1
|
Zheng X, Sun Y, Wang J, Yin Y, Li Z, Liu B, Hu H, Xu J, Dai Y, Kanwar YS, Tang Y. Cadmium exposure induces Leydig cell injury via necroptosis caused by oxidative stress and TNF-α/TNFR1 signaling. Biochem Biophys Res Commun 2025; 761:151717. [PMID: 40188597 DOI: 10.1016/j.bbrc.2025.151717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
Cadmium, a ubiquitous environmental pollutant, has been linked to testicular damage, primarily through mechanisms such as oxidative stress and various forms of programmed cell death. Despite extensive studies on its toxic effects, the specific role of necroptosis in cadmium-induced reproductive toxicity remains unclear. In this study, we provide critical insights into how cadmium triggers necroptosis in Leydig cells, leading to testicular dysfunction. Using both in vitro and in vivo models, we demonstrated that cadmium exposure induces necroptotic cell death in Leydig cells, with significant involvement of the TNF-α/TNFR1 signaling pathway and reactive oxygen species (ROS) generation. Co-treatment with Nec-1, a specific necroptosis inhibitor, significantly reduced elevated ROS levels and suppressed TNF-α/TNFR1-induced necroptotic cell death, suggesting that ROS and the TNF-α/TNFR1 signaling pathway contribute to necroptosis activation in cadmium-induced Leydig cell injury. In conclusion, we demonstrate that necroptosis is a key driver of cadmium-induced testicular damage, suggesting that targeting necroptosis could offer novel therapeutic strategies for mitigating reproductive toxicity caused by heavy metals.
Collapse
Affiliation(s)
- Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA
| | - Yaohui Sun
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jinhua Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Biao Liu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiarong Xu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
2
|
Esfandyari F, Raeeszadeh M, Amiri AA. Comparative Evaluation of Levamisole and Broccoli in Mitigating Testicular Oxidative Stress and Apoptotic Alterations Caused by Cadmium and Lead Exposure in Rats. Biol Trace Elem Res 2025; 203:1518-1527. [PMID: 38801623 DOI: 10.1007/s12011-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Considering the significance of heavy metals in infertility and their reduction through natural and synthetic compounds, a comparative study of broccoli and levamisole in cadmium and lead poisoning was conducted. Male Wistar rats (48 in total) were divided into 8 groups. Control, cadmium, lead, levamisole, and broccoli were administered individually to groups 1-5, while groups 6-8 received combinations. Various measurements were taken, including final weight, testicular weight, and the GSI coefficient. Sperm parameters, spermatogenesis cell count, oxidative stress biomarkers, and apoptosis indices were assessed using ELISA kits and methods in testicular tissue. The results indicated that the GSI coefficient was lowest in group 2 and highest in group 4, showing a significant difference (P < 0.001). Sperm concentration peaked in group 1 and broccoli-treated ones, while motility was highest in group 5. Testicular cell counts and Johnson score were highest in groups 1 and 2, and lowest in cadmium-exposed groups. These differences were statistically significant at P < 0.01. Enzyme activities related to oxidative stress varied. Group 2 exhibited the highest catalase (CAT) and superoxide dismutase (SOD) activities, while glutathione peroxidase (GPx) levels peaked in groups 1, 4, and 5. Malondialdehyde (MDA) concentrations were significantly reduced in the group 5 (P < 0.05). Apoptosis indices revealed that broccoli had the highest Bcl-2 levels and lowest Bax/Bcl-2 ratio, indicating its anti-apoptotic effect. Group 4 showed less efficacy compared to broccoli in protecting fertility indices. In conclusion, cadmium and lead significantly impact male fertility, while broccoli extract demonstrates promising efficacy in mitigating damage when compared to levamisole. This underscores its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Fatemeh Esfandyari
- Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Ali Akbar Amiri
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
3
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Adedayo BC, Agunloye OM, Obawarrah RY, Oboh G. Caffeic acid attenuates memory dysfunction and restores the altered activity of cholinergic, monoaminergic and purinergic in brain of cadmium chloride exposure rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:230-238. [PMID: 38591965 DOI: 10.1515/jcim-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES This study aims to evaluate the neuroprotective effect of caffeic acid (CAF) against cadmium chloride (CdCl2) in rats via its effect on memory index as well as on altered enzymatic activity in the brain of CdCl2-induced neurotoxicity. METHODS The experimental rats were divided into seven groups (n=6 rats per group) of healthy rats (group 1), CdCl2 -induced (CD) (3 mg/kg BW) rats (group 2), CD rats + Vitamin C (group 3), CD rats + CAF (10 and 20 mg/kg BW respectively) (group 4 & 5), and healthy rat + CAF (10 and 20 mg/kg BW respectively) (group 6 & 7). Thereafter, CdCl2 and CAF were administered orally to the experimental rats in group 2 to group 5 on daily basis for 14 days. Then, the Y-maze test was performed on the experimental rats to ascertain their memory index. RESULTS CdCl2 administration significantly altered cognitive function, the activity of cholinesterase, monoamine oxidase, arginase, purinergic enzymes, nitric oxide (NOx), and antioxidant status of Cd rats (untreated) when compared with healthy rats. Thereafter, CD rats treated with vitamin C and CAF (10 and 20 mg/kg BW) respectively exhibited an improved cognitive function, and the observed altered activity of cholinesterase, monoamine oxidase, arginase, purinergic were restored when compared with untreated CD rats. Also, the level of brain NOx and antioxidant status were significantly (p<0.05) enhanced when compared with untreated CD rats. In the same vein, CAF administration offers neuro-protective effect in healthy rats vis-à-vis improved cognitive function, reduction in the activity of some enzymes linked to the progression of cognitive dysfunction, and improved antioxidant status when compared to healthy rats devoid of CAF. CONCLUSIONS This study demonstrated the neuroprotective effect of CAF against CdCl2 exposure and in healthy rats.
Collapse
Affiliation(s)
- Bukola C Adedayo
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| | - Odunayo M Agunloye
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| | - Rasheedat Y Obawarrah
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| | - Ganiyu Oboh
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| |
Collapse
|
5
|
Zhu J, Dai X, Wang Y, Cui T, Huang B, Wang D, Pu W, Zhang C. Molybdenum and cadmium co-induce apoptosis and ferroptosis through inhibiting Nrf2 signaling pathway in duck (Anas platyrhyncha) testes. Poult Sci 2024; 103:103653. [PMID: 38537407 PMCID: PMC10987903 DOI: 10.1016/j.psj.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024] Open
Abstract
Cadmium (Cd) and high molybdenum (Mo) are injurious to the body. Previous research has substantiated that Cd and Mo exposure caused testicular injury of ducks, but concrete mechanism is not fully clarified. To further survey the toxicity of co-exposure to Cd and Mo in testis, 40 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were stochasticly distributed to 4 groups and raised with basic diet embracing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. At the 16th wk, testis tissues were gathered. The characteristic ultrastructural changes related to apoptosis and ferroptosis were observed in Mo or Cd or both groups. Besides, Mo or Cd or both repressed nuclear factor erythroid 2-related factor 2 (Nrf2) pathway via decreasing Nrf2, Heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Glutamate-cysteine ligase catalytic subunit (GCLC) and Glutamate-cysteine ligase modifier subunit (GCLM) mRNA expression of and Nrf2 protein expression, then stimulated apoptosis by elevating Bcl-2 antagonist/killer-1 (Bak-1), Bcl-2-associated X-protein (Bax), Cytochrome complex (Cyt-C), caspase-3 mRNA expression, cleaved-caspase-3 protein expression and apoptosis rate, as well as reducing B-cell lymphoma-2 (Bcl-2) mRNA expression and ratio of Bcl-2 to Bax, and triggered ferroptosis by upregulating Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), transferrin receptor (TFR1) and Prostaglandin-Endoperoxide Synthase 2 (PTGS2) expression levels, and downregulating ferritin heavy chain 1 (FTH1), ferritin light chain 1 (FTL1), ferroportin 1 (FPN1), solute carrier family 7 member 11 (SCL7A11) and glutathione peroxidase 4 (GPX4) expression levels. The most obvious changes of these indexes were observed in co-treated group. Altogether, the results announced that Mo or Cd or both evoked apoptosis and ferroptosis by inhibiting Nrf2 pathway in the testis of ducks, and co-exposure to Mo and Cd exacerbated these variations.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Wang
- College of Forestry/School of Landscape and Art, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Zilliacus J, Draskau MK, Johansson HKL, Svingen T, Beronius A. Building an adverse outcome pathway network for estrogen-, androgen- and steroidogenesis-mediated reproductive toxicity. FRONTIERS IN TOXICOLOGY 2024; 6:1357717. [PMID: 38601197 PMCID: PMC11005472 DOI: 10.3389/ftox.2024.1357717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction: Adverse Outcome Pathways (AOPs) can support both testing and assessment of endocrine disruptors (EDs). There is, however, a need for further development of the AOP framework to improve its applicability in a regulatory context. Here we have inventoried the AOP-wiki to identify all existing AOPs related to mammalian reproductive toxicity arising from disruption to the estrogen, androgen, and steroidogenesis modalities. Core key events (KEs) shared between relevant AOPs were also identified to aid in further AOP network (AOPN) development. Methods: A systematic approach using two different methods was applied to screen and search the entire AOP-wiki library. An AOPN was visualized using Cytoscape. Manual refinement was performed to remove AOPS devoid of any KEs and/or KERs. Results: Fifty-eight AOPs relevant for mammalian reproductive toxicity were originally identified, with 42 AOPs included in the final AOPN. Several of the KEs and KE relationships (KERs) described similar events and were thus merged to optimize AOPN construction. Sixteen sub-networks related to effects on hormone levels or hormone activity, cancer outcomes, male and female reproductive systems, and overall effects on fertility and reproduction were identified within the AOPN. Twenty-six KEs and 11 KERs were identified as core blocks of knowledge in the AOPN, of which 19 core KEs are already included as parameters in current OECD and US EPA test guidelines. Discussion: The AOPN highlights knowledge gaps that can be targeted for further development of a more complete AOPN that can support the identification and assessment of EDs.
Collapse
Affiliation(s)
- Johanna Zilliacus
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Monica K. Draskau
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Peng H, Huang Y, Wei G, Pang Y, Yuan H, Zou X, Xie Y, Chen W. Testicular Toxicity in Rats Exposed to AlCl 3: a Proteomics Study. Biol Trace Elem Res 2024; 202:1084-1102. [PMID: 37382810 DOI: 10.1007/s12011-023-03745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Aluminum contamination is a growing environmental and public health concern, and aluminum testicular toxicity has been reported in male rats; however, the underlying mechanisms of this toxicity are unclear. The objective of this study was to investigate the effects of exposure to aluminum chloride (AlCl3) on alterations in the levels of sex hormones (testosterone [T], luteinizing hormone [LH], and follicle-stimulating hormone [FSH]) and testicular damage. Additionally, the mechanisms of toxicity in the testes of AlCl3-exposed rats were analyzed by proteomics. Three different concentrations of AlCl3 were administered to rats. The results demonstrated a decrease in T, LH, and FSH levels with increasing concentrations of AlCl3 exposure. HE staining results revealed that the spermatogenic cells in the AlCl3-exposed rats were widened, disorganized, or absent, with increased severe tissue destruction at higher concentrations of AlCl3 exposure. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that differentially expressed proteins (DEPs) after AlCl3 exposure were primarily associated with various metabolic processes, sperm fibrous sheath, calcium-dependent protein binding, oxidative phosphorylation, and ribosomes. Subsequently, DEPs from each group were subjected to protein-protein interaction (PPI) analysis followed by the screening of interactional key DEPs. Western blot experiments validated the proteomics data, revealing the downregulation of sperm-related DEPs (AKAP4, ODF1, and OAZ3) and upregulation of regulatory ribosome-associated protein (UBA52) and mitochondrial ribosomal protein (MRPL32). These findings provide a basis for studying the mechanism of testicular toxicity due to AlCl3 exposure.
Collapse
Affiliation(s)
- Huixin Peng
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yanxin Huang
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Guangji Wei
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yanfang Pang
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huixiong Yuan
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiong Zou
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning, 530000, Guangxi, China
| | - Yu'an Xie
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning, 530000, Guangxi, China.
| | - Wencheng Chen
- The Affiliated Hospital of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Graduate School of You jiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
8
|
Marinaro C, Lettieri G, Chianese T, Bianchi AR, Zarrelli A, Palatucci D, Scudiero R, Rosati L, De Maio A, Piscopo M. Exploring the molecular and toxicological mechanism associated with interactions between heavy metals and the reproductive system of Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109778. [PMID: 37866452 DOI: 10.1016/j.cbpc.2023.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
A large number of heavy metals resulted toxic to the reproductive system, but invertebrate infertility has been poorly explored, and above all, there are limited molecular, cellular and toxicological studies. In the present work, we exposed Mytilus galloprovincialis to three individual metal chlorides (CuCl2 15 μM, CdCl2 1.5 μM, NiCl2 15 μM) and their mixture for 24 h, to evaluate the effects on the protamine-like proteins (PLs), sperm DNA and on their interaction in the formation of sperm chromatin. Under all exposure conditions, but particularly after exposure to the metals mix, relevant changes in the electrophoretic pattern, by AU-PAGE and SDS-PAGE, and in fluorescence spectroscopy measurements of PLs were shown. In addition, alterations in DNA binding of these proteins were observed by Electrophoretic Mobility Shift Assay (EMSA) and through their release from sperm nuclei. Moreover, there was evidence of increased accessibility of micrococcal nuclease to sperm chromatin, which was also confirmed by toluidine blue staining. Furthermore, morphological analyses indicated severe gonadal impairments which was also corroborated by increased PARP expression, by Western blotting, and sperm DNA fragmentation, by comet assay. Finally, we investigated the expression of stress genes, gst, hsp70 and mt10, in gonadal tissue. The latter investigations also showed that exposure to this metals mix was more harmful than exposure to the individual metals tested. The present results suggest that these metals and in particular their mixture could have a negative impact on the reproductive fitness of M. galloprovincialis. Based on these evidences, we propose a molecular mechanism.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenico Palatucci
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy.
| |
Collapse
|
9
|
Santana FDFV, Da Silva J, Lozi AA, Araujo DC, Ladeira LCM, De Oliveira LL, Da Matta SLP. Toxicology of arsenate, arsenite, cadmium, lead, chromium, and nickel in testes of adult Swiss mice after chronic exposure by intraperitoneal route. J Trace Elem Med Biol 2023; 80:127271. [PMID: 37506466 DOI: 10.1016/j.jtemb.2023.127271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Some residues such as the heavy metals cadmium (Cd), lead (Pb), chromium (Cr VI), nickel (Ni), and arsenic (As), this last one in its oxidized forms + 5 (arsenate) and + 3 (arsenite), can cause injuries to human health, so they are currently considered environmental health emergencies. In the testis, heavy metals can cause morphological and functional damage due to constant exposure acting chronically in individuals. Thus, we aimed to determine the toxicological mechanism of As+5, As+3, Cd, Cr VI, and Ni that leads to testicular damage and establish for the first time an order of toxicity among these studied heavy metals. METHODS Forty-two Swiss mice at reproductive age (140 days) were used, randomly distributed into seven experimental groups (n = 6). Exposure to heavy metals was weekly performed, by intraperitoneal route. Group 1 received 0.7 mL 0.9% saline (control), and the other groups received 1.5 mg/ kg of As+5, As+3, Cd, Pb, Cr VI, or Ni, for six weeks. RESULTS These studied heavy metals did not accumulate in the testis tissue. However, exposure to Ni induced moderate pathologies in the seminiferous tubules, plus changes in the tunica propria, blood vessels, lymphatic space, and carbonyl protein levels. Cd exposure caused moderate tubular histopathologies and changes in the blood vessels and lymphatic space. Cr VI induced slight tubular histopathologies, changes in the lymphatic space, blood vessels, and SOD activity. Pb and As+3 exposure triggered moderate tubular pathologies and changes in the SOD activity and carbonyl protein levels, respectively. Finally, As+5 induced only slight tubular pathologies. CONCLUSION The testicular histopathologies caused by the studied heavy metals are mainly triggered by changes in testicular oxidative balance. Based on our findings of histomorphological alterations, the toxicity order among the heavy metals is Ni>Cd>Cr(VI)>PbAs+3 >As+5. However, considering oxidative stress results, we propose the following testicular toxicity order for these heavy metals: Ni>As+3 > Cd>Cr(VI)>Pb>As+5. Ni exposure shows the most harmful among the heavy metals to the testis.
Collapse
Affiliation(s)
- Francielle de Fátima Viana Santana
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Janaina Da Silva
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Institut national de la santé et de la recherche médicale (Inserm), Institut de recherche en santé, environnement et travail (Irset), Université de Rennes 1, UMR 1085 Rennes, France
| | - Amanda Alves Lozi
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diane Costa Araujo
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Sérgio Luis Pinto Da Matta
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Zhang Q, Xu W, Kong Z, Wu Y, Liu Y. Cadmium exposure-induced rat testicular dysfunction and its mechanism of chronic stress. Food Chem Toxicol 2023; 182:114181. [PMID: 37972751 DOI: 10.1016/j.fct.2023.114181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Cadmium is a common environmental pollutant in daily life, the toxic mechanisms of chronic cadmium exposure on the testes have not been fully elucidated. This study aimed to explore the effects of cadmium exposure on male reproductive health and its mechanism. The results showed that cadmium exposure led widened interstitial spaces, abnormal seminiferous tubule morphology, and decreased Leydig cell numbers. Moreover, sperm quality was significantly reduced, along with a decrease in fertility rate. And cadmium exposure could activate the hypothalamic-pituitary-adrenal (HPA) axis, elevate blood glucocorticoid levels, subsequently increase glucocorticoid receptor (GR) expression and activation in testicular Leydig cells. Then GR act on the glucocorticoid receptor element (GRE) in the DNA methyltransferase 3 A (DNMT3A) promoter region and upregulate DNMT3A expression. Consequently, this led to an increase in DNA methylation levels in the angiotensin II receptor 2 (AT2R) promoter region, resulting in reduced AT2R expression and inhibiting testicular steroidogenesis. This study systematically elucidated that cadmium exposure could lead to testicular steroidogenesis suppression and decreased fertility through the GR/DNMT3A/AT2R signaling pathway. This research further provides theoretical and experimental evidence for confirming the threat of cadmium exposure to human reproduction, and contributes to the guidance and protection of male reproductive health.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Wei Xu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - ZiYu Kong
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - YuJiao Wu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China.
| | - Yi Liu
- China Tobacco HuBei Industrial LLC, Wuhan, 430071, China.
| |
Collapse
|
11
|
Yang X, Tan AJ, Zheng MM, Feng D, Mao K, Yang GL. Physiological response, microbial diversity characterization, and endophytic bacteria isolation of duckweed under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166056. [PMID: 37558073 DOI: 10.1016/j.scitotenv.2023.166056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Duckweed is a cadmium (Cd) hyperaccumulator. However, its enrichment characteristics and physiological responses to Cd have not been systematically studied. The physiological responses, enrichment characteristics, diversity of endophytic bacterial communities, and isolation of Cd-resistant endophytes in duckweed (Lemna minor 0014) were studied for different durations and Cd concentrations. The results indicated that peroxidase (POD) and catalase (CAT) activities decreased while superoxide dismutase activity first increased and then decreased with increasing Cd stress duration. POD activities, CAT activities, and O2- increased as Cd concentrations increased. Malondialdehyde content and Cd accumulation in duckweed increased with increasing concentrations and time. This endophytic diversity study identified 488 operational taxonomic units, with the dominant groups being Proteobacteria, Firmicutes, and Actinobacteria. Paenibacillus sp. Y11, a strain tolerant to high concentrations of Cd and capable of significantly promoting duckweed growth, was isolated from the plant. Our study revealed the effects of heavy metals on aquatic plants, providing a theoretical basis for the application of duckweed in water pollution.
Collapse
Affiliation(s)
- Xiao Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
12
|
Santana FDFV, Lozi AA, Gonçalves RV, Da Silva J, Da Matta SLP. Comparative effects of finasteride and minoxidil on the male reproductive organs: A systematic review of in vitro and in vivo evidence. Toxicol Appl Pharmacol 2023; 478:116710. [PMID: 37805090 DOI: 10.1016/j.taap.2023.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Finasteride and minoxidil are medicaments commonly prescribed for treating benign prostatic hyperplasia (BPA), hypertension, and/or androgenetic alopecia (AGA). The mechanism of action of finasteride is based on the interference in androgenic pathways, which may lead to fertility-related disorders in men. Minoxidil, however, can act in multiple ways, and there is no consensus that its use can adversely affect male fertility. Since finasteride and minoxidil could be risk factors for male fertility, we aimed to compare their impact on the two reproductive organs testis and epididymis of adult murine models, besides testis/epididymis-related cells, and describe the mechanism of action involved. For such, we used the PRISMA guideline. We included 31 original studies from a structured search on PubMed/MEDLINE, Scopus, and Web of Science databases. For in vivo studies, the bias analysis and the quality of the studies were assessed as described by SYRCLE (Systematic Review Centre for Laboratory Animal Experimentation). We concluded that finasteride and minoxidil act as hormone disruptors, causing oxidative stress and morphological changes mainly in the testis. Our results also revealed that finasteride treatment could be more harmful to male reproductive health because it was more associated with reproductive injuries, including damage to the epididymis, erectile dysfunction, decreased libido, and reduced semen volume. Thus, this study contributes to the global understanding of the mechanisms by which medicaments used for alopecia might lead to male reproductive disorders. We hope that our critical analysis expedites clinical research and reduces methodological bias. The registration number on the Prospero platform is CRD42022313347.
Collapse
Affiliation(s)
| | - Amanda Alves Lozi
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Reggiani Vilela Gonçalves
- Department of Animal Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Janaina Da Silva
- Institut de recherche en santé, environnement et travail (Irset) - UMR 1085, Institut national de la santé et de la recherche médicale (Inserm), Université de Rennes, Rennes, France
| | - Sérgio Luis Pinto Da Matta
- Department of Animal Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
13
|
Etemadi T, Momeni HR, Darbandi N, Abnosi MH. Silymarin modulates cadmium-induced oxidative stress in human spermatozoa. Andrologia 2022; 54:e14475. [PMID: 35640054 DOI: 10.1111/and.14475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Environmental pollutants such as cadmium can negatively affect sperm parameters and decrease male fertility by inducing oxidative stress. Antioxidants are considered a useful strategy for oxidative stress conditions to neutralize free radicals and strengthen the antioxidant defence system. In this study, the effects of the common application of silymarin, as a natural antioxidant, with cadmium were assessed on human sperm. The washed human sperm samples were divided into five groups: (1) spermatozoa at 0- hour; (2) spermatozoa at 3 h; (3) spermatozoa treated with cadmium (20 μM) for 3 h; (4) spermatozoa treated with silymarin (2 μM) + cadmium (20 μM) for 3 h and (5) spermatozoa treated with silymarin (2 μM) for 3 h. Our results displayed that cadmium reduced sperm motility, viability, plasma membrane integrity and acrosome integrity by increasing malondialdehyde levels and decreasing the total antioxidant capacity and antioxidant enzymes activity. While silymarin attenuated oxidative stress biomarkers in human sperm treated with cadmium, and consequently improved the sperm quality. In summary, cadmium-induced oxidative stress impaired human sperm structures and silymarin with its antioxidant properties compensated for the adverse effects of oxidative stress on human spermatozoa.
Collapse
Affiliation(s)
- Tahereh Etemadi
- Biology Department, Faculty of Science, Arak University, Arak, Iran
| | | | | | | |
Collapse
|
14
|
Effects of Cadmium Exposure on Leydig Cells and Blood Vessels in Mouse Testis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042416. [PMID: 35206604 PMCID: PMC8878469 DOI: 10.3390/ijerph19042416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Environmental exposure to cadmium (Cd) contributes to a decline in the quality of human semen. Although the testis is sensitive to Cd exposure, the mechanism underlying how cadmium affects the testis remains to be defined. In this study, male mice were treated with intraperitoneal injections of 0, 0.5, 1.5 and 2.5 mg CdCl2/kg/day for 10 days, respectively. Both the testicular weight and the 3β-HSD activity of Leydig cells were significantly reduced with the administration of 2.5 mg CdCl2/kg/day. The height of endothelial cells in the interstitial blood vessels significantly increased with the use of 2.5 mg CdCl2/kg/day compared with the control. Western blot data showed that the protein levels of CD31, αSMA, caveolin and Ng2 increased with cadmium exposure, and this increase was particularly significant with the administration of 2.5 mg CdCl2/kg/day. CD31, αSMA, caveolin and Ng2 are related to angiogenesis. Based on our data, cadmium exposure may stimulate the proliferation of the mural cells and endothelial cells of blood vessels, which may lead to abnormal function of the testis.
Collapse
|
15
|
Fadaei H, Mirhosseiniardakani S, Farajzadeh A, Aghayan SS, Jafarisani M, Garmabi B. Aqueous-alcoholic Ferulla extract reduces memory impairments in rats exposed to cadmium chloride. Brain Behav 2021; 11:e2285. [PMID: 34291606 PMCID: PMC8413748 DOI: 10.1002/brb3.2285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Cadmium (Cd) is the most dangerous heavy metal that is becoming more widespread in nature as a result of industrial activities. One of the toxic effects of Cd on the body is its neurological effect. The mechanism of these effects has been attributed to the induction of oxidative stress. Ferulla plant has antioxidant properties. In the present study, the aim was to reduce the toxic effects of Cd on memory impairment in rats by through the consumption of Ferulla extract. MATERIALS & METHOD Rats were randomly divided into five groups of six: (1) control group, (2) 300 μM cadmium exposure group, and three treatment groups with doses of (3) 100, (4) 300, and (5) 600 mg/kg.BW of F. Ferulla extract after Cd exposure. To induce neurotoxicity, Cd was daily injected peritoneally at a concentration of 300 μM in 1 ml of normal saline for a week. Next, for 3 weeks, the Cd group received 1 ml of normal peritoneal saline, and the treatment groups received F. Ferulla extract at concentrations of 100, 300, and 600 mg/kg.BW in 1 ml of normal saline daily for a week. At the end of the treatment period, a water maze was used to assess memory disorders. Malondialdehyde (MDA), glutathione concentration (GSH), and glutathione peroxidase (GPX) activity in nerve tissue were also measured. Morris water maze was also performed after intervention. RESULTS Cd-induced neurotoxicity was shown in Cd groups. MDA, GSH, and GPX have a significant difference in comparison between the Cd and 300, 600 treated groups. MDA has a significant increase (p < 0.05), and GSH and GPX have a significant decrease (p < 0.05). The results of the Morris water maze showed that the Cd group spent either 300 or 600 more distances and time to find a place to escape, which was significant (p < 0.05) CONCLUSION: Cd exposure can induce neurotoxicity and disrupt learning and memory. On the other hand, Ferulla extract can improve learning and memory in Cd-induced neurotoxicity model via induced antioxidant defense system.
Collapse
Affiliation(s)
- Homeyra Fadaei
- Department of Medical sciencesBabol BranchIslamic Azad UniversityBabolIran
| | | | - Asghar Farajzadeh
- Clinical BiochemistryIslamic Azad UniversityArdabil BranchArdabilIran
| | - Seyed Sharokh Aghayan
- Clinical Research Development Unit, Imam Hossein HospitalShahroud University of Medical SciencesShahroudIran
| | - Moslem Jafarisani
- Environmental and Occupational Health Research CenterShahroud University of Medical SciencesShahroudIran
| | - Behzad Garmabi
- NeuroscienceSchool of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|