1
|
Mohapatra S, Tripathi S, Sharma V, Basu A. Regulation of microglia-mediated inflammation by host lncRNA Gm20559 upon flaviviral infection. Cytokine 2023; 172:156383. [PMID: 37801852 DOI: 10.1016/j.cyto.2023.156383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) and West Nile Viruses (WNV) are neurotropic flaviviruses which cause neuronal death and exaggerated glial activation in the central nervous system. Role of host long non coding RNAs in shaping microglial inflammation upon flavivirus infections has been unexplored. This study attempted to decipher the role of lncRNA Gm20559 in regulating microglial inflammatory response in context of flaviviruses. METHODS Antisense oligonucleotide LNA Gapmers designed against lncRNA Gm20559 and non-specific site (negative control) were used for Gm20559 knockdown in JEV and WNV-infected N9 microglial cells. Upon establishing successful Gm20559 knockdown, expression of various proinflammatory cytokines, chemokines, interferon-stimulated genes (ISGs) and RIG-I were checked by qRT-PCR and cytometric bead array. Western Blotting was done to analyse the phosphorylation level of various inflammatory markers and viral non-structural protein expression. Plaque Assays were employed to quantify viral titres in microglial supernatant upon knocking down Gm20559. Effect of microglial supernatant on HT22 neuronal cells was assessed by checking expression of apoptotic protein and viral non-structural protein by Western Blotting. RESULTS Upregulation in Gm20559 expression was observed in BALB/c pup brains, primary microglia as well as N9 microglia cell line upon both JEV and WNV infection. Knockdown of Gm20559 in JEV and WNV-infected N9 cell led to the reduction of major proinflammatory cytokines - IL-1β, IL-6, IP-10 and IFN-β. Inhibition of Gm20559 upon JEV infection in N9 microglia also led to downregulation of RIG-I and OAS-2, which was not the case in WNV-infected N9 microglia. Phosphorylation level of P38 MAPK was reduced in case of JEV-infected N9 microglia and not WNV-infected N9 microglia. Whereas phosphorylation of NF-κB pathway was unchanged upon Gm20559 knockdown in both JEV and WNV-infected N9 microglia. However, treating HT22 cells with JEV and WNV-infected microglial supernatant with and without Gm20559 could not trigger cell death or influence viral replication. CONCLUSION Knockdown studies on lncRNA Gm20559 suggests its pivotal role in maintaining the inflammatory milieu of microglia in flaviviral infection by modulating the expression of various pro-inflammatory cytokines. However, Gm20559-induced increased microglial proinflammatory response upon flavivirus infection fails to trigger neuronal death.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | - Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|
2
|
Gil N, Perry RBT, Mukamel Z, Tuck A, Bühler M, Ulitsky I. Complex regulation of Eomes levels mediated through distinct functional features of the Meteor long non-coding RNA locus. Cell Rep 2023; 42:112569. [PMID: 37256750 PMCID: PMC10320833 DOI: 10.1016/j.celrep.2023.112569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are implicated in a plethora of cellular processes, but an in-depth understanding of their functional features or their mechanisms of action is currently lacking. Here we study Meteor, a lncRNA transcribed near the gene encoding EOMES, a pleiotropic transcription factor implicated in various processes throughout development and in adult tissues. Using a wide array of perturbation techniques, we show that transcription elongation through the Meteor locus is required for Eomes activation in mouse embryonic stem cells, with Meteor repression linked to a change in the subpopulation primed to differentiate to the mesoderm lineage. We further demonstrate that a distinct functional feature of the locus-namely, the underlying DNA element-is required for suppressing Eomes expression following neuronal differentiation. Our results demonstrate the complex regulation that can be conferred by a single locus and emphasize the importance of careful selection of perturbation techniques when studying lncRNA loci.
Collapse
Affiliation(s)
- Noa Gil
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Mukamel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alex Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Zhu Y, Yan Z, Fu C, Wen X, Jia L, Zhou L, Du Z, Wang C, Wang Y, Chen J, Nie Y, Wang W, Cui J, Wang G, Hoffman AR, Hu JF, Li W. LncRNA Osilr9 coordinates promoter DNA demethylation and the intrachromosomal loop structure required for maintaining stem cell pluripotency. Mol Ther 2023; 31:1791-1806. [PMID: 36523163 PMCID: PMC10278046 DOI: 10.1016/j.ymthe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear reprogramming of somatic cells into a pluripotent status has the potential to create patient-specific induced pluripotent stem cells for regenerative medicine. Currently, however, the epigenetic mechanisms underlying this pluripotent reprogramming are poorly understood. To delineate this epigenetic regulatory network, we utilized a chromatin RNA in situ reverse transcription sequencing (CRIST-seq) approach to identify long noncoding RNAs (lncRNAs) embedded in the 3-dimensional intrachromosomal architecture of stem cell core factor genes. By combining CRIST-seq and RNA sequencing, we identified Oct4-Sox2 interacting lncRNA 9 (Osilr9) as a pluripotency-associated lncRNA. Osilr9 expression was associated with the status of stem cell pluripotency in reprogramming. Using short hairpin RNA (shRNA) knockdown, we showed that this lncRNA was required for the optimal maintenance of stem cell pluripotency. Overexpression of Osilr9 induced robust activation of endogenous stem cell core factor genes in fibroblasts. Osilr9 participated in the formation of the intrachromosomal looping required for the maintenance of pluripotency. After binding to the Oct4 promoter, Osilr9 recruited the DNA demethylase ten-eleven translocation 1, leading to promoter demethylation. These data demonstrate that Osilr9 is a critical chromatin epigenetic modulator that coordinates the promoter activity of core stem cell factor genes, highlighting the critical role of pluripotency-associated lncRNAs in stem cell pluripotency and reprogramming.
Collapse
Affiliation(s)
- Yanbo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Zi Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Changhao Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jingcheng Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yuanyuan Nie
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Andrew R Hoffman
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
4
|
El Sharkawi FZ, El Sabah M, Atya HB, Khaled HM. Urinary BLACAT1 as a non-invasive biomarker for bladder cancer. Mol Biol Rep 2023; 50:4339-4345. [PMID: 36939965 PMCID: PMC10147806 DOI: 10.1007/s11033-023-08370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Bladder cancer (BC) is recorded as the fifth most common cancer worldwide with high morbidity and mortality. The most urgent problem in BCs is the high recurrence rate as two-thirds of non-muscle-invasive bladder cancer (NMIBC) will develop into muscle-invasive bladder cancer (MIBC), which retains a feature of rapid progress and metastasis. In addition, only a limited number of biomarkers are available for diagnosing BC compared to other cancers. Hence, finding sensitive and specific biomarkers for predicting the diagnosis and prognosis of patients with BC is critically needed. Therefore, this study aimed to determine the expression and clinical significance of urinary lncRNA BLACAT1 as a non-invasively diagnostic and prognostic biomarker to detect and differentiate BCs stages. METHODS AND RESULTS The expression levels of urinary BLACAT1 were detected by qRT-PCR assay in seventy (70) BC patients with different TNM grades (T0-T3) and twelve (12) healthy subjects as control. BLACAT1 was downregulated in superficial stages (T0 = 0.09 ± 0.02 and T1 = 0.5 ± 0.1) compared to healthy control. Furthermore, in the invasive stages, its levels started to elevate in the T2 stage (1.2 ± 0. 2), and higher levels were detected in the T3 stage with a mean value of (5.2 ± 0.6). This elevation was positively correlated with disease progression. Therefore, BLACAT1 can differentiate between metastatic and non-metastatic stages of BCs. Furthermore, its predictive values are not like to be influenced by schistosomal infection. CONCLUSIONS Upregulation of BLACAT1 in invasive stages predicted an unfavorable prognosis for patients with BCs, as it contributes to the migration and metastasis of BCs. Therefore, we can conclude that urinary BLACAT1 may be considered a non-invasive promising metastatic biomarker for BCs.
Collapse
Affiliation(s)
- Fathia Z El Sharkawi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| | - Mahmoud El Sabah
- Department of Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo, Egypt
| | - Hanaa B Atya
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt.
| | | |
Collapse
|
5
|
Salloum-Asfar S, Abdulla SA, Taha RZ, Thompson IR, Emara MM. Combined Noncoding RNA-mRNA Regulomics Signature in Reprogramming and Pluripotency in iPSCs. Cells 2022; 11:cells11233833. [PMID: 36497092 PMCID: PMC9737797 DOI: 10.3390/cells11233833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic cells are reprogrammed with reprogramming factors to generate induced pluripotent stem cells (iPSCs), offering a promising future for disease modeling and treatment by overcoming the limitations of embryonic stem cells. However, this process remains inefficient since only a small percentage of transfected cells can undergo full reprogramming. Introducing miRNAs, such as miR-294 and miR302/3667, with reprogramming factors, has shown to increase iPSC colony formation. Previously, we identified five transcription factors, GBX2, NANOGP8, SP8, PEG3, and ZIC1, which may boost iPSC generation. In this study, we performed quantitative miRNAome and small RNA-seq sequencing and applied our previously identified transcriptome to identify the potential miRNA-mRNA regulomics and regulatory network of other ncRNAs. From each fibroblast (N = 4), three iPSC clones were examined (N = 12). iPSCs and original fibroblasts expressed miRNA clusters differently and miRNA clusters were compared to mRNA hits. Moreover, miRNA, piRNA, and snoRNAs expression profiles in iPSCs and original fibroblasts were assessed to identify the potential role of ncRNAs in enhancing iPSC generation, pluripotency, and differentiation. Decreased levels of let-7a-5p showed an increase of SP8 as described previously. Remarkably, the targets of identifier miRNAs were grouped into pluripotency canonical pathways, on stemness, cellular development, growth and proliferation, cellular assembly, and organization of iPSCs.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (S.S.-A.); (S.A.A.)
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (S.S.-A.); (S.A.A.)
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - I. Richard Thompson
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Wang Y, Guo Y, Zhuang T, Xu T, Ji M. SP1-Induced Upregulation of lncRNA LINC00659 Promotes Tumour Progression in Gastric Cancer by Regulating miR-370/AQP3 Axis. Front Endocrinol (Lausanne) 2022; 13:936037. [PMID: 35957833 PMCID: PMC9361049 DOI: 10.3389/fendo.2022.936037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in various human tumors. LncRNA LINC00659 (LINC00659) is a newly identified lncRNA and its roles in tumors remain largely unclear. In this study, we elucidated the potential functions and molecular mechanisms of LINC00659 on the biological behaviors of gastric cancer (GC), and also explored its clinical significance. We firstly demonstrated that LINC00659 levels were distinctly up-regulated in both GC specimens and cells using bioinformatics analysis and RT-PCR. The results of ChIP assays and luciferase reporter assays confirmed that upregulation of LINC00659 was activated by SP1 in GC. Clinical assays revealed that higher levels of LINC00659 were associated with TNM stage, lymphatic metastasis, and poorer prognosis. Moreover, LINC00659 was confirmed to be an independent prognostic marker for the patients with GC using multivariate assays. Lost-of-function assays indicated that knockdown of LINC00659 suppressed the proliferation, metastasis, and EMT progress of GC cells in vitro. Mechanistic investigation indicated that LINC00659 served as a competing endogenous RNA (ceRNA) for miR-370, thereby resulting in the upregulation of leading to the depression of its endogenous target gene AQP3. Overall, our present study revealed that the LINC00659/miR-370/AQP3 axis contributes to GC progression, which may provide clues for the exploration of cancer biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Guo
- School of Medicine Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Gupta A, Shamsi F, Altemose N, Dorlhiac GF, Cypess AM, White AP, Yosef N, Patti ME, Tseng YH, Streets A. Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages. Genome Res 2022; 32:242-257. [PMID: 35042723 PMCID: PMC8805720 DOI: 10.1101/gr.275509.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/10/2021] [Indexed: 02/02/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution. The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important transcriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis. However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous. We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also providing a detailed understanding for the preferential detection of long genes upon using this technique. To remove such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools. Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley-University of California at San Francisco Graduate Program in Bioengineering, Berkeley, California 94720, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nicolas Altemose
- University of California at Berkeley-University of California at San Francisco Graduate Program in Bioengineering, Berkeley, California 94720, USA
| | - Gabriel F Dorlhiac
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew P White
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Aaron Streets
- University of California at Berkeley-University of California at San Francisco Graduate Program in Bioengineering, Berkeley, California 94720, USA
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
8
|
Lnc-PFAR facilitates autophagy and exacerbates pancreatic fibrosis by reducing pre-miR-141 maturation in chronic pancreatitis. Cell Death Dis 2021; 12:996. [PMID: 34697288 PMCID: PMC8547218 DOI: 10.1038/s41419-021-04236-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Chronic pancreatitis (CP) is described as progressive inflammatory fibrosis of pancreas, accompanied with irreversible impaired endocrine and exocrine insufficiency. Pancreatic stellate cells (PSCs) are widely distributed in the stroma of the pancreas and PSCs activation has been shown as one of the leading causes for pancreatic fibrosis. Our previous study has revealed that autophagy is dramatically activated in CP tissues, which facilitates PSCs activation and pancreatic fibrosis. Long non-coding RNAs (LncRNAs) have been recognized as crucial regulators for fibrosis-related diseases. LncRNAs interact with RNA binding protein or construct competitive endogenous RNA (ceRNA) hypothesis which elicited the fibrotic processes. Until now, the effects of lncRNAs on PSCs activation and pancreatic fibrosis have not been clearly explored. In this study, a novel lncRNA named Lnc-PFAR was found highly expressed in mouse and human CP tissues. Our data revealed that Lnc-PFAR facilitates PSCs activation and pancreatic fibrosis via RB1CC1-induced autophagy. Lnc-PFAR reduces miR-141 expression by suppressing pre-miR-141 maturation, which eventually upregulates the RB1CC1 and fibrosis-related indicators expression. Meanwhile, Lnc-PFAR enhanced PSCs activation and pancreatic fibrosis through trigging autophagy. Our study interrogates a novel lncRNA-induced mechanism in promoting the development of pancreatic fibrosis, and Lnc-PFAR is suggested to be a prospective therapeutic target in clinical scenarios.
Collapse
|
9
|
Pastar I, Marjanovic J, Liang L, Stone RC, Kashpur O, Jozic I, Head CR, Smith A, Gerami-Naini B, Garlick JA, Tomic-Canic M. Cellular reprogramming of diabetic foot ulcer fibroblasts triggers pro-healing miRNA-mediated epigenetic signature. Exp Dermatol 2021; 30:1065-1072. [PMID: 34114688 DOI: 10.1111/exd.14405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Diabetic foot ulcers (DFUs), a prevalent complication of diabetes, constitute a major medical challenge with a critical need for development of cell-based therapies. We previously generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts derived from the DFU patients, location-matched skin of diabetic patients and normal healthy donors and re-differentiated them into fibroblasts. To assess the epigenetic microRNA (miR) regulated changes triggered by cellular reprogramming, we performed miRs expression profiling. We found let-7c, miR-26b-5p, -29c-3p, -148a-3p, -196a-5p, -199b-5p and -374a-5p suppressed in iPSC-derived fibroblasts in vitro and in 3D dermis-like self-assembly tissue, whereas their corresponding targets involved in cellular migration were upregulated. Moreover, targets involved in organization of extracellular matrix were induced after fibroblast reprogramming. PLAT gene, the crucial fibrinolysis factor, was upregulated in iPSC-derived fibroblasts and was confirmed as a direct target of miR-196a-5p. miR-197-3p and miR-331-3p were found upregulated specifically in iPSC-derived diabetic fibroblasts, while their targets CAV1 and CDKN3 were suppressed. CAV1, an important negative regulator of wound healing, was confirmed as a direct miR-197-3p target. Together, our findings demonstrate that iPSC reprogramming is an effective approach for erasing the diabetic non-healing miR-mediated epigenetic signature and promoting a pro-healing cellular phenotype.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Liang Liang
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olga Kashpur
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Avi Smith
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Behzad Gerami-Naini
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Jonathan A Garlick
- Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Brown KE, Fisher AG. Reprogramming lineage identity through cell-cell fusion. Curr Opin Genet Dev 2021; 70:15-23. [PMID: 34087754 DOI: 10.1016/j.gde.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022]
Abstract
The conversion of differentiated cells to a pluripotent state through somatic cell nuclear transfer provided the first unequivocal evidence that differentiation was reversible. In more recent times, introducing a combination of key transcription factors into terminally differentiated mammalian cells was shown to drive their conversion to induced pluripotent stem cells (iPSCs). These discoveries were transformative, but the relatively slow speed (2-3 weeks) and low efficiency of reprogramming (0.1-1%) made deciphering the underlying molecular mechanisms difficult and complex. Cell fusion provides an alternative reprogramming approach that is both efficient and tractable, particularly when combined with modern multi-omics analysis of individual cells. Here we review the history and the recent advances in cell-cell fusion that are enabling a better understanding cell fate conversion, and we discuss how this knowledge could be used to shape improved strategies for regenerative medicine.
Collapse
Affiliation(s)
- Karen E Brown
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
11
|
Barshir R, Fishilevich S, Iny-Stein T, Zelig O, Mazor Y, Guan-Golan Y, Safran M, Lancet D. GeneCaRNA: A Comprehensive Gene-centric Database of Human Non-coding RNAs in the GeneCards Suite. J Mol Biol 2021; 433:166913. [PMID: 33676929 DOI: 10.1016/j.jmb.2021.166913] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Non-coding RNA (ncRNA) genes assume increasing biological importance, with growing associations with diseases. Many ncRNA sources are transcript-centric, but for non-coding variant analysis and disease decipherment it is essential to transform this information into a comprehensive set of genome-mapped ncRNA genes. We present GeneCaRNA, a new all-inclusive gene-centric ncRNA database within the GeneCards Suite. GeneCaRNA information is integrated from four community-backed data structures: the major transcript database RNAcentral with its 20 encompassed databases, and the ncRNA entries of three major gene resources HGNC, Ensembl and NCBI Gene. GeneCaRNA presents 219,587 ncRNA gene pages, a 7-fold increase from those available in our three gene mining sources. Each ncRNA gene has wide-ranging annotation, mined from >100 worldwide sources, providing a powerful GeneCards-leveraged search. The latter empowers VarElect, our disease-gene interpretation tool, allowing one to systematically decipher ncRNA variants. The combined power of GeneCaRNA with GeneHancer, our regulatory elements database, facilitates wide-ranging scrutiny of the non-coding terra incognita of gene networks and whole genome analyses.
Collapse
Affiliation(s)
- Ruth Barshir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel.
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel.
| | - Tsippi Iny-Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel.
| | - Ofer Zelig
- LifeMap Sciences Inc., Alameda, CA 94501, USA.
| | - Yaron Mazor
- LifeMap Sciences Inc., Alameda, CA 94501, USA.
| | | | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel.
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610010, Israel.
| |
Collapse
|
12
|
Chen S, Guo X, He X, Di R, Zhang X, Zhang J, Wang X, Chu M. Insight Into Pituitary lncRNA and mRNA at Two Estrous Stages in Small Tail Han Sheep With Different FecB Genotypes. Front Endocrinol (Lausanne) 2021; 12:789564. [PMID: 35178025 PMCID: PMC8844552 DOI: 10.3389/fendo.2021.789564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
The pituitary is a remarkably dynamic organ with roles in hormone (FSH and LH) synthesis and secretion. In animals with the FecB (fecundity Booroola) mutation, the pituitary experiences hormone fluctuations during the follicular-luteal transition, which is implicated in the expression and regulation of many genes and regulators. Long non-coding RNAs (lncRNAs) are a novel type of regulatory factors for the reproductive process. Nevertheless, the expression patterns of lncRNAs and their roles in FecB-mediated follicular development and ovulation remain obscure. Thus, we profiled the pituitary transcriptome during the follicular (F, 45 h after evacuation vaginal sponges) and luteal (L, 216 h after evacuation vaginal sponges) phases in FecB-mutant homozygous (BB) and wild-type (WW) Small Tail Han sheep. We identified 78 differentially expressed genes (DEGs) and 41 differentially expressed lncRNAs (DELs) between BB_F and BB_L, 32 DEGs and 26 DELs between BB_F and WW_F, 16 DEGs and 29 DELs between BB_L and WW_L, and 50 DEGs and 18 DELs between WW_F and WW_L. The results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. In both the follicular and luteal phases, DEGs (GRID2, glutamate ionotropic receptor delta type subunit 2; ST14, ST14 transmembrane serine protease matriptase) were enriched in hormone synthesis, secretion, and action. MSTRG.47470 and MSTRG.101530 were the trans-regulated elements of ID1 (inhibitor of DNA binding 3, HLH protein) and the DEG ID3 (inhibitor of DNA binding 3, HLH protein), and EEF2 (eukaryotic translation elongation factor 2), respectively; these factors might be involved in melatonin and peptide hormone secretion. In the FecB-mediated follicular phase, MSTRG.125392 targeted seizure-related 6 homolog like (SEZ6L), and MSTRG.125394 and MSTRG.83276 targeted the DEG KCNQ3 (potassium voltage-gated channel subfamily Q member 3) in cis, while MSTRG.55861 targeted FKBP4 (FKBP prolyl isomerase 4) in trans. In the FecB-mediated luteal phase, LOC105613905, MSTRG.81536, and MSTRG.150434 modulated TGFB1, SMAD3, OXT, respectively, in trans. We postulated that the FecB mutation in pituitary tissue elevated the expression of certain genes associated with pituitary development and hormone secretion. Furthermore, this study provides new insights into how the pituitary regulates follicular development and ovulation, illustrated by the effect of the FecB mutation.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiangyu Wang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiangyu Wang, ; Mingxing Chu,
| |
Collapse
|
13
|
Induced Pluripotency: A Powerful Tool for In Vitro Modeling. Int J Mol Sci 2020; 21:ijms21238910. [PMID: 33255453 PMCID: PMC7727808 DOI: 10.3390/ijms21238910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
One of the greatest breakthroughs of regenerative medicine in this century was the discovery of induced pluripotent stem cell (iPSC) technology in 2006 by Shinya Yamanaka. iPSCs originate from terminally differentiated somatic cells that have newly acquired the developmental capacity of self-renewal and differentiation into any cells of three germ layers. Before iPSCs can be used routinely in clinical practice, their efficacy and safety need to be rigorously tested; however, iPSCs have already become effective and fully-fledged tools for application under in vitro conditions. They are currently routinely used for disease modeling, preparation of difficult-to-access cell lines, monitoring of cellular mechanisms in micro- or macroscopic scales, drug testing and screening, genetic engineering, and many other applications. This review is a brief summary of the reprogramming process and subsequent differentiation and culture of reprogrammed cells into neural precursor cells (NPCs) in two-dimensional (2D) and three-dimensional (3D) conditions. NPCs can be used as biomedical models for neurodegenerative diseases (NDs), which are currently considered to be one of the major health problems in the human population.
Collapse
|
14
|
Ye T, Yang X, Liu H, Lv P, Ye Z. Long Non-Coding RNA BLACAT1 in Human Cancers. Onco Targets Ther 2020; 13:8263-8272. [PMID: 32903916 PMCID: PMC7445530 DOI: 10.2147/ott.s261461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a cluster of RNAs with more than 200 nucleotides in length, which lack protein-coding capacity. They are important regulators of numerous cellular processes, including gene transcription, translation, and posttranslational modification, especially in tumor initiation and progression. Aberrant expression of lncRNA bladder cancer-associated transcript 1 (BLACAT1) has been reported in various human cancers and was usually associated with unfavorable prognosis. Previous studies have revealed that dysregulation of BLACAT1 could promote the proliferation and metastasis of cancer cells. In this review, we summarize the present understanding of the functions and underlying mechanisms of BLACAT1 in the occurrence and development of various human cancers and discuss the roles of this lncRNA in cancers, including its promising application as a prognostic biomarker or a novel therapeutic target for malignancies.
Collapse
Affiliation(s)
- Tao Ye
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaoqi Yang
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Haoran Liu
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, People's Republic of China
| | - Peng Lv
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhangqun Ye
- Department of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
15
|
Bian Z, Ji W, Xu B, Huang W, Jiao J, Shao J, Zhang X. The role of long noncoding RNA SNHG7 in human cancers (Review). Mol Clin Oncol 2020; 13:45. [PMID: 32874575 PMCID: PMC7453396 DOI: 10.3892/mco.2020.2115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to serve important roles in a variety of human tumor types. The lncRNA small nucleolar RNA host gene 7 (SNHG7) is associated with a variety of cancer types, such as esophageal cancer, breast cancer and gastric neoplasia. Based on previous studies that examined SNHG7 expression in tumors, it has become clear that SNHG7 modulates tumorigenesis and cancer progression by acting as a competing endogenous RNA. SNHG7 can sponge tumor-suppressive microRNAs and regulate downstream signaling pathways. In addition, overexpression of SNHG7 is associated with the clinical characteristics of patients with cancer by regulating cellular proliferation, invasion and metastasis and by inhibiting apoptosis via a variety of mechanisms of action. The function of SNHG7 in tumorigenesis and cancer progression indicates that it can potentially act as a novel therapeutic target or a diagnostic biomarker for cancer therapy or detection, respectively.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Bing Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
16
|
Zhu Y, Yan Z, Tang Z, Li W. Novel Approaches to Profile Functional Long Noncoding RNAs Associated with Stem Cell Pluripotency. Curr Genomics 2020; 21:37-45. [PMID: 32655297 PMCID: PMC7324891 DOI: 10.2174/1389202921666200210142840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
The pluripotent state of stem cells depends on the complicated network orchestrated by thousands of factors and genes. Long noncoding RNAs (lncRNAs) are a class of RNA longer than 200 nt without a protein-coding function. Single-cell sequencing studies have identified hundreds of lncRNAs with dynamic changes in somatic cell reprogramming. Accumulating evidence suggests that they participate in the initiation of reprogramming, maintenance of pluripotency, and developmental processes by cis and/or trans mechanisms. In particular, they may interact with proteins, RNAs, and chromatin modifier complexes to form an intricate pluripotency-associated network. In this review, we focus on recent progress in approaches to profiling functional lncRNAs in somatic cell reprogramming and cell differentiation.
Collapse
Affiliation(s)
- Yanbo Zhu
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Zi Yan
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Ze Tang
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| | - Wei Li
- 1Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin130021, China; 2Division of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin130021, China; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, China
| |
Collapse
|
17
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
18
|
Liu CN, Zhang HY. Serum lncRNA LOXL1-AS1 is a diagnostic and prognostic marker for epithelial ovarian cancer. J Gene Med 2020; 22:e3233. [PMID: 32449981 PMCID: PMC7685168 DOI: 10.1002/jgm.3233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background The present study aimed to examine the levels of circulating LOXL1‐AS1 in epithelial ovarian cancer (EOC) patients and to analyze its diagnostic and prognostic value. Methods The levels of LOXL1‐AS1 in 185 EOC patients and 43 healthy volunteers were evaluated by a quantitative reverse transcriptase‐polymerase chain reaction. The potential of LOXL1‐AS1 as a biomarker for EOC diagnosis was determined by receiver‐operating characteristic (ROC) curve assays. The associations between clinicopathological parameters and LOXL1‐AS1 expression were analyzed using a chi‐squared test. The influence of LOXL1‐AS1 on overall survival was analyzed by the use of Kaplan–Meier. A Cox proportional hazards assays were conducted for the determination of the prognostic value of LOXL1‐AS1. Results The expression of LOXL1‐AS1 was dramatically higher in EOC patients compared to healthy controls (p < 0.01). LOXL1‐AS1 yielded an area under the ROC curve of 0.843 with 65.3% sensitivity and 68.2% specificity in discriminating high‐grade EOC from healthy controls. It was also shown that LOXL1‐AS1 expression was associated with advanced FIGO stage (p = 0.004) and positively distant metastasis (p = 0.013). Kaplan–Meier assays revealed that patients with high LOXL1‐AS1 expression had a shorter overall survival than those with low expression (p = 0.0006). By performing multivariate assays, LOXL1‐AS1 was confirmed to be an independent prognostic factor for predicting the prognosis of EOC patients. Conclusions We provide evidence indicating that LOXL1‐AS1 expression is correlated with a poor clinical outcome in EOC patients and may act as an independent prognostic indicator, as well as a new diagnostic biomarker.
Collapse
Affiliation(s)
- Chun-Na Liu
- Department of Gynecology, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Hai-Yan Zhang
- Clinical Laboratory, Linyi Cancer Hospital, Linyi, Shandong, China
| |
Collapse
|
19
|
Wang C, Jia L, Wang Y, Du Z, Zhou L, Wen X, Li H, Zhang S, Chen H, Chen N, Chen J, Zhu Y, Nie Y, Celic I, Gao S, Zhang S, Hoffman AR, Li W, Hu JF, Cui J. Genome-wide interaction target profiling reveals a novel Peblr20-eRNA activation pathway to control stem cell pluripotency. Am J Cancer Res 2020; 10:353-370. [PMID: 31903125 PMCID: PMC6929617 DOI: 10.7150/thno.39093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) constitute an important component of the regulatory apparatus that controls stem cell pluripotency. However, the specific mechanisms utilized by these lncRNAs in the control of pluripotency are not fully characterized. Methods: We utilized a RNA reverse transcription-associated trap sequencing (RAT-seq) approach to profile the mouse genome-wide interaction targets for lncRNAs that are screened by RNA-seq. Results: We identified Peblr20 (Pou5F1 enhancer binding lncRNA 20) as a novel lncRNA that is associated with stem cell reprogramming. Peblr20 was differentially transcribed in fibroblasts compared to induced pluripotent stem cells (iPSCs). Notably, we found that Peblr20 utilized a trans mechanism to interact with the regulatory elements of multiple stemness genes. Using gain- and loss-of-function experiments, we showed that knockdown of Peblr20 caused iPSCs to exit from pluripotency, while overexpression of Peblr20 activated endogenous Pou5F1 expression. We further showed that Peblr20 promoted pluripotent reprogramming. Mechanistically, we demonstrated that Peblr20 activated endogenous Pou5F1 by binding to the Pou5F1 enhancer in trans, recruiting TET2 demethylase and activating the enhancer-transcribed RNAs. Conclusions: Our data reveal a novel epigenetic mechanism by which a lncRNA controls the fate of stem cells by trans-regulating the Pou5F1 enhancer RNA pathway. We demonstrate the potential for leveraging lncRNA biology to enhance the generation of stem cells for regenerative medicine.
Collapse
|
20
|
Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 2019; 21:102-117. [DOI: 10.1038/s41576-019-0184-5] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
21
|
Wu W, Ji X, Zhao Y. Emerging Roles of Long Non-coding RNAs in Chronic Neuropathic Pain. Front Neurosci 2019; 13:1097. [PMID: 31680832 PMCID: PMC6813851 DOI: 10.3389/fnins.2019.01097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic neuropathic pain, a type of chronic and potentially disabling pain caused by a disease or injury of the somatosensory nervous system, spinal cord injury, or various chronic conditions, such as viral infections (e.g., post-herpetic neuralgia), autoimmune diseases, cancers, and metabolic disorders (e.g., diabetes mellitus), is one of the most intense types of chronic pain, which incurs a major socio-economic burden and is a serious public health issue, with an estimated prevalence of 7–10% in adults throughout the world. Presently, the available drug treatments (e.g., anticonvulsants acting at calcium channels, serotonin-noradrenaline reuptake inhibitors, tricyclic antidepressants, opioids, topical lidocaine, etc.) for chronic neuropathic pain patients are still rare and have disappointing efficacy, which makes it difficult to relieve the patients’ painful symptoms, and, at best, they only try to reduce the patients’ ability to tolerate pain. Long non-coding RNAs (lncRNAs), a type of transcript of more than 200 nucleotides with no protein-coding or limited capacity, were identified to be abnormally expressed in the spinal cord, dorsal root ganglion, hippocampus, and prefrontal cortex under chronic neuropathic pain conditions. Moreover, a rapidly growing body of data has clearly pointed out that nearly 40% of lncRNAs exist specifically in the nervous system. Hence, it was speculated that these dysregulated lncRNAs might participate in the occurrence, development, and progression of chronic neuropathic pain. In other words, if we deeply delve into the potential roles of lncRNAs in the pathogenesis of chronic neuropathic pain, this may open up new strategies and directions for the development of novel targeted drugs to cure this refractory disorder. In this article, we primarily review the status of chronic neuropathic pain and provide a general overview of lncRNAs, the detailed roles of lncRNAs in the nervous system and its related diseases, and the abnormal expression of lncRNAs and their potential clinical applications in chronic neuropathic pain. We hope that through the above description, readers can gain a better understanding of the emerging roles of lncRNAs in chronic neuropathic pain.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Ji
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital to Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Genome-wide discovery and characterization of long noncoding RNAs in patients with multiple myeloma. BMC Med Genomics 2019; 12:135. [PMID: 31619233 PMCID: PMC6794882 DOI: 10.1186/s12920-019-0577-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in a wide range of biological processes in tumorigenesis. However, the role of lncRNA expression in the biology, prognosis, and molecular classification of human multiple myeloma (MM) remains unclear, especially the biological functions of the vast majority of lncRNAs. Recently, lncRNAs have been identified in neoplastic hematologic disorders. Evidence has accumulated on the molecular mechanisms of action of lncRNAs, providing insight into their functional roles in tumorigenesis. This study aimed to characterize potential lncRNAs in patients with MM. Methods In this study, the whole-transcriptome strand-specific RNA sequencing of samples from three newly diagnosed patients with MM was performed. The whole transcriptome, including lncRNAs, microRNAs, and mRNAs, was analyzed. Using these data, MM lncRNAs were systematically analyzed, and the lncRNAs involved in the occurrence of MM were identified. Results The results revealed that MM lncRNAs had distinctive characteristics different from those of other malignant tumors. Further, the functions of a set of lncRNAs preferentially expressed in MM were verified, and several lncRNAs were identified as competing endogenous RNAs. More importantly, the aberrant expression of certain lncRNAs, including maternally expressed gene3, colon cancer–associated transcript1, and coiled-coil domain-containing 26, as well as some novel lncRNAs involved in the occurrence of MM was established. Further, lncRNAs were related to some microRNAs, regulated each other, and participated in MM development. Conclusions Genome-wide screening and functional analysis enabled the identification of a set of lncRNAs involved in the occurrence of MM. The interaction exists among microRNAs and lncRNAs.
Collapse
|
23
|
Nucleoporin insufficiency disrupts a pluripotent regulatory circuit in a pro-arrhythmogenic stem cell line. Sci Rep 2019; 9:12691. [PMID: 31481660 PMCID: PMC6722237 DOI: 10.1038/s41598-019-49147-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Nucleoporins have been reported to regulate pluripotent biology, but how they do so remains partially characterized. This study examined the effects of nup155 gene disruption on mouse embryonic stem cells to gain insights into possible mechanisms by which nucleoporins regulate pluripotency in a pro-arrhythmogenic stem cell line. Embryonic stem cells with gene-trapped nup155 exhibited aberrant colony morphology underscored by abnormal transcriptome remodeling. Bioinformatic analysis of whole transcriptome data from nup155+/- embryonic stem cells revealed changes in a variety of non-coding RNA elements, with significant under expression of miR291a, miR291b, miR293, and miR294. These miRNAs are members of the larger regulatory miR290-295 cluster that regulates pluripotency and are controlled by the canonical stem cell-related factors SOX2, OCT4, and NANOG. Expression analysis of these factors revealed downregulation in all three, supported by biochemical profiling and image analysis. These data implicate disruption of the miR-SOX2/OCT4/NANOG regulatory circuit occurs downstream of nup155 gene lesion.
Collapse
|
24
|
Zhou Y, Xu S, Xia H, Gao Z, Huang R, Tang E, Jiang X. Long noncoding RNA FEZF1-AS1 in human cancers. Clin Chim Acta 2019; 497:20-26. [PMID: 31276636 DOI: 10.1016/j.cca.2019.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play key roles in various human tumors. Ectopic expression of the lncRNA FEZ finger zinc 1 antisense 1 (FEZF1-AS1) have been reported in different cancers, including colorectal cancer, gastric neoplasia, hepatocellular carcinoma and so on. Summarizing all literature correlated with FEZF1-AS1, it is obvious that FEZF1-AS1 is mainly involved in tumorigenesis and progression through competing endogenous RNA (ceRNA) which sponges tumor-suppressive microRNA (miRNA) and recruiting mechanism. Moreover, the aberrant expression of FEZF1-AS1 is related to clinical features of patients with cancers, and regulates cellular proliferation, anti-apoptosis, invasion and metastasis through diverse underlying mechanisms. The role of FEZF1-AS1 in carcinogenesis and progression suggests that it may be a potential diagnostic biomarker or a novel therapeutic target for cancers.
Collapse
Affiliation(s)
- Yuanshi Zhou
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Shuwan Xu
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Haoming Xia
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Zewei Gao
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Rongju Huang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Enyu Tang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China
| | - Xingming Jiang
- Department of HPB Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu-ro, Harbin 150086, China.
| |
Collapse
|
25
|
Zhang Z, Li H, Liu M, He J, Zhang X, Chen Y. Skullcapflavone I protects cardiomyocytes from hypoxia-caused injury through up-regulation of lincRNA-ROR. Int J Immunopathol Pharmacol 2019; 33:2058738419857537. [PMID: 31220954 PMCID: PMC6589964 DOI: 10.1177/2058738419857537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myocardial infarction (MI) is a serious heart disease in which cardiomyocytes are damaged, caused by hypoxia. This study explored the possible protective activity of Skullcapflavone I (SF I), a flavonoid isolated from the root of Scutellaria baicalensis Georgi, on hypoxia-stimulated cardiomyocytes cell injury in vitro. Viability and apoptosis of H9c2 cells and primary cardiomyocytes were tested using cell counting kit–8 (CCK-8) assay and Guava Nexin Reagent, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the long non-coding RNA regulator of reprogramming (lincRNA-ROR) expression. si-ROR was transfected to knockdown lincRNA-ROR. Western blotting was conducted to assess the protein levels of key molecules related to cell proliferation, apoptosis, and mitogen-activated protein kinase/extracellular signal–regulated kinase (MEK/ERK) pathway. We discovered that hypoxia stimulation obviously reduced H9c2 cell and primary cardiomyocytes’ viability and proliferation, but promoted cell apoptosis. SF I treatment mitigated the cell viability and proliferation inhibition, as well as cell apoptosis caused by hypoxia. Moreover, SF I promoted the hypoxia-caused up-regulation of lincRNA-ROR in H9c2 cells and primary cardiomyocytes. Knockdown of lincRNA-ROR reversed the influence of SF I on hypoxia-stimulated H9c2 cells and primary cardiomyocytes. Besides, SF I activated MEK/ERK pathway in H9c2 cells and primary cardiomyocytes via up-regulating lincRNA-ROR. To sum up, our research verified the beneficial activity of SF I on hypoxia-caused cardiomyocytes injury. SF I protected cardiomyocytes from hypoxia-caused injury through up-regulation of lincRNA-ROR and activation of MEK/ERK pathway.
Collapse
Affiliation(s)
- Zhenxiao Zhang
- 1 Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- 1 Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyang Liu
- 1 Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianshuai He
- 2 Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Zhang
- 2 Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuehua Chen
- 3 Department of Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Du Z, Jia L, Wang Y, Wang C, Wen X, Chen J, Zhu Y, Yu D, Zhou L, Chen N, Zhang S, Celik I, Ay F, Gao S, Zhang S, Li W, Hoffman AR, Cui J, Hu JF. Combined RNA-seq and RAT-seq mapping of long noncoding RNAs in pluripotent reprogramming. Sci Data 2018; 5:180255. [PMID: 30457566 PMCID: PMC6244186 DOI: 10.1038/sdata.2018.255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells hold great investigative potential for developmental biology and regenerative medicine. Recent studies suggest that long noncoding RNAs (lncRNAs) may function as key regulators of the maintenance and the lineage differentiation of stem cells. However, the underlying mechanisms by which lncRNAs affect the reprogramming process of somatic cells into pluripotent cells remain largely unknown. Using fibroblasts and induced pluripotent stem cells (iPSCs) at different stages of reprogramming, we performed RNA transcriptome sequencing (RNA-Seq) to identify lncRNAs that are differentially-expressed in association with pluripotency. An RNA reverse transcription-associated trap sequencing (RAT-seq) approach was then utilized to generate a database to map the regulatory element network for lncRNA candidates. Integration of these datasets can facilitate the identification of functional lncRNAs that are associated with reprogramming. Identification of lncRNAs that regulate pluripotency may lead to new strategies for enhancing iPSC induction in regenerative medicine.
Collapse
Affiliation(s)
- Zhonghua Du
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lin Jia
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yichen Wang
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Cong Wang
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Wen
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yanbo Zhu
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Dehai Yu
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Lei Zhou
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Naifei Chen
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Shilin Zhang
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ilkay Celik
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Sujun Gao
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Songling Zhang
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Wei Li
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
27
|
Zheng R, Lin S, Guan L, Yuan H, Liu K, Liu C, Ye W, Liao Y, Jia J, Zhang R. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis. Biochem Biophys Res Commun 2018; 498:1002-1008. [PMID: 29550489 DOI: 10.1016/j.bbrc.2018.03.104] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Long non-coding RNA (lncRNA) is an important member of non-coding RNA family and emerging evidence has indicated that it plays a pivotal role in many physiological and pathological processes. The lncRNA X inactive specific transcript (XIST) is a potential tumour suppressor in some types of cancers. However, the expression and function of XIST in breast cancer remain largely unclear. The objective of this study was to evaluate the expression and biological role of XIST in breast cancer. The results showed that XIST was significantly down-regulated in breast cancer tissues and cell lines. Further functional analysis indicated that overexpression of XIST remarkably inhibited breast cancer cell growth, migration, and invasion. The results of luciferase reporter assays verified that miR-155 was a direct target of XIST in breast cancer. Moreover, caudal-type homeobox 1 (CDX1) was identified as a direct target of miR-155 and miR-155/CDX1 rescued the effects of XIST in breast cancer cells. Taken together, our results suggest that XIST is down-regulated in breast cancer and suppresses breast cancer cell growth, migration, and invasion via the miR-155/CDX1 axis.
Collapse
Affiliation(s)
- Ruinian Zheng
- Department of Oncology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Shunhuan Lin
- Department of Oncology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Ling Guan
- Clinical Research Center, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Huiling Yuan
- Department of Galactophore, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Kejun Liu
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Chun Liu
- Department of Oncology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Weibiao Ye
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Yuting Liao
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Jun Jia
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China.
| | - Ruopeng Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| |
Collapse
|