigate the effect of microplastics on this remediation process. The results showed that the combined application of laccase and maize achieved a removal efficiency of 83.47 % for soil PHE, and laccase significantly reduced the accumulation of PHE in maize. However, microplastics significantly inhibited the removal of soil PHE (10.88 %) and reduced the translocation factor of PHE in maize (87.72 %), in comparison with PHE + L treatment. Moreover, microplastics reduced the laccase activity and the relative abundance of some PAHs-degrading bacteria in soil. This study provided an idea for evaluating the feasibility of the laccase-assisted plants in the remediation of PAHs-contaminated soil, paving the way for reducing the risk of secondary pollution in the process of phytoremediation.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yalan Zhu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Fenyan Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zhiman Li
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xiaoge Zhang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
5
|
Su R, Xie T, Yao H, Chen Y, Wang H, Dai X, Wang Y, Shi L, Luo Y. Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata: A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214968. [PMID: 36429686 PMCID: PMC9691260 DOI: 10.3390/ijerph192214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/06/2023]
Abstract
Phytoremediation could be an alternative strategy for lead (Pb) contamination. K. paniculata has been reported as a newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Physiological indexes, enrichment accumulation characteristics, Pb subcellular distribution and microstructure of K. paniculata were carefully studied at different levels of Pb stress (0-1200 mg/L). The results showed that plant growth increased up to 123.8% and 112.7%, relative to the control group when Pb stress was 200 mg/L and 400 mg/L, respectively. However, the average height and biomass of K. paniculata decrease when the Pb stress continues to increase. In all treatment groups, the accumulation of Pb in plant organs showed a trend of root > stem > leaf, and Pb accumulation reached 81.31%~86.69% in the root. Chlorophyll content and chlorophyll a/b showed a rising trend and then fell with increasing Pb stress. Catalase (CAT) and peroxidase (POD) activity showed a positive trend followed by a negative decline, while superoxide dismutase (SOD) activity significantly increased with increasing levels of Pb exposure stress. Transmission electron microscopy (TEM) showed that Pb accumulates in the inactive metabolic regions (cell walls and vesicles) in roots and stems, which may be the main mechanism for plants to reduce Pb biotoxicity. Fourier transform infrared spectroscopy (FTIR) showed that Pb stress increased the content of intracellular -OH and -COOH functional groups. Through organic acids, polysaccharides, proteins and other compounds bound to Pb, the adaptation and tolerance of K. paniculata to Pb were enhanced. K. paniculata showed good phytoremediation potential and has broad application prospects for heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Tianzhi Xie
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haisong Yao
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Y.C.); (Y.L.)
| | - Hanqing Wang
- School of Civil Engineering, Central South Forestry University, Changsha 410018, China
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, Changsha 410018, China
| | - Xiangrong Dai
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Lei Shi
- College of Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Yiting Luo
- Business College, Hunan First Normal University, Changsha 410205, China
- Correspondence: (Y.C.); (Y.L.)
| |
Collapse
|
6
|
Zhao Z, He W, Wu R, Xu F. Distribution and Relationships of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils and Plants near Major Lakes in Eastern China. TOXICS 2022; 10:toxics10100577. [PMID: 36287857 PMCID: PMC9607041 DOI: 10.3390/toxics10100577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
The distributions and correlations among polycyclic aromatic hydrocarbons (PAHs) in soils and plants were analyzed. In this study, 9 soil samples and 44 plant samples were collected near major lakes (Hongze Lake, Luoma Lake, Chaohu, Changhu, Danjiangkou Reservoir, Wuhan East Lake, Longgan Lake, Qiandao Lake and Liangzi Lake) in eastern China. The following results were obtained: The total contents of PAHs in soil varied from 99.17 to 552.10 ng/g with an average of 190.35 ng/g, and the total contents of PAHs in plants varied from 122.93 to 743.44 ng/g, with an average of 274.66 ng/g. The PAHs in soil were dominated by medium- and low-molecular-weight PAHs, while the PAHs in plants were dominated by low-molecular-weight PAHs. The proportion of high-molecular-weight PAHs was the lowest in both soil and plants. Diagnostic ratios and principal component analysis (PCA) identified combustion as the main source of PAHs in soil and plants. The plant PAH monomer content was negatively correlated with Koa. Acenaphthylene, anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene and dibenzo[a,h]anthracene were significantly correlated in plants and soil. In addition, no significant correlation between the total contents of the 16 PAHs and the content of high-, medium-, and low-molecular-weight PAHs in plants and soil was found. Bidens pilosa L. and Gaillardia pulchella Foug in the Compositae family and cron in the Poaceae family showed relatively stronger accumulation of PAHs, indicating their potential for phytoremediation.
Collapse
Affiliation(s)
- Zhiwei Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing100083, China
| | - Ruilin Wu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Correspondence:
| |
Collapse
|
7
|
Li D, Zheng X, Lin L, An Q, Jiao Y, Li Q, Li Z, Hong Y, Zhang K, Xie C, Yin J, Zhang H, Wang B, Hu Y, Zhu Z. Remediation of soils co-contaminated with cadmium and dichlorodiphenyltrichloroethanes by king grass associated with Piriformospora indica: Insights into the regulation of root excretion and reshaping of rhizosphere microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126936. [PMID: 34463272 DOI: 10.1016/j.jhazmat.2021.126936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) are frequently detected in agricultural soils, which poses a threat to public health. This study investigated the effects of inoculation of king grass with Piriformospora indica on the remediation of soils co-contaminated with Cd and DDTs. After treatment for 90 days, the dry shoot and root biomass of king grass inoculated with P. indica markedly increased by 13.0-15.8% and 24.1-46.4%, respectively, compared with those of uninoculated plants. Inoculation with P. indica also increased the uptake of Cd and DDTs by shoots and roots of king grass. The removal efficiency of Cd and DDTs from soils reached 4.88-17.4% and 48.4-51.0%, respectively, in the presence of king grass inoculated with P. indica. Under three Cd-DDTs contamination conditions, root secretion of organic acids, alcohol, and polyamines was distinctively stimulated by P. indica inoculation of king grass compared with planting king grass alone. After phytoremediation, changes in soil bacterial and fungal community composition occurred at different contamination levels. Overall, the results showed that king grass associated with P. indica can be adopted for phytoextraction of Cd and DDTs from moderately contaminated soils by regulating root excretion and reshaping rhizosphere microbial community structure.
Collapse
Affiliation(s)
- Dong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaoxiao Zheng
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Qianli An
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Yangqiu Jiao
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qiuli Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhidong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yi Hong
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Can Xie
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jing Yin
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haixiang Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Baijie Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueming Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Gabriele I, Race M, Papirio S, Esposito G. Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112805. [PMID: 34051532 DOI: 10.1016/j.jenvman.2021.112805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/15/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Soil contamination by pyrene has increased over the years due to human-related activities, urgently demanding for remediation approaches to ensure human and environment safety. Within this frame, phytoremediation has been successfully applied over the years due to its green and cost-effectiveness features. The scope of this review includes the main phytoremediation mechanisms correlated with the removal of pyrene from contaminated soils and sediments to highlight the impact of different parameters and the supplement of additives on the efficiency of the treatment. Soil organic matter (SOM), plant species, aging time, environmental parameters (pH, soil oxygenation, and temperature) and bioavailability are among the main parameters affecting pyrene removal through phytoremediation. Phytoextraction only accounts for a small part of the entire phytoremediation process, but the addition of surfactants and chelating agents in planted soils could increase pyrene accumulation in plant tissues by 20% as a consequence of the increased pyrene bioavailability. Rhizodegradation is the main phytoremediation mechanism involved due to the activity of bacteria capable of degrading pyrene in the root area. Inoculated-planted soil treatments have the potential to decrease pyrene accumulation in shoots and roots by approximately 30 and 40%, respectively, further stimulating the proliferation of pyrene-degrading bacteria in the rhizosphere. Plant-fungi symbiotic association results in an enhanced accumulation of pyrene in shoots and roots of plants as well as a higher biodegradation. Finally, pyrene removal from soil can be improved in the presence of amendments, such as natural non-ionic surfactants, biochar, and bacterial mixtures.
Collapse
Affiliation(s)
- Ilaria Gabriele
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
9
|
Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 197:111031. [PMID: 33744268 DOI: 10.1016/j.envres.2021.111031] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | | | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 12 FL 32611, USA
| | - Avelino Núñez-Delgado
- Depart. Soil Sci. and Agric. Chem., Engineering Polytech. School, Lugo, Univ. Santiago de Compostela, Spain
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|