1
|
Fasano A, Kundrick A, Henchcliffe C. Convention vs. innovation III: The promise of stem cell therapy in Parkinson's disease remains bright (PSG debate 2024). Parkinsonism Relat Disord 2025:107849. [PMID: 40335354 DOI: 10.1016/j.parkreldis.2025.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Affiliation(s)
- Alfonso Fasano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Avery Kundrick
- Center for Neurological Restoration, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claire Henchcliffe
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Dammen-Brower K, Arbogast O, Zhu S, Qiu C, Zhang C, Khare P, Le A, Jia X, Yarema KJ. Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells. BIOMATERIALS ADVANCES 2025; 169:214144. [PMID: 39754871 PMCID: PMC11884250 DOI: 10.1016/j.bioadv.2024.214144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers. By comparison, But elicited minimal change to these endpoints, indicating dependence on the chemical properties of the thiol group of non-natural sialic acids and not the size of this sugar's N-acyl group. Conversely, But elicited distinct intracellular responses including increased nestin expression (~6-fold) and the modulation of several metabolites identified through cell-wide screening. Metabolites up-regulated by But included dopamine and norfenenfrine, suggesting that this analog may be a drug candidate for treating neural damage associated with conditions such as Parkinson's disease. The metabolomics data also provided new insights into the neuroprotective effects of TProp when used to treat brain injury by upregulation of anti-inflammatory metabolites (e.g., α- & γ-linolenic acids) valuable for dampening injury- and treatment-related inflammation. Finally, these analogs modulate compounds that control proline (e.g., 1-pyrroline-2-carboxylate), a master regulator of many cellular activities. Overall, this study presents new mechanisms and pathways to exploit metabolic glycoengineering for neural repair and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olivia Arbogast
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chunfang Qiu
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Cissy Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Pratik Khare
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Anne Le
- Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Kevin J Yarema
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Motta F, Cerrato M, De Giorgio D, Salimbeni A, Merigo G, Magliocca A, Perego C, Zanier ER, Ristagno G, Fumagalli F. Translational approach to assess brain injury after cardiac arrest in preclinical models: a narrative review. Intensive Care Med Exp 2025; 13:3. [PMID: 39808393 PMCID: PMC11732829 DOI: 10.1186/s40635-024-00710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Francesca Motta
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Cerrato
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daria De Giorgio
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alice Salimbeni
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Merigo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Aurora Magliocca
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Carlo Perego
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Fumagalli
- Department of Acute Brain and Cardiovascular Injury Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
4
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
5
|
Liu X, Jia X. Neuroprotection of Stem Cells Against Ischemic Brain Injury: From Bench to Clinic. Transl Stroke Res 2024; 15:691-713. [PMID: 37415004 PMCID: PMC10771544 DOI: 10.1007/s12975-023-01163-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023]
Abstract
Neurological injuries can have numerous debilitating effects on functional status including sensorimotor deficits, cognitive impairment, and behavioral symptoms. Despite the disease burden, treatment options remain limited. Current pharmacological interventions are targeted at symptom management but are ineffective in reversing ischemic brain damage. Stem cell therapy for ischemic brain injury has shown promising preclinical and clinical results and has attracted attention as a potential therapeutic option. Various stem cell sources (embryonic, mesenchymal/bone marrow, and neural stem cells) have been investigated. This review provides an overview of the advances made in our understanding of the various types of stem cells and progress made in the use of these stem cells for the treatment of ischemic brain injuries. In particular, the use of stem cell therapy in global cerebral ischemia following cardiac arrest and in focal cerebral ischemia after ischemic stroke are discussed. The proposed mechanisms of stem cells' neuroprotective effects in animal models (rat/mice, pig/swine) and other clinical studies, different routes of administration (intravenous/intra-arterial/intracerebroventricular/intranasal/intraperitoneal/intracranial) and stem cell preconditioning are discussed. Much of the promising data on stem cell therapies after ischemic brain injury remains in the experimental stage and several limitations remain unsettled. Future investigation is needed to further assess the safety and efficacy and to overcome the remaining obstacles.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Liu X, Jia X. Stem Cell Therapy for Ischemic Brain Injury: Early Intranasal Delivery after Cardiac Arrest. Transl Stroke Res 2024; 15:495-497. [PMID: 37016141 PMCID: PMC10548353 DOI: 10.1007/s12975-023-01150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023]
Abstract
Global ischemic brain injury is the leading cause of mortality and long-term disability in patients resuscitated from cardiac arrest. Hypothermia and neuroprotective agents are two strategies partially improve neurological outcomes following resuscitation. However, the therapeutic effects of these treatments are inconsistently reported. Stem cell therapy has emerged as a promising protective strategy due to its potential for proliferation and differentiation into functional neural cells. This editorial reviews the current status of stem cell therapy via the intranasal route in primates and clinical studies, along with the treatment window of stem cell therapy in ischemic brain injury after cardiac arrest to provide new insight into stem cell therapy for cardiac arrest-induced global cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 823, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Marasini S, Jia X. Neuroprotective Approaches for Brain Injury After Cardiac Arrest: Current Trends and Prospective Avenues. J Stroke 2024; 26:203-230. [PMID: 38836269 PMCID: PMC11164592 DOI: 10.5853/jos.2023.04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024] Open
Abstract
With the implementation of improved bystander cardiopulmonary resuscitation techniques and public-access defibrillation, survival after out-of-hospital cardiac arrest (OHCA) has increased significantly over the years. Nevertheless, OHCA survivors have residual anoxia/reperfusion brain damage and associated neurological impairment resulting in poor quality of life. Extracorporeal membrane oxygenation or targeted temperature management has proven effective in improving post-cardiac arrest (CA) neurological outcomes, yet considering the substantial healthcare costs and resources involved, there is an urgent need for alternative treatment strategies that are crucial to alleviate brain injury and promote recovery of neurological function after CA. In this review, we searched PubMed for the latest preclinical or clinical studies (2016-2023) utilizing gas-mediated, pharmacological, or stem cell-based neuroprotective approaches after CA. Preclinical studies utilizing various gases (nitric oxide, hydrogen, hydrogen sulfide, carbon monoxide, argon, and xenon), pharmacological agents targeting specific CA-related pathophysiology, and stem cells have shown promising results in rodent and porcine models of CA. Although inhaled gases and several pharmacological agents have entered clinical trials, most have failed to demonstrate therapeutic effects in CA patients. To date, stem cell therapies have not been reported in clinical trials for CA. A relatively small number of preclinical stem-cell studies with subtle therapeutic benefits and unelucidated mechanistic explanations warrant the need for further preclinical studies including the improvement of their therapeutic potential. The current state of the field is discussed and the exciting potential of stem-cell therapy to abate neurological dysfunction following CA is highlighted.
Collapse
Affiliation(s)
- Subash Marasini
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Du J, Liu X, Marasini S, Wang Z, Dammen-Brower K, Yarema KJ, Jia X. Metabolically Glycoengineered Neural Stem Cells Boost Neural Repair After Cardiac Arrest. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309866. [PMID: 39071865 PMCID: PMC11281434 DOI: 10.1002/adfm.202309866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 07/30/2024]
Abstract
Cardiac arrest (CA)-induced cerebral ischemia remains challenging with high mortality and disability. Neural stem cell (NSC) engrafting is an emerging therapeutic strategy with considerable promise that, unfortunately, is severely compromised by limited cell functionality after in vivo transplantation. This groundbreaking report demonstrates that metabolic glycoengineering (MGE) using the "Ac5ManNTProp (TProp)" monosaccharide analog stimulates the Wnt/β-catenin pathway, improves cell adhesion, and enhances neuronal differentiation in human NSCs in vitro thereby substantially increasing the therapeutic potential of these cells. For the first time, MGE significantly enhances NSC efficacy for treating ischemic brain injury after asphyxia CA in rats. In particular, neurological deficit scores and neurobehavioral tests experience greater improvements when the therapeutic cells are pretreated with TProp than with "stand-alone" NSC therapy. Notably, the TProp-NSC group exhibits significantly stronger neuroprotective functions including enhanced differentiation, synaptic plasticity, and reduced microglia recruitment; furthermore, Wnt pathway agonists and inhibitors demonstrate a pivotal role for Wnt signaling in the process. These findings help establish MGE as a promising avenue for addressing current limitations associated with NSC transplantation via beneficially influencing neural regeneration and synaptic plasticity, thereby offering enhanced therapeutic options to boost brain recovery following global ischemia.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Subash Marasini
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205
- Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205
- Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
9
|
Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, Jia X. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl Stroke Res 2023; 14:723-739. [PMID: 35921049 PMCID: PMC9895128 DOI: 10.1007/s12975-022-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen-glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Cellular and Molecular Mechanisms Underly the Combined Treatment of Fasudil and Bone Marrow Derived-Neuronal Stem Cells in a Parkinson's Disease Mouse Model. Mol Neurobiol 2023; 60:1826-1835. [PMID: 36580198 DOI: 10.1007/s12035-022-03173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Bone marrow-derived neural stem cells (BM-NSCs) have shed light on novel therapeutic approaches for PD with the potential to halt or even reverse disease progression. Various strategies have been developed to promote therapeutic efficacy via optimizing implanted cells and the microenvironment of transplantation in the central nervous system (CNS). This current study further proved that the combination of fasudil, a Rho-kinase inhibitor, and BM-NSCs exhibited a synergetic effect on restoring neuron loss in the MPTP-PD mice model. It simultaneously unveiled cellular mechanisms underlying synergistic neuron-protection effects of fasudil and BM-NSCs, which included promoting the proliferation, and migration of endogenous NSCs, and contributing to microglia shift into the M2 phenotype. Corresponding molecular mechanisms were observed, including the inhibition of inflammatory responses, the elevation of neurotrophic factors, and the induction of WNT/β-catenin and PI3K/Akt/mTOR signaling pathways. Our study provides evidence for the co-intervention of BM-NSCs and fasudil as a promising therapeutic method with enhanced efficacy in treating neurodegenerative diseases.
Collapse
|
11
|
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation. Stem Cell Rev Rep 2022; 18:2852-2871. [PMID: 35962176 DOI: 10.1007/s12015-022-10423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 10/15/2022]
Abstract
Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.
Collapse
|
12
|
Wang Z, Chen S, Smith MF, Jia X. Effect of Graded Targeted Temperature Management on Cerebral Glucose Spatiotemporal Characteristics after Cardiac Arrest. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:182-185. [PMID: 36086320 PMCID: PMC9639334 DOI: 10.1109/embc48229.2022.9871454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cardiac arrest (CA) is a fatal disease with high rates of neurological impairment. At present, targeted temperature management (TTM) is the only strategy with firm clinical evidence to prove its effectiveness. However, there is still controversy on the implementation of TTM, particularly on its depth, with a lack of elucidated underlying therapeutic mechanisms. Six Wistar rats were subjected to 8 min asphyxia-CA and randomly divided into TTM at 33oC(n=3) or 35° C groups (n=3). The spatiotemporal characteristics of cerebral glucose metabolism after CA were investigated by 18F-FDG microPET/CT. Myelin Basic Protein (MBP) immunofluorescence staining was used to assess acute injury and recovery of oligodendrocytes. Functional recovery was evaluated using the neurological deficit score (NDS). There was a significant improvement in functional recovery by NDS (p < 0.05) in the 33oC group compared with the 35° C group. Glucose metabolism of the 33° C group was higher than that of the 35oC group early after resuscitation (within 10 minutes). Immunofluorescence analysis showed that positive MBP signals in the cortex and hippocampus in the 33oC group were greater than in the 35oC group. In conclusion, compared to 35oC TTM, 33° C TTM changed the spatiotemporal characteristics of brain glucose metabolisms with improved neurological function, which may be through oligodendrocyte participation.
Collapse
|
13
|
Du J, Liu X, Yarema KJ, Jia X. Glycoengineering human neural stem cells (hNSCs) for adhesion improvement using a novel thiol-modified N-acetylmannosamine (ManNAc) analog. BIOMATERIALS ADVANCES 2022; 134:112675. [PMID: 35599100 PMCID: PMC9300770 DOI: 10.1016/j.msec.2022.112675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
This study sets the stage for the therapeutic use of Ac5ManNTProp, an N-acetylmannosamine (ManNAc) analog that installs thiol-modified sialoglycans onto the surfaces of human neural stem cells (hNSC). First, we compared hNSC adhesion to the extracellular matrix (ECM) proteins laminin, fibronectin, and collagen and found preferential adhesion and concomitant changes to cell morphology and cell spreading for Ac5ManNTProp-treated cells to laminin, compared to fibronectin where there was a modest response, and collagen where there was no observable increase. PCR array transcript analysis identified several classes of cell adhesion molecules that responded to combined Ac5ManNTProp treatment and hNSC adhesion to laminin. Of these, we focused on integrin α6β1 expression, which was most strongly upregulated in analog-treated cells incubated on laminin. We also characterized downstream responses including vinculin display as well as the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). In these experiments, Ac5ManNTProp more strongly induced all tested biological endpoints compared to Ac5ManNTGc, showing that the single methylene unit that structurally separates the two analogs finely tunes biological responses. Together, the concerted modulation of multiple pro-regenerative activities through Ac5ManNTProp treatment, in concert with crosstalk with ECM components, lays a foundation for using our metabolic glycoengineering approach to treat neurological disorders by favorably modulating endpoints that contribute to the viability of transplanted NSCs.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205,Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
The effect of Glibenclamide on somatosensory evoked potentials after cardiac arrest in rats. Neurocrit Care 2021; 36:612-620. [PMID: 34599418 DOI: 10.1007/s12028-021-01350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Science continues to search for a neuroprotective drug therapy to improve outcomes after cardiac arrest (CA). The use of glibenclamide (GBC) has shown promise in preclinical studies, but its effects on neuroprognostication tools are not well understood. We aimed to investigate the effect of GBC on somatosensory evoked potential (SSEP) waveform recovery post CA and how this relates to the early prediction of functional outcome, with close attention to arousal and somatosensory recovery, in a rodent model of CA. METHODS Sixteen male Wistar rats were subjected to 8-min asphyxia CA and assigned to GBC treatment (n = 8) or control (n = 8) groups. GBC was administered as a loading dose of 10 μg/kg intraperitoneally 10 min after the return of spontaneous circulation, followed by a maintenance dosage of 1.6 μg/kg every 8 h for 24 h. SSEPs were recorded from baseline until 150 min following CA. Coma recovery, arousal, and brainstem function, measured by subsets of the neurological deficit score (NDS), were compared between both groups. SSEP N10 amplitudes were compared between the two groups at 30, 60, 90, and 120 min post CA. RESULTS Rats treated with GBC had higher sub-NDS scores post CA, with improved arousal and brainstem function recovery (P = 0.007). Both groups showed a gradual improvement of SSEP N10 amplitude over time, from 30 to 120 min post CA. Rats treated with GBC showed significantly better SSEP recovery at every time point (P < 0.001 for 30, 60, and 90 min; P = 0.003 for 120 min). In the GBC group, the N10 amplitude recovered to baseline by 120 min post CA. Quantified Cresyl violet staining revealed a significantly greater percentage of damage in the control group compared with the GBC treatment group (P = 0.004). CONCLUSIONS Glibenclamide improves coma recovery, arousal, and brainstem function after CA with decreased number of ischemic neurons in a rat model. GBC improves SSEP recovery post CA, with N10 amplitude reaching the baseline value by 120 min, suggesting early electrophysiologic recovery with this treatment. This medication warrants further exploration as a potential drug therapy to improve functional outcomes in patients after CA.
Collapse
|
15
|
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021; 19:255. [PMID: 34425832 PMCID: PMC8381574 DOI: 10.1186/s12951-021-01002-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although nanomedicine have greatly developed and human life span has been extended, we have witnessed the soared incidence of central nervous system (CNS) diseases including neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), ischemic stroke, and brain tumors, which have severely damaged the quality of life and greatly increased the economic and social burdens. Moreover, partial small molecule drugs and almost all large molecule drugs (such as recombinant protein, therapeutic antibody, and nucleic acid) cannot cross the blood-brain barrier. Therefore, it is especially important to develop a drug delivery system that can effectively deliver therapeutic drugs to the central nervous system for the treatment of central nervous system diseases. Cell penetrating peptides (CPPs) provide a potential strategy for the transport of macromolecules through the blood-brain barrier. This study analyzed and summarized the progress of CPPs in CNS diseases from three aspects: CPPs, the conjugates of CPPs and drug, and CPPs modified nanoparticles to provide scientific basis for the application of CPPs for CNS diseases.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pan Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhe Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dereje Kebebe
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|