1
|
Li Z, Zhao Y, Luo K. Molecular Mechanisms of Heterosis and Its Applications in Tree Breeding: Progress and Perspectives. Int J Mol Sci 2024; 25:12344. [PMID: 39596408 PMCID: PMC11594601 DOI: 10.3390/ijms252212344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Heterosis, or hybrid vigor, refers to the phenomenon where hybrid progenies outperform their parents in traits such as yield and resistance. This phenomenon has been widely applied in plant breeding. Recent advances in high-throughput genomics have significantly advanced our understanding of heterosis. This review systematically summarizes the genetic, molecular, and epigenetic mechanisms underlying heterosis. Furthermore, we discuss recent advances in predictive methods for heterosis and their applications in improving growth rate, resistance to abiotic stresses, and wood yield in tree species. We also explore the role of tree genomics in unraveling the mechanisms underlying heterosis, emphasizing the potential of integrating high-resolution genomics, single-cell sequencing, and spatial transcriptomics to achieve a comprehensive understanding of heterosis from the molecular to spatial levels. Building on this, CRISPR-based gene-editing technologies can be employed to precisely edit heterotic loci, enabling the study of allele function. Additionally, molecular marker-assisted selection (MAS) can be utilized to identify heterotic loci in parental lines, facilitating the selection of optimal hybrid combinations and significantly reducing the labor and time costs of hybrid breeding. Finally, we review the utilization of heterosis in tree breeding and provide a forward-looking perspective on future research directions, highlighting the potential of integrating multi-omics approaches and emerging gene-editing tools to revolutionize tree hybrid breeding.
Collapse
Affiliation(s)
- Zeyu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yan Zhao
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Yadav A, Sanyal I, Rai SP, Lata C. An overview on miRNA-encoded peptides in plant biology research. Genomics 2021; 113:2385-2391. [PMID: 34022345 DOI: 10.1016/j.ygeno.2021.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are short (21-23 nt) regulatory RNA molecules present in plants and animals which are known for regulating the mRNA target gene expression either by cleavage or translational repression. With the advancements in miRNAs research in plants towards their biogenesis and applications has directed the recent discovery of pri-miRNAs encoding functional peptides or microRNA peptides (miPEPs). These miPEPs are encoded by 5' of pri-miRs containing short ORFs (miORFs). miPEPs are known to enhance the activity of their associated miRNAs by increasing their accumulation and hence downregulating the target genes. Since miPEPs are very specific for each miRNA, they are considered as novel and effective tools for improving traits of interest for plant growth promotion and plant-microbe interaction. Entire peptidome research is the need of the hour. This review thus summarizes recent advancements in miPEP research and its applications as a technology with important agronomical implications with miRNAs augmentation.
Collapse
Affiliation(s)
- Ankita Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shashi Pandey Rai
- Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Charu Lata
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India; CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi 110067, India.
| |
Collapse
|
3
|
Ren Y, Song Y, Zhang L, Guo D, He J, Wang L, Song S, Xu W, Zhang C, Lers A, Ma C, Wang S. Coding of Non-coding RNA: Insights Into the Regulatory Functions of Pri-MicroRNA-Encoded Peptides in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:641351. [PMID: 33719320 PMCID: PMC7947200 DOI: 10.3389/fpls.2021.641351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 05/06/2023]
Abstract
Peptides composed of a short chain of amino acids can play significant roles in plant growth, development, and stress responses. Most of these functional peptides are derived by either processing precursor proteins or direct translation of small open reading frames present in the genome and sometimes located in the untranslated region sequence of a messenger RNA. Generally, canonical peptides serve as local signal molecules mediating short- or long-distance intercellular communication. Also, they are commonly used as ligands perceived by an associated receptor, triggering cellular signaling transduction. In recent years, increasing pieces of evidence from studies in both plants and animals have revealed that peptides are also encoded by RNAs currently defined as non-coding RNAs (ncRNAs), including long ncRNAs, circular RNAs, and primary microRNAs. Primary microRNAs (miRNAs) have been reported to encode regulatory peptides in Arabidopsis, grapevine, soybean, and Medicago, called miRNA-encoded peptides (miPEPs). Remarkably, overexpression or exogenous applications of miPEPs specifically increase the expression level of their corresponding miRNAs by enhancing the transcription of the MIRNA (MIR) genes. Here, we first outline the current knowledge regarding the coding of putative ncRNAs. Notably, we review in detail the limited studies available regarding the translation of miPEPs and their relevant regulatory mechanisms. Furthermore, we discuss the potential cellular and molecular mechanisms in which miPEPs might be involved in plants and raise problems that needed to be solved.
Collapse
Affiliation(s)
- Yi Ren
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Dinghan Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
| | - Juan He
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Chao Ma,
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Agro-products Processing Technology of Shandong, Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
4
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
5
|
Xu L, Hu Y, Cao Y, Li J, Ma L, Li Y, Qi Y. An expression atlas of miRNAs in Arabidopsis thaliana. SCIENCE CHINA-LIFE SCIENCES 2017; 61:178-189. [PMID: 29197026 DOI: 10.1007/s11427-017-9199-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yugang Hu
- College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ying Cao
- College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Jingrui Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ligeng Ma
- College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
6
|
Deng P, Liu S, Nie X, Weining S, Wu L. Conservation analysis of long non-coding RNAs in plants. SCIENCE CHINA-LIFE SCIENCES 2017; 61:190-198. [PMID: 29101587 DOI: 10.1007/s11427-017-9174-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 11/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) are gene regulators that have vital roles in development and adaptation to the environment in eukaryotes. However, the structural and evolutionary analyses of plant lncRNAs are limited. In this study, we performed an analysis of lncRNAs in five monocot and five dicot species. Our results showed that plant lncRNA genes were generally shorter and had fewer exons than protein-coding genes. The numbers of lncRNAs were positively correlated with the numbers of protein-coding genes in different plant species, despite a high range of variation. Sequence conservation analysis showed that the majority of lncRNAs had high sequence conservation at the intra-species and sub-species levels, reminiscent of protein-coding genes. At the inter-species level, a subset of lncRNAs were highly diverged at the nucleotide level, but conserved by position. Interestingly, we found that plant lncRNAs have identical splicing signals, and those which can form precursors or targets of miRNAs have a conservative identity in different species. We also revealed that most of the lowly expressed lncRNAs were tissue-specific, while those highly conserved were constitutively transcribed. Meanwhile, we characterized a subset of rice lncRNAs that were co-expressed with their adjacent protein-coding genes, suggesting they may play cis-regulatory roles. These results will contribute to understanding the biological significance and evolution of lncRNAs in plants.
Collapse
Affiliation(s)
- Pingchuan Deng
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shu Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, China
| | - Song Weining
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, China
| | - Liang Wu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Yu Y, Zhou Y, Zhang Y, Chen Y. Grass phasiRNAs and male fertility. SCIENCE CHINA-LIFE SCIENCES 2017; 61:148-154. [PMID: 29052095 DOI: 10.1007/s11427-017-9166-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that a special type of small noncoding RNAs, phased small-interfering RNAs (phasiRNAs) play crucial roles in many cellular processes of plant development. PhasiRNAs are generated from long RNA precursors at intervals of 21 or 24 nt in plants, and they are produced from both protein-coding gene and long noncoding RNA genes. Different from those in eudicots, grass phasiRNAs include a special class of small RNAs that are specifically expressed in reproductive organs. These grass phasiRNAs are associated with gametogenesis, especially with anther development and male fertility. In this review, we summarized current knowledge on these small noncoding RNAs in male germ cells and their possible biological functions and mechanisms in grass species.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanfei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Deng X, Song X, Wei L, Liu C, Cao X. Epigenetic regulation and epigenomic landscape in rice. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Epigenetic regulation has been implicated in the control of complex agronomic traits in rice (Oryza sativa), a staple food crop and model monocot plant. Recent advances in high-throughput sequencing and the moderately complex genome of rice have made it possible to study epigenetic regulation in rice on a genome-wide scale. This review discusses recent advances in our understanding of epigenetic regulation in rice, with an emphasis on the roles of key epigenetic regulators, the epigenomic landscape, epigenetic variation, transposon repression, and plant development.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liya Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|