1
|
Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci 2018; 21:1350-1358. [PMID: 30250262 DOI: 10.1038/s41593-018-0221-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases have two general characteristics that are so fundamental we usually take them for granted. The first is that the pathology associated with the disease only affects particular neurons ('selective neuronal vulnerability'); the second is that the pathology worsens with time and impacts more regions in a stereotypical and predictable fashion. The mechanisms underpinning selective neuronal and regional vulnerability have been difficult to dissect, but the recent application of whole-genome technologies, the development of mouse models that reproduce spatial and temporal features of the pathology, and the identification of intrinsic morphological, electrophysiological, and biochemical properties of vulnerable neurons are beginning to shed some light on these fundamental features of neurodegenerative diseases. Here we detail our emerging understanding of the underlying biology of selective neuronal vulnerability and outline some of the areas in which our understanding is incomplete.
Collapse
Affiliation(s)
- Hongjun Fu
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain; and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lilla Weston Laboratories, Institute of Neurology, London, UK
| | - Karen E Duff
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain; and Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA. .,Department of Psychiatry, Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
2
|
Luginbühl J, Sivaraman DM, Shin JW. The essentiality of non-coding RNAs in cell reprogramming. Noncoding RNA Res 2017; 2:74-82. [PMID: 30159423 PMCID: PMC6096403 DOI: 10.1016/j.ncrna.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
In mammals, short (mi-) and long non-coding (lnc) RNAs are immensely abundant and they are proving to be more functional than ever before. Particularly in cell reprogramming, non-coding RNAs are essential to establish the pluripotent network and are indispensable to reprogram somatic cells to pluripotency. Through systematic screening and mechanistic studies, diverse functional features of both miRNA and lncRNAs have emerged as either scaffolds, inhibitors, or co-activators, necessary to orchestrate the intricacy of gene regulation. Furthermore, the collective characterizations of both miRNA and lncRNA reveal their interdependency (e.g. sequestering the function of the other) to modulate cell reprogramming. This review broadly explores the regulatory processes of cell reprogramming - with key functional examples in neuronal and cardiac differentiations - in the context of both short and long non-coding RNAs.
Collapse
Affiliation(s)
| | | | - Jay W. Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
3
|
Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8:136-157. [PMID: 27114746 PMCID: PMC4835673 DOI: 10.4252/wjsc.v8.i4.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells transduced by SV40 vectors migrating to the hippocampus, and these cells were seen at earlier time points in the DG. We show that the cell membrane chemokine receptor, CCR5, and its ligands, enhance CNS inflammation and seizure activity in a model of neuronal excitotoxicity. SV40-based gene delivery of RNAi targeting CCR5 to the BM results in downregulating CCR5 in circulating cells, suggesting that CCR5 plays an important role in regulating traffic of BM-derived cells into the CNS, both in the basal state and in response to injury. Furthermore, reduction in CCR5 expression in circulating cells provides profound neuroprotection from excitotoxic neuronal injury, reduces neuroinflammation, and increases neuronal regeneration following this type of insult. These results suggest that BM-derived, transgene-expressing, cells can migrate to the brain and that they become neurons, at least in part, by differentiating into neuron precursors and subsequently developing into mature neurons.
Collapse
|
4
|
Yang Y, Jiao J, Gao R, Le R, Kou X, Zhao Y, Wang H, Gao S, Wang Y. Enhanced Rejuvenation in Induced Pluripotent Stem Cell-Derived Neurons Compared with Directly Converted Neurons from an Aged Mouse. Stem Cells Dev 2015; 24:2767-77. [PMID: 26192905 DOI: 10.1089/scd.2015.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yuanyuan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiao Jiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Zhang H, Song F, Xu C, Liu H, Wang Z, Li J, Wu S, YehuaShen, Chen Y, Zhu Y, Du R, Tian M. Spatiotemporal PET Imaging of Dynamic Metabolic Changes After Therapeutic Approaches of Induced Pluripotent Stem Cells, Neuronal Stem Cells, and a Chinese Patent Medicine in Stroke. J Nucl Med 2015; 56:1774-9. [DOI: 10.2967/jnumed.115.163170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
|
6
|
Generation of pluripotent stem cells without the use of genetic material. J Transl Med 2015; 95:26-42. [PMID: 25365202 DOI: 10.1038/labinvest.2014.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 01/18/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide a platform to obtain patient-specific cells for use as a cell source in regenerative medicine. Although iPSCs do not have the ethical concerns of embryonic stem cells, iPSCs have not been widely used in clinical applications, as they are generated by gene transduction. Recently, iPSCs have been generated without the use of genetic material. For example, protein-induced PSCs and chemically induced PSCs have been generated by the use of small and large (protein) molecules. Several epigenetic characteristics are important for cell differentiation; therefore, several small-molecule inhibitors of epigenetic-modifying enzymes, such as DNA methyltransferases, histone deacetylases, histone methyltransferases, and histone demethylases, are potential candidates for the reprogramming of somatic cells into iPSCs. In this review, we discuss what types of small chemical or large (protein) molecules could be used to replace the viral transduction of genes and/or genetic reprogramming to obtain human iPSCs.
Collapse
|
7
|
Ding D, Xu L, Xu H, Li X, Liang Q, Zhao Y, Wang Y. Mash1 efficiently reprograms rat astrocytes into neurons. Neural Regen Res 2014; 9:25-32. [PMID: 25206740 PMCID: PMC4146312 DOI: 10.4103/1673-5374.125326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 01/25/2023] Open
Abstract
To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuronal characteristics. Moreover, β-tubulin expression levels were significantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.
Collapse
Affiliation(s)
- Daofang Ding
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leqin Xu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Li
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Liang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjian Zhao
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China ; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Roessler R, Smallwood SA, Veenvliet JV, Pechlivanoglou P, Peng SP, Chakrabarty K, Groot-Koerkamp MJA, Pasterkamp RJ, Wesseling E, Kelsey G, Boddeke E, Smidt MP, Copray S. Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons. Stem Cell Reports 2014; 2:520-33. [PMID: 24749075 PMCID: PMC3986662 DOI: 10.1016/j.stemcr.2014.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy. Purification of iPSC-derived mdDA neurons and primary embryonic mdDA neurons Comparative gene-expression profiling and DNA methylation mapping of mdDA neurons High similarity but also differences between primary and iPSC-derived mdDA neurons Differences mainly in genes involved in neuron differentiation and development
Collapse
Affiliation(s)
- Reinhard Roessler
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | | | - Jesse V Veenvliet
- Center for Neuroscience, Swammerdam Institute for Life Science, Science Park Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Petros Pechlivanoglou
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, 9713AV Groningen, the Netherlands
| | - Su-Ping Peng
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Koushik Chakrabarty
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marian J A Groot-Koerkamp
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Evelyn Wesseling
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Erik Boddeke
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| | - Marten P Smidt
- Center for Neuroscience, Swammerdam Institute for Life Science, Science Park Amsterdam, 1098XH Amsterdam, the Netherlands
| | - Sjef Copray
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, 9713AV Groningen, the Netherlands
| |
Collapse
|