1
|
Zhong X, Wang H. LncRNA JHDM1D-AS1 promotes osteogenic differentiation of periodontal ligament cells by targeting miR-532-5p to activate IGF1R signaling. J Periodontal Res 2024; 59:220-230. [PMID: 37950511 DOI: 10.1111/jre.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim of this study was to explore the mechanism underlying periodontal ligament cells (PDLCs) osteogenic differentiation. BACKGROUND Periodontitis causes damage to tooth-supporting apparatus and eventually leads to tooth loss. PDLCs hold great promise in periodontal regeneration due to their osteogenic features. METHODS The expression of osteogenic markers, lncRNA JHDM1D-AS1, miR-532-5p and IGF1R was examined. For osteogenic differentiation, primary human PDLCs (hPDLCs) were cultured in an osteogenic medium, and it was assessed by ALP activity and Alizarin Red staining. The interaction between JHDM1D-AS1, miR-532-5p and IGF1R was analyzed via dual luciferase, RIP and RNA pull-down assays. RESULTS JHDM1D-AS1 was up-regulated during osteogenic differentiation and its silencing inhibited hPDLC osteogenic differentiation. JHDM1D-AS1 worked as a miR-532-5p sponge in hPDLCs. miR-532-5p directly targeted IGF1R to suppress its expression, and miR-532-5p knockdown facilitated osteogenic differentiation of hPDLCs. Overexpression of IGF1R promoted osteogenic differentiation of hPDLCs via activating Notch/HES1 signaling in hPDLCs. CONCLUSION JHDM1D-AS1 promotes osteogenic differentiation of hPDLCs via sponging miR-532-5p to facilitate IGF1R expression and activate Notch/HES1 signaling.
Collapse
Affiliation(s)
- Xiaohuan Zhong
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Huixin Wang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
2
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
3
|
Luo M, Zeng Q, Jiang K, Zhao Y, Long Z, Du Y, Wang K, He G. Estrogen deficiency exacerbates learning and memory deficits associated with glucose metabolism disorder in APP/PS1 double transgenic female mice. Genes Dis 2022; 9:1315-1331. [PMID: 35873026 PMCID: PMC9293702 DOI: 10.1016/j.gendis.2021.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/27/2022] Open
Abstract
Alterations in glucose metabolism occur in the brain in the early stage of Alzheimer's disease (AD), and menopausal women have more severe metabolic dysfunction and are more prone to dementia than men. Although estrogen deficiency-induced changes in glucose metabolism have been previously studied in animal models, their molecular mechanisms in AD remain elusive. To investigate this issue, double transgenic (APP/PS1) female mice were subjected to bilateral ovariectomy at 3 months of age and were sacrificed 1 week, 1 month and 3 months after surgery to simulate early, middle and late postmenopause, respectively. Our analysis demonstrated that estrogen deficiency exacerbates learning and memory deficits in this mouse model of postmenopause. Estrogen deficiency impairs the function of mitochondria in glucose metabolism. It is possible that the occurrence of AD is associated with the aberrant mitochondrial ERβ-mediated IGF-1/IGF-1R/GSK-3β signaling pathway. In this study, we established a potential mechanism for the increased risk of AD in postmenopausal women and proposed a therapeutic target for AD due to postmenopause.
Collapse
Affiliation(s)
- Min Luo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Pathology, Suining Municipal Hospital of TCM, Suining, Sichuan 629000, PR China
| | - Qinghua Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Kai Jiang
- Department of Gastroenterology, Suining Central Hospital, Suining, Sichuan 629000, PR China
| | - Yueyang Zhao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhimin Long
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yexiang Du
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Kejian Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.,Department of Anatomy, Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
4
|
Luo Y, Qiu W, Wu B, Fang F. An Overview of Mesenchymal Stem Cell-based Therapy Mediated by Noncoding RNAs in the Treatment of Neurodegenerative Diseases. Stem Cell Rev Rep 2022; 18:457-473. [PMID: 34347272 DOI: 10.1007/s12015-021-10206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) have become a promising tool for neurorestorative therapy of neurodegenerative diseases (NDDs), which are mainly characterized by the progressive and irreversible loss of neuronal structure and function in the central or peripheral nervous system. Recently, studies have reported that genetic manipulation mediated by noncoding RNAs (ncRNAs) can increase survival and neural regeneration of transplanted MSCs, offering a new strategy for clinical translation. In this review, we summarize the potential role and regulatory mechanism of two major types of ncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), during the neurogenesis of MSCs with gene expression profile analyses. We also overview the realization of MSC-based therapy mediated by ncRNAs in the treatment of spinal cord injury, stroke, Alzheimer's disease and peripheral nerve injury. It is expected that ncRNAs will become promising therapeutic targets for NDD on stem cells, while the underlying mechanisms require further exploration.
Collapse
Affiliation(s)
- Yifei Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen, 518118, People's Republic of China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
5
|
de Oliveira LRS, Machado FSM, Rocha-Dias I, E Magalhães COD, De Sousa RAL, Cassilhas RC. An overview of the molecular and physiological antidepressant mechanisms of physical exercise in animal models of depression. Mol Biol Rep 2022; 49:4965-4975. [PMID: 35092564 DOI: 10.1007/s11033-022-07156-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Depression is a global disease that affects the physical and mental health of people of all ages. Non-pharmacological and unconventional methods of treatment, such as regular physical exercise, have been recommended to treat depression. METHODS Here, we briefly review the literature about the physiological and molecular mechanisms of exercise antidepressants in depressive-like behavior in animal models of depression. RESULTS The main hysiological and molecular mechanisms of physical exercise in depression include blood flow changes in several areas of the brain, increase in brain serotonin synthesis, increase in antioxidant enzymes, increase in serum and brain brain-derived neuro factor (BDNF) levels, decrease in cortisol levels and reduced inflammation in peripheral and brain tissues. Physical exercise also leads to increased activation of the phosphatidylinositol-3-kinase (PI3K), PGC-1α/FNDC5/Irisin pathway, BDNF concentrations (serum and cerebral), extracellular signal-regulated kinase and cAMP-response element binding protein (mainly in neurons of the hippocampus and prefrontal cortex), which together contribute to fight or inhibit the development of depression symptoms. These molecular and physiological mechanisms work in synchrony, further enhancing their effects. CONCLUSION Physical exercise can be used as a safe and effective non-pharmacological treatment in depression.
Collapse
Affiliation(s)
- Lucas Renan Sena de Oliveira
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil.,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | | | - Isabella Rocha-Dias
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil
| | - Ricardo Cardoso Cassilhas
- Department of Physical Education, Federal University of the Valleys of Jequitinhonha and Mucuri (UFVJM), Rodovia MGT 367 - Km 583, nº 5000, Bairro Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil. .,Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil. .,Multicenter Post Graduation Program in Physiological Sciences (PMPGCF), UFVJM, Brazilian Society of Physiology, Diamantina, MG, Brazil. .,Post Graduation Program in Health Science (PPGCS), UFVJM, Diamantina, MG, Brasil.
| |
Collapse
|
6
|
Yan X, Gao Z, Zhou Y, Gao F, Li Q. Expressions of IGF-1R and Ki-67 in breast cancer patients with diabetes mellitus and an analysis of biological characteristics. Pak J Med Sci 2022; 38:281-286. [PMID: 35035440 PMCID: PMC8713229 DOI: 10.12669/pjms.38.1.4718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES There is a cross-link of insulin and insulin-like growth factor-1 (IGF-1) with each other's receptors. The present study was carried out to explore the relationship of Type-2 diabetes mellitus (T2DM) with the occurrence and development of breast cancer by analyzing the expression of IGF-1R and Ki-67, as well as the biological characteristics in breast cancer patients with and without diabetes mellitus. METHODS A total of 102 cases of breast cancer patients with T2DM admitted in Hebei General Hospital from January 2019 to December 2020 were selected and grouped in T2DM group. While the control group included 106 cases of breast cancer patients without diabetes mellitus in the same period. Further comparison was conducted focusing on the general data, clinical stage, tumor histological grade, molecular classification and prognosis, and the expressions of IGF-1R and Ki-67 in breast cancer tissue between groups. RESULTS Compared with control group, patients in T2DM group were elderly and accounted for a larger proportion of post-menopause (p<0.05), yet with no significant difference in body mass and family history (p>0.05). Compared with control group, T2DM group had advanced clinical stage, higher histological grade, and more common molecular type, with statistical differences between groups (p<0.05). Furthermore, there were higher proportions of local recurrence, lymph node metastasis and distant metastasis in T2DM group than those in control group, yet with no statistical significance (p>0.05). While statistical difference was found in the comparison of the 5-year survival rate, which was lower in T2DM group than that in control group (p<0.05). In addition, compared with control group, there were significant increase in both the expressions of IGF-1R and Ki-67 in T2DM group (p<0.05). CONCLUSIONS T2DM may be one of the risk factors affecting the occurrence, development and prognosis of breast cancer, which may decrease the 5-year survival of breast cancer patients. Besides, high expressions of IGF-1R and Ki-67 may be the key factors for poor prognosis of breast cancer patients with diabetes mellitus.
Collapse
Affiliation(s)
- Xiaolu Yan
- Xiaolu Yan, Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Zhe Gao
- Zhe Gao, Department of Endocrinology and Metabolic Diseases, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Ye Zhou
- Ye Zhou, Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Fei Gao
- Fei Gao, Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Qingxia Li
- Qingxia Li, Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
7
|
Atilano ML, Grönke S, Niccoli T, Kempthorne L, Hahn O, Morón-Oset J, Hendrich O, Dyson M, Adams ML, Hull A, Salcher-Konrad MT, Monaghan A, Bictash M, Glaria I, Isaacs AM, Partridge L. Enhanced insulin signalling ameliorates C9orf72 hexanucleotide repeat expansion toxicity in Drosophila. eLife 2021; 10:e58565. [PMID: 33739284 PMCID: PMC8007214 DOI: 10.7554/elife.58565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
G4C2 repeat expansions within the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeats undergo repeat-associated non-ATG translation to generate toxic dipeptide repeat proteins. Here, we show that insulin/IGF signalling is reduced in fly models of C9orf72 repeat expansion using RNA sequencing of adult brain. We further demonstrate that activation of insulin/IGF signalling can mitigate multiple neurodegenerative phenotypes in flies expressing either expanded G4C2 repeats or the toxic dipeptide repeat protein poly-GR. Levels of poly-GR are reduced when components of the insulin/IGF signalling pathway are genetically activated in the diseased flies, suggesting a mechanism of rescue. Modulating insulin signalling in mammalian cells also lowers poly-GR levels. Remarkably, systemic injection of insulin improves the survival of flies expressing G4C2 repeats. Overall, our data suggest that modulation of insulin/IGF signalling could be an effective therapeutic approach against C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Magda L Atilano
- Department of Genetics, Evolution and Environment, Institute of Healthy AgeingLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | | | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy AgeingLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Liam Kempthorne
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
| | - Oliver Hahn
- Max Planck Institute for Biology of AgeingCologneGermany
| | | | | | - Miranda Dyson
- Department of Genetics, Evolution and Environment, Institute of Healthy AgeingLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Mirjam Lisette Adams
- Department of Genetics, Evolution and Environment, Institute of Healthy AgeingLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Alexander Hull
- Department of Genetics, Evolution and Environment, Institute of Healthy AgeingLondonUnited Kingdom
| | - Marie-Therese Salcher-Konrad
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
| | - Amy Monaghan
- Alzheimer's Research United Kingdom UCL Drug Discovery Institute, University College LondonLondonUnited Kingdom
| | - Magda Bictash
- Alzheimer's Research United Kingdom UCL Drug Discovery Institute, University College LondonLondonUnited Kingdom
| | - Idoia Glaria
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy AgeingLondonUnited Kingdom
- Max Planck Institute for Biology of AgeingCologneGermany
| |
Collapse
|
8
|
Martín-Estal I, Castilla-Cortázar I, Castorena-Torres F. The Placenta as a Target for Alcohol During Pregnancy: The Close Relation with IGFs Signaling Pathway. Rev Physiol Biochem Pharmacol 2021; 180:119-153. [PMID: 34159446 DOI: 10.1007/112_2021_58] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alcohol is one of the most consumed drugs in the world, even during pregnancy. Its use is a risk factor for developing adverse outcomes, e.g. fetal death, miscarriage, fetal growth restriction, and premature birth, also resulting in fetal alcohol spectrum disorders. Ethanol metabolism induces an oxidative environment that promotes the oxidation of lipids and proteins, triggers DNA damage, and advocates mitochondrial dysfunction, all of them leading to apoptosis and cellular injury. Several organs are altered due to this harmful behavior, the brain being one of the most affected. Throughout pregnancy, the human placenta is one of the most important organs for women's health and fetal development, as it secretes numerous hormones necessary for a suitable intrauterine environment. However, our understanding of the human placenta is very limited and even more restricted is the knowledge of the impact of toxic substances in its development and fetal growth. So, could ethanol consumption during this period have wounding effects in the placenta, compromising proper fetal organ development? Several studies have demonstrated that alcohol impairs various signaling cascades within G protein-coupled receptors and tyrosine kinase receptors, mainly through its action on insulin and insulin-like growth factor 1 (IGF-1) signaling pathway. This last cascade is involved in cell proliferation, migration, and differentiation and in placentation. This review tries to examine the current knowledge and gaps in our existing understanding of the ethanol effects in insulin/IGFs signaling pathway, which can explain the mechanism to elucidate the adverse actions of ethanol in the maternal-fetal interface of mammals.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | | | | |
Collapse
|
9
|
Zhang H, Liu Y, Cheng L, Ma X, Luo X. Exendin-4 induces a novel extended effect of ischemic tolerance via crosstalk with IGF-1R. Brain Res Bull 2020; 169:145-155. [PMID: 33197537 DOI: 10.1016/j.brainresbull.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 11/15/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4), a drug that has been used in the clinical treatment of type 2 diabetes mellitus, also confers a neuroprotective effect against stroke. Although GLP-1 analogs were reported to induce sustained insulin secretion and glucose tolerance improved after cessation of treatment, no study has revealed whether Ex-4 exerts sustained neuroprotection against stroke and the underlying mechanism after treatment cessation. In this study, mice were pretreated with Ex-4 for 7 days, and middle cerebral artery occlusion (MCAO) was performed on different days after cessation of Ex-4 treatment. Ex-4 ameliorated neurological dysfunction and reduced the infarct volume induced by MCAO. These protective effects lasted for 6 days after the cessation of Ex-4 treatment and were associated with sustained upregulation of PI3K, AKT, mTOR, and HIF-1α levels, as well as HIF-1α downstream genes. Knockdown of GLP-1R or HIF-1α in the brain by short hairpin RNA abolished Ex-4 treatment-mediated neuroprotection. In normal mice, Ex-4 treatment led to instant upregulation of p-PI3K, p-AKT, p-mTOR, and HIF-1α expression levels, which quickly returned to normal after cessation of Ex-4 treatment, while the expression levels of insulin growth factor-1 receptor (IGF-1R) remained high for 6 days after Ex-4 cessation. Additionally, Ex-4 did not directly induce IGF-1 production, which was only induced by MCAO. Ex-4 induces extended cerebral ischemic tolerance. This neuroprotective effect is associated with activation of GLP-1R and upregulation of IGF-1R in the brain, and the latter then activates the PI3K/AKT/mTOR/HIF-1 signaling pathway via binding to IGF-1 secreted from the ischemic brain.
Collapse
Affiliation(s)
- Huinan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Yunhan Liu
- Department of Neurology Impatient, the Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liusiyuan Cheng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China.
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China.
| |
Collapse
|
10
|
Zheng Y, Sun Q, Xu X, Wang W. Novel peptide derived from IGF-2 displays anti-angiogenic activity in vitro and inhibits retinal angiogenesis in a model of oxygen-induced retinopathy. Clin Exp Ophthalmol 2020; 48:1261-1275. [PMID: 33026147 DOI: 10.1111/ceo.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP), a major cause of significant visual morbidity and blindness in preterm infants, is closely related to pathological angiogenesis. The aim of the study is to evaluate the effect of a new 12-aa peptide (named peptide CW-703) from human insulin-like growth factor-2, against angiogenesis in ROP. METHODS In order to evaluate the inhibitory effect of CW-703 on the proliferation, migration, tube formation and apoptosis of human umbilical vein endothelial cells (ScienCell) in vitro, we used MTS assays, a modified Boyden chamber, Matrigel system and TUNEL assays. Effects in vivo were assayed using chorioallantoic membrane assays and oxygen-induced retinopathy (OIR) models in mice. We also performed eletrophysiological and histologic examinations to evaluate the possible toxicity of the peptide. Real-time PCR, ELISA and western blotting were used to elucidate the mechanism of CW-703. RESULTS CW-703 inhibited angiogenesis in vitro by suppressing endothelial cell proliferation, migration and tube formation. CW-703 also prevented angiogenesis in chicken chorioallantoic membrane assays and OIR assays in mice. No evident functional or morphologic abnormalities in neuroretina after CW-703 injection were revealed in electrophysiological tests and histological examinations. Moreover, we elucidated that CW-703 competed for binding to IGF-1R and inhibited angiogenesis by inhibiting IGF-1R/PI3K/AKT activation and downregulating vascular endothelial growth factor expression. CONCLUSION The novel peptide CW-703 may act as an effective inhibitor of ocular pathologic angiogenesis, especially in treating ROP.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Weijun Wang
- Department of Ophthalmology, Shanghai General Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Man J, Cui K, Fu X, Zhang D, Lu Z, Gao Y, Yu L, Li N, Wang J. Donepezil promotes neurogenesis via Src signaling pathway in a rat model of chronic cerebral hypoperfusion. Brain Res 2020; 1736:146782. [PMID: 32184165 DOI: 10.1016/j.brainres.2020.146782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/15/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
Donepezil, a selective acetylcholinesterase (AchE) inhibitor, enhances stroke-induced neurogenesis within subventricular zone (SVZ). Src/Pyk-2 is one of the downstream pathways of acetylcholine receptors (AchRs), and has been shown to participate in the activation of fibroblast growth factor receptor (FGFR)/epidermal growth factor receptor (EGFR) signaling in cancer cells. In this study, we investigated whether donepezil could promote SVZ neurogenesis in chronic cerebral hypoperfusion (CCH) injury via Src signaling pathway. In the bilateral carotid artery occlusion (2VO) rat model, we observed more nestin/5-bromo-2'-deoxyuridine (BrdU)-positive cells and doublecortin (DCX)/BrdU-positive cells in the SVZ than that in the sham group. Further, donepezil obviously improved neurologic function after 2VO, induced the greater number of SVZ proliferative NSCs and neuroblasts, and elevated levels of Src, p-FGFR1, p-EGFR, p-Akt and p-Raf in ipsilateral SVZ. Lastly, Src inhibitor KX-01 abolished the beneficial effects of donepezil in 2VO rats. These results suggest that donepezil could upregulate Src signaling pathway to enhance CCH-induced SVZ neurogenesis.
Collapse
Affiliation(s)
- Jiang Man
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kefei Cui
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojie Fu
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Di Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengfang Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yufeng Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lie Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianping Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Gholamnezhad Z, Boskabady MH, Jahangiri Z. Exercise and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:303-315. [PMID: 32342466 DOI: 10.1007/978-981-15-1792-1_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several experimental and human studies documented the preventive and therapeutic effects of exercise on various diseases as well as the normal physiological function of different systems during aging. The findings of several basic animal studies and clinical investigations identified the advantageous effects of exercise as non-pharmaceutical intervention on dementia and Alzheimer's disease (AD). The main positive effects suggested for exercise are less cognitive and behavioral impairment or decline, development of health-associated conditions (stress, sleep), reduction of dementia risk factors including chronic non-communicable disease (diabetes, cardiovascular disease), increase in neurotrophins, enhancement of brain blood flow, angiogenesis, neurogenesis, synaptogenesis and synaptic plasticity in the brain memory-related region (e.g., hippocampus), and reduction of neuroinflammation and apoptosis. However, regarding the controversial evidence in literature, designing standard clinical and experimental studies to reveal the correlation between physical activity and dementia sign and symptom including biomarker alternation, brain supramolecular and molecular changes, and neuropsychological manifestation is necessary for preparation of effective guidelines and recommendations.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Hossien Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Li M, Zhao C, Xie S, Liu X, Zhao Q, Zhang Z, Gong G. Effects of hypogonadism on brain development during adolescence in girls with Turner syndrome. Hum Brain Mapp 2019; 40:4901-4911. [PMID: 31389646 DOI: 10.1002/hbm.24745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 01/19/2023] Open
Abstract
Gonadal steroids play an important role in brain development, particularly during puberty. Girls with Turner syndrome (TS), a genetic disorder characterized by the absence of all or part of the second X chromosome, mostly present a loss of ovarian function and estrogen deficiency, as well as neuroanatomical abnormalities. However, few studies have attempted to isolate the indirect effects of hormones from the direct genetic effects of X chromosome insufficiency. Brain structural (i.e., gray matter [GM] morphology and white matter [WM] connectivity) and functional phenotypes (i.e., resting-state functional measures) were investigated in 23 adolescent girls with TS using multimodal MRI to assess the role of hypogonadism in brain development in TS. Specifically, all girls with TS were divided into a hormonally subnormal group and an abnormal subgroup according to their serum follicle-stimulating hormone (FSH) levels, with the karyotypes approximately matched between the two groups. Statistical analyses revealed significant effects of the "group-by-age" interaction on GM volume around the left medial orbitofrontal cortex and WM diffusion parameters around the bilateral corticospinal tract, anterior thalamic radiation, left superior longitudinal fasciculus, and cingulum bundle, but no significant "group-by-age" or group differences were observed in resting-state functional measures. Based on these findings, estrogen deficiency has a nontrivial impact on the development of the brain structure during adolescence in girls with TS. Our present study provides novel insights into the mechanism by which hypogonadism influences brain development during adolescence in girls with TS, and highlights the important role of estrogen replacement therapy in treating TS.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiwei Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Qiuling Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
14
|
Yang H, Li K, Liang X, Gu B, Wang L, Gong G, Feng F, You H, Hou B, Gong F, Zhu H, Pan H. Alterations in Cortical Thickness in Young Male Patients With Childhood-Onset Adult Growth Hormone Deficiency: A Morphometric MRI Study. Front Neurosci 2019; 13:1134. [PMID: 31695595 PMCID: PMC6817473 DOI: 10.3389/fnins.2019.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Background The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis plays an important role in brain structure and maintenance of brain function. There is a close correlation between serum GH and IGF1 levels and age-related cognitive function. The effects of childhood-onset growth hormone deficiency (GHD)on brain morphology are underestimated so far. Methods In this cross-sectional study, T1-weighted magnetic resonance imaging was assessed in 17 adult males with childhood-onset GHD and 17 age and gender-matched healthy controls. The cortical thickness was analyzed and compared between the two groups of subjects. Effects of disease status and hormone levels on cortical thickness were also evaluated. Results Although there was no difference in whole brain volume or gray matter volume between the two groups, there was decreased cortical thickness in the parahippocampal gyrus, posterior cingulate gyrus and occipital visual syncortex in the adult growth hormone deficiency (AGHD) group, and increased cortical thickness in a partial area of the frontal lobe, parietal lobe and occipital visual syncortex in AGHD group. Cortical thickness of the posterior cingulum gyrus was prominently associated with FT3 serum levels only in control group after adjusting of IGF-1 levels. Conclusion These results suggest that young adult male patients with childhood-onset GHD have alterations in cortical thickness in different brain lobes/regions.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, The Translational Medicine Center of PUMCH, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kang Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, The Translational Medicine Center of PUMCH, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Bin Gu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Linjie Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, The Translational Medicine Center of PUMCH, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, The Translational Medicine Center of PUMCH, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, The Translational Medicine Center of PUMCH, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, The Translational Medicine Center of PUMCH, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Yang J, Simonneau C, Kilker R, Oakley L, Byrne MD, Nichtova Z, Stefanescu I, Pardeep-Kumar F, Tripathi S, Londin E, Saugier-Veber P, Willard B, Thakur M, Pickup S, Ishikawa H, Schroten H, Smeyne R, Horowitz A. Murine MPDZ-linked hydrocephalus is caused by hyperpermeability of the choroid plexus. EMBO Mol Med 2019; 11:emmm.201809540. [PMID: 30518636 PMCID: PMC6328942 DOI: 10.15252/emmm.201809540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Though congenital hydrocephalus is heritable, it has been linked only to eight genes, one of which is MPDZ. Humans and mice that carry a truncated version of MPDZ incur severe hydrocephalus resulting in acute morbidity and lethality. We show by magnetic resonance imaging that contrast medium penetrates into the brain ventricles of mice carrying a Mpdz loss‐of‐function mutation, whereas none is detected in the ventricles of normal mice, implying that the permeability of the choroid plexus epithelial cell monolayer is abnormally high. Comparative proteomic analysis of the cerebrospinal fluid of normal and hydrocephalic mice revealed up to a 53‐fold increase in protein concentration, suggesting that transcytosis through the choroid plexus epithelial cells of Mpdz KO mice is substantially higher than in normal mice. These conclusions are supported by ultrastructural evidence, and by immunohistochemistry and cytology data. Our results provide a straightforward and concise explanation for the pathophysiology of Mpdz‐linked hydrocephalus.
Collapse
Affiliation(s)
- Junning Yang
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claire Simonneau
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Kilker
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura Oakley
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew D Byrne
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ioana Stefanescu
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fnu Pardeep-Kumar
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sushil Tripathi
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Belinda Willard
- Proteomics Core Facility, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mathew Thakur
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine University of Tsukuba, Tsukuba-City, Ibaraki, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Smeyne
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arie Horowitz
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA .,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Sex determining region Y-box 12 (SOX12) promotes gastric cancer metastasis by upregulating MMP7 and IGF1. Cancer Lett 2019; 452:103-118. [DOI: 10.1016/j.canlet.2019.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/02/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
|
17
|
Loprinzi PD. IGF-1 in exercise-induced enhancement of episodic memory. Acta Physiol (Oxf) 2019; 226:e13154. [PMID: 29938915 DOI: 10.1111/apha.13154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Affiliation(s)
- P. D. Loprinzi
- Exercise Psychology Laboratory Physical Activity Epidemiology Laboratory Department of Health, Exercise Science and Recreation Management The University of Mississippi University Mississippi
| |
Collapse
|
18
|
Boccardi V, Westman E, Pelini L, Lindberg O, Muehlboeck JS, Simmons A, Tarducci R, Floridi P, Chiarini P, Soininen H, Kloszewska I, Tsolaki M, Vellas B, Spenger C, Wahlund LO, Lovestone S, Mecocci P. Differential Associations of IL-4 With Hippocampal Subfields in Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2019; 10:439. [PMID: 30705627 PMCID: PMC6344381 DOI: 10.3389/fnagi.2018.00439] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Background/Aims: We aimed to assess the association between in volumetric measures of hippocampal sub-regions - in healthy older controls (HC), subjects with mild cognitive impairment (MCI) and AD- with circulating levels of IL-4. Methods: From AddNeuroMed Project 113 HC, 101 stable MCI (sMCI), 22 converter MCI (cMCI) and 119 AD were included. Hippocampal subfield volumes were analyzed using Freesurfer 6.0.0 on high-resolution sagittal 3D-T1W MP-RAGE acquisitions. Plasmatic IL-4 was measured using ELISA assay. Results: IL-4 was found to be (a) positively associate with left subiculum volume (β = 0.226, p = 0.037) in sMCI and (b) negatively associate with left subiculum volume (β = -0.253, p = 0.011) and left presubiculum volume (β = -0.257, p = 0.011) in AD. Conclusion: Our results indicate a potential neuroprotective effect of IL-4 on the areas of the hippocampus more vulnerable to aging and neurodegeneration.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Luca Pelini
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Olof Lindberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - J-Sebastian Muehlboeck
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Roberto Tarducci
- Division of Medical Physics, Perugia University Hospital, Perugia, Italy
| | - Piero Floridi
- Division of Neuroradiology, Perugia University Hospital, Perugia, Italy
| | - Pietro Chiarini
- Division of Neuroradiology, Perugia University Hospital, Perugia, Italy
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland - Kuopio University Hospital, Kuopio, Finland
| | - Iwona Kloszewska
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bruno Vellas
- University of Toulouse, INSERM 1027, Gérontopôle, Toulouse, France
| | - Christian Spenger
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Patrizia Mecocci
- Department of Medicine, Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Aboutalebi F, Lachinani L, Khazaei Y, Forouzanfar M, Nasr-Esfahani MH, Ghaedi K, Dormiani K. An efficient method for bacterial production and activity assessment of recombinant human insulin like growth factor 1. Mol Biol Rep 2018; 45:1957-1966. [PMID: 30203241 DOI: 10.1007/s11033-018-4348-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022]
Abstract
Human insulin like growth factor 1 directs physiological roles in cellular proliferation and differentiation process. The protein is considered as an important therapeutic target with clinical significance. In this study, to avoid production of human insulin like growth factor 1 as inclusion body, the thioredoxin was used as a solubilizing fusion tag. The expression of fusion human insulin like growth factor 1 was carried out in E. coli Rosetta-gami by transformation of pET-32b contained functional elements. The evaluation of different conditions involving protein expression including IPTG concentration, temperature and post induction time showed that 0.1 mM IPTG at 34 °C for 4 h was the optimum condition. The isolated fusion protein was purified using nickel affinity purification and digested by entrokinase to produce mature recombinant protein without any additional tag. The accuracy of produced recombinant protein was confirmed by western blot analysis. Biological activity of produced recombinant human insulin like growth factor 1 was determined by its proliferation effects on MCF-7 cells, expansion of bovine granulosa cells and activation of PI3K/Akt signaling pathway in these cells. The present study provides a simple and efficient method for high-level production of soluble, active recombinant human insulin like growth factor 1 in E. coli.
Collapse
Affiliation(s)
- Fatemeh Aboutalebi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, PO Box 816513-1378, Isfahan, Iran
| | - Liana Lachinani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, PO Box 816513-1378, Isfahan, Iran
| | - Yahya Khazaei
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, PO Box 816513-1378, Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, PO Box 816513-1378, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, PO Box 816513-1378, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Biology Department, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, PO Box 816513-1378, Isfahan, Iran.
| |
Collapse
|
20
|
Tissue-Specific Upregulation of Drosophila Insulin Receptor (InR) Mitigates Poly(Q)-Mediated Neurotoxicity by Restoration of Cellular Transcription Machinery. Mol Neurobiol 2018; 56:1310-1329. [DOI: 10.1007/s12035-018-1160-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
|
21
|
Larson TA. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Front Endocrinol (Lausanne) 2018; 9:205. [PMID: 29760681 PMCID: PMC5936772 DOI: 10.3389/fendo.2018.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration.
Collapse
Affiliation(s)
- Tracy A. Larson
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Farzi-Molan A, Babashah S, Bakhshinejad B, Atashi A, Fakhr Taha M. Down-regulation of the non-coding RNA H19 and its derived miR-675 is concomitant with up-regulation of insulin-like growth factor receptor type 1 during neural-like differentiation of human bone marrow mesenchymal stem cells. Cell Biol Int 2018; 42:940-948. [PMID: 29512257 DOI: 10.1002/cbin.10960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/03/2018] [Indexed: 12/23/2022]
Abstract
The differentiation of human bone marrow mesenchymal stem cells (BMSCs) into specific lineages offers new opportunities to use the therapeutic efficiency of these pluripotent cells in regenerative medicine. Multiple lines of evidence have revealed that non-coding RNAs play major roles in the differentiation of BMSCs into neural cells. Here, we applied a cocktail of neural inducing factors (NIFs) to differentiate BMSCs into neural-like cells. Our data demonstrated that during neurogenic induction, BMSCs obtained a neuron-like morphology. Also, the results of gene expression analysis by qRT-PCR showed progressively increasing expression levels of neuron-specific enolase (NSE) as well as microtubule-associated protein 2 (MAP-2) and immunocytochemical staining detected the expression of these neuron-specific markers along differentiated BMSC bodies and cytoplasmic processes, confirming the differentiation of BMSCs into neuronal lineages. We also compared differences in the expression levels of the long non-coding RNA (lncRNA) H19 and H19-derived miR-675 between undifferentiated and neurally differentiated BMSCs and found that during neural differentiation down-regulation of the lncRNA H19/miR-675 axis is concomitant with up-regulation of insulin-like growth factor type-1 (IGF-1R), a well-established target of miR-675 involved in neurogenesis. The findings of the current study provide support for the hypothesis that miR-675 may confer functionality to H19, suggesting a key role for this miRNA in the neural differentiation of BSMCs. However, further investigation is required to gain deeper insights into the biological roles of this miRNA in the complex process of neurogenesis.
Collapse
Affiliation(s)
- Asghar Farzi-Molan
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Babak Bakhshinejad
- Faculty of Biological Sciences, Department of Molecular Genetics, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Amir Atashi
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
23
|
Shohayeb B, Diab M, Ahmed M, Ng DCH. Factors that influence adult neurogenesis as potential therapy. Transl Neurodegener 2018; 7:4. [PMID: 29484176 PMCID: PMC5822640 DOI: 10.1186/s40035-018-0109-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022] Open
Abstract
Adult neurogenesis involves persistent proliferative neuroprogenitor populations that reside within distinct regions of the brain. This phenomenon was first described over 50 years ago and it is now firmly established that new neurons are continually generated in distinct regions of the adult brain. The potential of enhancing the neurogenic process lies in improved brain cognition and neuronal plasticity particularly in the context of neuronal injury and neurodegenerative disorders. In addition, adult neurogenesis might also play a role in mood and affective disorders. The factors that regulate adult neurogenesis have been broadly studied. However, the underlying molecular mechanisms of regulating neurogenesis are still not fully defined. In this review, we will provide critical analysis of our current understanding of the factors and molecular mechanisms that determine neurogenesis. We will further discuss pre-clinical and clinical studies that have investigated the potential of modulating neurogenesis as therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Belal Shohayeb
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| | - Mohamed Diab
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Mazen Ahmed
- 2Faculty of Pharmacy, Pharos University in Alexandria, P.O. Box Sidi Gaber, Alexandria, 21311 Egypt
| | - Dominic Chi Hiung Ng
- 1School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, QLD 4067 Australia
| |
Collapse
|
24
|
Szekiova E, Slovinska L, Blasko J, Plsikova J, Cizkova D. The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation. Neurol Res 2018; 40:258-267. [PMID: 29384015 DOI: 10.1080/01616412.2018.1432266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives In this study, a new approach was used with an in vitro model in which neural cells were exposed to conditioned media from the injured spinal cord (SCI-CM) mimicking a local inflammatory microenvironment . Subsequently, the neuroprotective effect of rat adipose tissue-derived msesenchymal stem cell-conditioned media (ATMSC-CM) was investigated through a cell-free based therapy, which was used to treat cortical neurons and astrocytes under inflammation. Methods Primary cell cultures isolated from postnatal day (P6) Wistar rat brain cortex were exposed to SCI-CM derived from the central lesion, rostral and caudal segments of injured spinal cord. After 48 h incubation, the SCI-CM was replaced and primary cultures were cultivated either in DMEM media alone or in ATMSC-CM for 72 h. The impact of ATMSC-CM on the viability of neurons and astrocytes was assessed using a CyQUANT® Direct Cell Proliferation Assay Kit as well as immunocytochemistry analysis. Results Immunocytochemical analysis revealed significant decrease in the number of MAP2 positive neurons exposed to SCI-CM compared to Control. Protection by ATMSC-CM was associated with increased survival of neurons compared to primary culture cultivated in DMEM media alone. The ATMSC-CM effect on astrocytes was more variable and without any significant impact. Conclusion The results demonstrate that SCI-CM mimicking inflammation can reduce cortical neuron survival, and subsequent exposure to ATMSC-CM can stabilize the neuronal population most likely via released neuroprotective and trophic factors. In addition, astrogliosis was not affected by ATMSC-CM.
Collapse
Affiliation(s)
- Eva Szekiova
- a Institute of Neurobiology , Slovak Academy of Sciences , Kosice , Slovakia
| | - Lucia Slovinska
- a Institute of Neurobiology , Slovak Academy of Sciences , Kosice , Slovakia
| | - Juraj Blasko
- a Institute of Neurobiology , Slovak Academy of Sciences , Kosice , Slovakia
| | - Jana Plsikova
- b Associated Tissue Bank, Faculty of Medicine , P. J. Safarik Univerzity and L. Pasteur University Hospital , Kosice , Slovakia
| | - Dasa Cizkova
- c Institute of Neuroimmunology , Slovak Academy of Sciences , Bratislava , Slovakia.,d Department of Ananatomy, Histology and Physiology , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovakia
| |
Collapse
|
25
|
Vasic V, Schmidt MHH. Resilience and Vulnerability to Pain and Inflammation in the Hippocampus. Int J Mol Sci 2017; 18:ijms18040739. [PMID: 28362320 PMCID: PMC5412324 DOI: 10.3390/ijms18040739] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence demonstrates the importance of hippocampal neurogenesis, a fundamental mechanism of neuroplasticity associated with cognition and emotion, in correlation to neurodegenerative and psychiatric disorders. Neuropsychiatric disorders are often a result of chronic stress or pain followed by inflammation; all these conditions manifest cognitive deficits and impairments in neurogenesis. However, while some individuals are more susceptible to stress, others are able to adapt to new environments via mechanisms of resilience. In light of this emerging field and based on extensive research, the role of neurogenesis is summarized and presented as a potentially powerful therapeutic tool.
Collapse
Affiliation(s)
- Verica Vasic
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), Johannes Gutenberg University, School of Medicine, Mainz 55131, Germany.
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), Johannes Gutenberg University, School of Medicine, Mainz 55131, Germany.
| |
Collapse
|
26
|
Subirós N, Pérez-Saad H, Aldana L, Gibson CL, Borgnakke WS, Garcia-Del-Barco D. Neuroprotective effect of epidermal growth factor plus growth hormone-releasing peptide-6 resembles hypothermia in experimental stroke. Neurol Res 2016; 38:950-958. [PMID: 27665924 DOI: 10.1080/01616412.2016.1235249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Combined therapy with epidermal growth factor (EGF) and growth hormone-releasing peptide 6 (GHRP-6) in stroke models has accumulated evidence of neuroprotective effects from several studies, but needs further support before clinical translation. Comparing EGF + GHRP-6 to hypothermia, a gold neuroprotection standard, may contribute to this purpose. OBJECTIVES The aims of this study were to compare the neuroprotective effects of a combined therapy based on EGF + GHRP-6 with hypothermia in animal models of (a) global ischemia representing myocardial infarction and (b) focal brain ischemia representing ischemic stroke. METHODS (a) Global ischemia was induced in Mongolian gerbils by a 15-min occlusion of both carotid arteries, followed by reperfusion. (b) Focal brain ischemia was achieved by intracerebral injection of endothelin 1 in Wistar rats. In each experiment, three ischemic treatment groups - vehicle, EGF + GHRP-6, and hypothermia - were compared to each other and to a sham-operated control group. End points were survival, neurological scores, and infarct volume. RESULTS (a) In global ischemia, neurological score at 48-72 h, infarct volume, and neuronal density of hippocampal CA1 zone in gerbils treated with EGF + GHRP-6 were similar to the hypothermia-treated group. (b) In focal ischemia, the neurologic score and infarct volume of rats receiving EGF + GHRP-6 were also similar to animals in the hypothermia group. DISCUSSION With hypothermia being a good standard neuroprotectant reference, these results provide additional proof of principle for EGF and GHRP-6 co-administration as a potentially neuroprotective stroke therapy.
Collapse
Affiliation(s)
- N Subirós
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - H Pérez-Saad
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - L Aldana
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - C L Gibson
- b Department of Neuroscience, Psychology and Behaviour , University of Leicester , Leicester , UK
| | - W S Borgnakke
- c Department of Periodontics and Oral Medicine , University of Michigan School of Dentistry , Ann Arbor , MI , USA
| | - D Garcia-Del-Barco
- a Biomedical Research Division , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
27
|
Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci Rep 2016; 6:32595. [PMID: 27586516 PMCID: PMC5009335 DOI: 10.1038/srep32595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways.
Collapse
|
28
|
Teixeira FG, Panchalingam KM, Assunção-Silva R, Serra SC, Mendes-Pinheiro B, Patrício P, Jung S, Anjo SI, Manadas B, Pinto L, Sousa N, Behie LA, Salgado AJ. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation. Sci Rep 2016; 6:27791. [PMID: 27301770 PMCID: PMC4908397 DOI: 10.1038/srep27791] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.
Collapse
Affiliation(s)
- Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Krishna M Panchalingam
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Rita Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Sunghoon Jung
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Sandra I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,Biocant - Biotechnology Innovation Center, Cantanhede, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Leo A Behie
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| |
Collapse
|
29
|
Aniol VA, Tishkina AO, Gulyaeva NV. Neurogenesis and neuroinflammation: The role of Wnt proteins. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712415040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Cassilhas RC, Tufik S, de Mello MT. Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol Life Sci 2016; 73:975-83. [PMID: 26646070 PMCID: PMC11108521 DOI: 10.1007/s00018-015-2102-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
There has long been discussion regarding the positive effects of physical exercise on brain activity. However, physical exercise has only recently begun to receive the attention of the scientific community, with major interest in its effects on the cognitive functions, spatial learning and memory, as a non-drug method of maintaining brain health and treating neurodegenerative and/or psychiatric conditions. In humans, several studies have shown the beneficial effects of aerobic and resistance exercises in adult and geriatric populations. More recently, studies employing animal models have attempted to elucidate the mechanisms underlying neuroplasticity related to physical exercise-induced spatial learning and memory improvement, even under neurodegenerative conditions. In an attempt to clarify these issues, the present review aims to discuss the role of physical exercise in the improvement of spatial learning and memory and the cellular and molecular mechanisms involved in neuroplasticity.
Collapse
Affiliation(s)
- Ricardo C Cassilhas
- Department of Physical Education, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil.
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marco Túlio de Mello
- School of Physical Education, Physiotherapy and Occupational Therapy (EEFFTO), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
31
|
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds. PLoS One 2016; 11:e0148315. [PMID: 26901525 PMCID: PMC4762545 DOI: 10.1371/journal.pone.0148315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/15/2016] [Indexed: 01/01/2023] Open
Abstract
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.
Collapse
|
32
|
Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency. Rev Physiol Biochem Pharmacol 2016; 170:1-35. [DOI: 10.1007/112_2015_5001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Tang R, Gao L, Kawatani M, Chen J, Cao X, Osada H, Xiang L, Qi J. Neuritogenic Activity of Tetradecyl 2,3-Dihydroxybenzoate Is Mediated through the Insulin-Like Growth Factor 1 Receptor/Phosphatidylinositol 3 Kinase/Mitogen-Activated Protein Kinase Signaling Pathway. Mol Pharmacol 2015; 88:326-34. [PMID: 26013540 DOI: 10.1124/mol.115.097758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
Tetradecyl 2,3-dihydroxybenzoate (ABG-001) is a lead compound derived from neuritogenic gentisides. In the present study, we investigated the mechanism by which ABG-001 induces neurite outgrowth in a rat adrenal pheochromocytoma cell line (PC12). Inhibitors of insulin-like growth factor 1 (IGF-1) receptor, phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK) 1/2 significantly decreased ABG-001-induced neurite outgrowth. Western blot analysis revealed that ABG-001 significantly induced phosphorylation of IGF-1 receptor, protein kinase B (Akt), ERK, and cAMP responsive element-binding protein (CREB). These effects were markedly reduced by addition of the corresponding inhibitors. We also found that ABG-001-induced neurite outgrowth was reduced by protein kinase C inhibitor as well as small-interfering RNA against the IGF-1 receptor. Furthermore, like ABG-001, IGF-1 also induced neurite outgrowth of PC12 cells, and low-dose nerve growth factor augmented the observed effects of ABG-001 on neurite outgrowth. These results suggest that ABG-001 targets the IGF-1 receptor and activates PI3K, mitogen-activated protein kinase, and their downstream signaling cascades to induce neurite outgrowth.
Collapse
Affiliation(s)
- Ruiqi Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Lijuan Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Makoto Kawatani
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Jianzhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Xueli Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Hiroyuki Osada
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China (R.T., L.G., J.C., X.C., L.X., J.Q.); and Chemical Biology Core Facility, RIKEN, Advanced Science Institute, Saitama, Japan (M.K., H.O.)
| |
Collapse
|
34
|
Sacilotto N, Castillo J, Riffo-Campos ÁL, Flores JM, Hibbitt O, Wade-Martins R, López C, Rodrigo MI, Franco L, López-Rodas G. Growth Arrest Specific 1 (Gas1) Gene Overexpression in Liver Reduces the In Vivo Progression of Murine Hepatocellular Carcinoma and Partially Restores Gene Expression Levels. PLoS One 2015; 10:e0132477. [PMID: 26161998 PMCID: PMC4498802 DOI: 10.1371/journal.pone.0132477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
The prognosis of hepatocellular carcinoma patients is usually poor, the size of tumors being a limiting factor for surgical treatments. Present results suggest that the overexpression of Gas1 (growth arrest specific 1) gene reduces the size, proliferating activity and malignancy of liver tumors. Mice developing diethylnitrosamine-induced hepatocellular carcinoma were subjected to hydrodynamic gene delivery to overexpress Gas1 in liver. This treatment significantly (p < 0.05) reduced the number of large tumors, while the difference in the total number of lesions was not significant. Moreover, the number of carcinoma foci in the liver and the number of lung metastases were reduced. These results are related with the finding that overexpression of Gas1 in Hepa 1-6 cells arrests cell cycle before S phase, with a significant (p < 0.01) and concomitant reduction in the expression of cyclin E2 gene. In addition, a triangular analysis of microarray data shows that Gas1 overexpression restores the transcription levels of 150 genes whose expression was affected in the diethylnitrosamine-induced tumors, thirteen of which are involved in the hedgehog signaling pathway. Since the in vivo Gas1 gene delivery to livers of mice carrying hepatocellular carcinoma reduces the size and proliferating activity of tumors, partially restoring the transcriptional profile of the liver, the present study opens promising insights towards a therapeutic approach for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
| | - Josefa Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Ángela L. Riffo-Campos
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Juana M. Flores
- Department of Medicine and Animal Surgery, University Complutense, Madrid, Spain
| | - Olivia Hibbitt
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Carlos López
- Department of Cell Biology, University of Valencia, Burjassot, Valencia, Spain
| | - M. Isabel Rodrigo
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
- * E-mail:
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
35
|
Belarbi K, Rosi S. Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci 2013; 7:145. [PMID: 24046730 PMCID: PMC3764370 DOI: 10.3389/fncel.2013.00145] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 11/13/2022] Open
Abstract
Throughout life new neurons are continuously added to the hippocampal circuitry involved with spatial learning and memory. These new cells originate from neural precursors in the subgranular zone of the dentate gyrus, migrate into the granule cell layer, and integrate into neural networks encoding spatial and contextual information. This process can be influenced by several environmental and endogenous factors and is modified in different animal models of neurological disorders. Neuroinflammation, as defined by the presence of activated microglia, is a common key factor to the progression of neurological disorders. Analysis of the literature shows that microglial activation impacts not only the production, but also the migration and the recruitment of new neurons. The impact of microglia on adult-born neurons appears much more multifaceted than ever envisioned before, combining both supportive and detrimental effects that are dependent upon the activation phenotype and the factors being released. The development of strategies aimed to change microglia toward states that promote functional neurogenesis could therefore offer novel therapeutic opportunities against neurological disorders associated with cognitive deficits and neuroinflammation. The present review summarizes the current knowledge on how production, distribution, and recruitment of new neurons into behaviorally relevant neural networks are modified in the inflamed hippocampus.
Collapse
Affiliation(s)
- Karim Belarbi
- Brain and Spinal Injury Center, San Francisco General Hospital, University of California at San Francisco San Francisco, CA, USA ; Department of Physical Therapy and Rehabilitation Science, University of California at San Francisco San Francisco, CA, USA
| | | |
Collapse
|
36
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
37
|
Kumamaru H, Saiwai H, Kubota K, Kobayakawa K, Yokota K, Ohkawa Y, Shiba K, Iwamoto Y, Okada S. Therapeutic Activities of Engrafted Neural Stem/Precursor Cells Are Not Dormant in the Chronically Injured Spinal Cord. Stem Cells 2013; 31:1535-47. [DOI: 10.1002/stem.1404] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 02/06/2023]
|
38
|
Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun 2013; 27:22-32. [PMID: 22985767 PMCID: PMC3518576 DOI: 10.1016/j.bbi.2012.09.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 12/12/2022] Open
Abstract
Before the 1990s it was widely believed that the adult brain was incapable of regenerating neurons. However, it is now established that new neurons are continuously produced in the dentate gyrus of the hippocampus and olfactory bulb throughout life. The functional significance of adult neurogenesis is still unclear, but it is widely believed that the new neurons contribute to learning and memory and/or maintenance of brain regions by replacing dead or dying cells. Many different factors are known to regulate adult neurogenesis including immune responses and signaling molecules released by immune cells in the brain. While immune activation (i.e., enlargement of microglia, release of cytokines) within the brain is commonly viewed as a harmful event, the impact of immune activation on neural function is highly dependent on the form of the immune response as microglia and other immune-reactive cells in the brain can support or disrupt neural processes depending on the phenotype and behavior of the cells. For instance, microglia that express an inflammatory phenotype generally reduce cell proliferation, survival and function of new neurons whereas microglia displaying an alternative protective phenotype support adult neurogenesis. The present review summarizes current understanding of the role of new neurons in cognition and behavior, with an emphasis on the immune system's ability to influence adult hippocampal neurogenesis during both an inflammatory episode and in the healthy uninjured brain. It has been proposed that some of the cognitive deficits associated with inflammation may in part be related to inflammation-induced reductions in adult hippocampal neurogenesis. Elucidating how the immune system contributes to the regulation of adult neurogenesis will help in predicting the impact of immune activation on neural plasticity and potentially facilitate the discovery of treatments to preserve neurogenesis in conditions characterized by chronic inflammation.
Collapse
|
39
|
Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10:224. [PMID: 23148873 PMCID: PMC3543345 DOI: 10.1186/1479-5876-10-224] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.
Collapse
Affiliation(s)
- Juan E Puche
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| | - Inma Castilla-Cortázar
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
40
|
Wu YC, Zhu M, Robertson DM. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells. PLoS One 2012; 7:e42483. [PMID: 22879999 PMCID: PMC3411736 DOI: 10.1371/journal.pone.0042483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background Type I insulin-like growth factor receptor (IGF-1R) and insulin receptor (INSR) are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R). The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. Methodology/Principle Findings IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi) cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. Conclusion/Significance In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic pathways. The development of novel therapeutic strategies designed to target the IGF-1/IGF-1R pathway must take into account the modulatory roles IGF-1R/INSR play in the epithelial cell nucleus.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Meifang Zhu
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Danielle M. Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: .
| |
Collapse
|
41
|
Casado JG, Gomez-Mauricio G, Alvarez V, Mijares J, Tarazona R, Bernad A, Sanchez-Margallo FM. Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Vet Immunol Immunopathol 2012; 147:104-12. [PMID: 22521281 DOI: 10.1016/j.vetimm.2012.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells have demonstrated their potentiality for therapeutic use in treating diseases or repairing damaged tissues. However, in some cases, the results of clinical trials have been disappointing or have not worked out as well as hoped. These disappointing results can be attributed to an inadequate or insufficient preclinical study. For medical and surgical purposes, the similarities between the anatomy of pig and human make this animal an attractive preclinical model. In this sense, for mesenchymal stem cell-based therapy, it is strongly necessary to have well characterized animal-derived mesenchymal stem cell lines to validate preclinical effectiveness of these cells. In this work, porcine mesenchymal stem cells (pMSCs) were isolated from bone marrow, adipose tissue and peripheral blood and compared in terms of differentiation potential, cell surface markers and gene expression. Our results demonstrated that the isolation and in vitro expansion protocols were feasible and effective. The data presented in this work are relevant because they provide an extensive phenotypic characterization; genetic study and differentiation behavior of the most commonly used stem cell lines for clinical practices. These pMSCs are widely available to scientists and could be a valuable tool to evaluate the safety and efficacy of adoptively transferred cells.
Collapse
Affiliation(s)
- Javier G Casado
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson, Caceres, Spain.
| | | | | | | | | | | | | |
Collapse
|
42
|
Insulin-like growth factor signaling regulates the timing of sensory cell differentiation in the mouse cochlea. J Neurosci 2012; 31:18104-18. [PMID: 22159122 DOI: 10.1523/jneurosci.3619-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mammalian auditory sensory epithelium, the organ of Corti, is a highly ordered cellular structure that comprises two types of auditory hair cells and several types of nonsensory supporting cells. During embryogenesis, a stereotyped sequence of cellular and molecular events is required for its development. These processes are assumed to be regulated by multiple growth and transcription factors. However, the majority of these factors have not been identified. One potential regulator of cochlear development is the insulin-like growth factor (IGF) signaling family. To examine the roles of the IGF pathway in inner ear formation, cochleae from Igf1r mutant mice were analyzed. Deletion of Igf1r leads to several changes in inner ear development including a shortened cochlear duct, a decrease in the total number of cochlear hair cells, and defects in the formation of the semicircular canals. In addition, maturation of the cochlear sensory epithelium was delayed at the transition point between cellular proliferation and differentiation. To determine the molecular basis for these defects, inhibition of IGF signaling was replicated pharmacologically in vitro. Results indicated that IGF signaling regulates cochlear length and hair cell number as well as Atoh1 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway. These results demonstrate novel roles for IGF signaling in inner ear development including regulation of vestibular formation, length of the cochlear duct, and the number of cochlear hair cells. The results also provide new insights regarding the pathological processes that underlie auditory defects in the absence of IGF signaling in both humans and mice.
Collapse
|
43
|
Christensen ST, Clement CA, Satir P, Pedersen LB. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 2012; 226:172-84. [PMID: 21956154 PMCID: PMC4294548 DOI: 10.1002/path.3004] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.
Collapse
|
44
|
Webb EA, O'Reilly MA, Clayden JD, Seunarine KK, Chong WK, Dale N, Salt A, Clark CA, Dattani MT. Effect of growth hormone deficiency on brain structure, motor function and cognition. ACTA ACUST UNITED AC 2011; 135:216-27. [PMID: 22120144 DOI: 10.1093/brain/awr305] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and corpus callosum fractional anisotropy with Full-Scale IQ and Processing Speed Index. In patients with isolated growth hormone deficiency, white matter abnormalities in the corpus callosum and corticospinal tract, and reduced thalamic and globus pallidum volumes relate to deficits in cognitive function and motor performance. Follow-up studies that investigate the course of the structural and cognitive deficits on growth hormone treatment are now required to confirm that growth hormone deficiency impacts significantly on brain structure, cognitive function and motor performance.
Collapse
Affiliation(s)
- Emma A Webb
- Developmental Endocrinology Research Group, UCL Institute of Child Health and Department of Endocrinology, Great Ormond Street Hospital for Children, WC1N 1EH London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McNay EC, Recknagel AK. Reprint of: 'Brain insulin signaling: A key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes'. Neurobiol Learn Mem 2011; 96:517-28. [PMID: 22085799 DOI: 10.1016/j.nlm.2011.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding, to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cognitive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience and Center for Neuroscience Research, University at Albany (SUNY), SS399, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
46
|
Regulation of temporal and spatial organization of newborn GnRH neurons by IGF signaling in zebrafish. J Neurosci 2011; 31:11814-24. [PMID: 21849542 DOI: 10.1523/jneurosci.6804-10.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
When and how newborn neurons are organized to form a functional network in the developing brain remains poorly understood. An attractive model is the gonadotropin-releasing hormone (GnRH) neuron system, master regulator of the reproductive axis. Here we show that blockage of IGF signaling, a central growth-promoting signaling pathway, by the induced expression of a dominant-negative form of IGF1 receptor (IGF1R) or specific IGF1R inhibitors delayed the emergence of GnRH2 neurons in the midbrain and GnRH3 neurons in the olfactory bulb region. Blockage of IGF signaling also resulted in an abnormal appearance of GnRH3 neurons outside of the olfactory bulb region, although it did not change the locations of other olfactory neurons, GnRH2 neurons, or brain patterning. This IGF action is developmental stage-dependent because the blockade of IGF signaling in advanced embryos had no such effect. An application of phosphatidylinositol 3-kinase (PI3K) inhibitors phenocopied the IGF signaling deficient embryos, whereas the MAPK inhibitors had no effect, suggesting that this IGF action is mediated through the PI3K pathway. Real-time in vivo imaging studies revealed that the ectopic GnRH3 neurons emerged at the same time as the normal GnRH3 neurons in IGF-deficient embryos. Further experiments suggest that IGF signaling affects the spatial distribution of newborn GnRH3 neurons by influencing neural crest cell migration and/or differentiation. These results suggest that the IGF-IGF1R-PI3K pathway regulates the precise temporal and spatial organization of GnRH neurons in zebrafish and provides new insights into the regulation of GnRH neuron development.
Collapse
|
47
|
McNay EC, Recknagel AK. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 2011; 96:432-42. [PMID: 21907815 DOI: 10.1016/j.nlm.2011.08.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/09/2011] [Accepted: 08/12/2011] [Indexed: 12/16/2022]
Abstract
Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding, to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cognitive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience and Center for Neuroscience Research, University at Albany (SUNY), SS399, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
48
|
Bielen A, Perryman L, Box GM, Valenti M, de Haven Brandon A, Martins V, Jury A, Popov S, Gowan S, Jeay S, Raynaud FI, Hofmann F, Hargrave D, Eccles SA, Jones C. Enhanced efficacy of IGF1R inhibition in pediatric glioblastoma by combinatorial targeting of PDGFRα/β. Mol Cancer Ther 2011; 10:1407-18. [PMID: 21659463 PMCID: PMC3160488 DOI: 10.1158/1535-7163.mct-11-0205] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pediatric glioblastoma (pGBM), although rare, is one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. We have identified IGF1R to be a potential therapeutic target in pGBM due to gene amplification and high levels of IGF2 expression in some tumor samples, as well as constitutive receptor activation in pGBM cell lines. To evaluate the therapeutic potential of strategies targeting the receptor, we have carried out in vitro and in vivo preclinical studies using the specific IGF1R inhibitor NVP-AEW541. A modest inhibitory effect was seen in vitro, with GI(50) values of 5 to 6 μmol/L, and concurrent inhibition of receptor phosphorylation. Specific targeting of IGF1R with short interfering RNA decreased cell viability, diminished downstream signaling through phosphoinositide 3-kinase (PI3K), and induced G(1) arrest, effects mimicked by NVP-AEW541, both in the absence and presence of IGF2. Hallmarks of PI3K inhibition were observed after treatment with NVP-AEW541 by expression profiling and Western blot analysis. Phospho-receptor tyrosine kinase (RTK) arrays showed phosphorylation of platelet-derived growth factor receptor (PDGFR) α/β in pGBM cells, suggesting coactivation of an alternative RTK pathway. Treatment of KNS42 with the PDGFR inhibitor imatinib showed additional effects targeting the mitogen-activated protein kinase pathway, and cotreatment of the PDGFR inhibitor imatinib with NVP-AEW541 resulted in a highly synergistic interaction in vitro and increased efficacy after 14 days therapy in vivo compared with either agent alone. These data provide evidence that inhibition of IGF1R, in combination with other targeted agents, may be a useful and novel therapeutic strategy in pGBM.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Autophagy/drug effects
- Cell Line, Tumor
- Child
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Nude
- Neoplasm Staging
- Phosphatidylinositol 3-Kinases/metabolism
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Pyrroles/chemistry
- Pyrroles/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Lara Perryman
- Paediatric Oncology, Institute of Cancer Research, Sutton, UK
| | - Gary M. Box
- Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Sutton, UK
| | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Sutton, UK
| | | | - Vanessa Martins
- Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Sutton, UK
| | - Alexa Jury
- Paediatric Oncology, Institute of Cancer Research, Sutton, UK
| | - Sergey Popov
- Paediatric Oncology, Institute of Cancer Research, Sutton, UK
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Sutton, UK
| | | | - Florence I. Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Sutton, UK
| | | | | | - Suzanne A. Eccles
- Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Sutton, UK
| | - Chris Jones
- Paediatric Oncology, Institute of Cancer Research, Sutton, UK
- Paediatric Oncology, Royal Marsden Hospital, Sutton, UK
| |
Collapse
|
49
|
Annenkov A, Rigby A, Amor S, Zhou D, Yousaf N, Hemmer B, Chernajovsky Y. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1428-37. [PMID: 21600935 DOI: 10.1016/j.bbamcr.2011.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/24/2011] [Accepted: 04/25/2011] [Indexed: 11/24/2022]
Abstract
In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Ables JL, DeCarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 2010; 30:10484-92. [PMID: 20685991 PMCID: PMC2935844 DOI: 10.1523/jneurosci.4721-09.2010] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/24/2010] [Accepted: 05/24/2010] [Indexed: 12/11/2022] Open
Abstract
Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreER(T2)/R26R-YFP/Notch1(loxP/loxP) [Notch1inducible knock-out (iKO)] mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild-type (WT) mice (nestin-CreER(T2)/R26R-YFP/Notch1(w/w)) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons. Compared with WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells 13 and 30 d post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 d post-TAM. Significantly fewer YFP+ Type-1 NSCs and transiently amplifying progenitors (TAPs) resulted in generation of fewer YFP+ granule neurons in Notch1 iKO mice. Strikingly, 30 d of running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable given the persistent deficits in the Type-1 NSC and TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch- and Type-1 NSC-independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1 NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Zhengliang Gao
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Don C. Cooper
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, Colorado 80309, and
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Institut Suisse de Recherche Experimentale sur le Cancer, 1066 Epalinges, Switzerland
| | - Jenny Hsieh
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|