1
|
Refat MS, Bayazeed A, Katouah H, Shah R, Morad M, Abualnaja M, Alsaigh S, Saad F, El-Metwaly N. In-silico studies for kinetin hormone and its alkaline earth metal ion complexes as anti-aging cosmetics; synthesis, characterization and ability for controlling collagen-inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Computational and spectroscopic analysis of interaction between food colorant citrus red 2 and human serum albumin. Sci Rep 2019; 9:1615. [PMID: 30733529 PMCID: PMC6367341 DOI: 10.1038/s41598-018-38240-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
The main aim of this work was to gain insight into the binding properties between a food colorant, citrus red 2 (CR), and human serum albumin (HSA), which is the predominant protein in blood plasma. Here, computer simulations and multiple spectroscopies were applied to predict and characterize the interaction between CR and HSA. Docking and molecular dynamics presented a stable binding configuration with low fluctuations. Fluorescence spectroscopy and lifetime results suggested that the CR–HSA combination undergoes static quenching mechanism with binding constant of 105 L/mol. Displacement analysis showed the binding of CR at site I of HSA, which agrees with the docking results. The binding process occured spontaneously and was mainly driven by electrostatic interactions. Synchronous fluorescence and circular dichroism measurements demonstrate the changes in the microenvironment residues and α-helix contents of HSA induced by CR. The computational and experimental techniques are complementary to clearly understand the food colorant transportation and bioaccumulative toxicity in the human body.
Collapse
|
3
|
Huang H, Zhang G, Zhou Y, Lin C, Chen S, Lin Y, Mai S, Huang Z. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Front Chem 2018; 6:138. [PMID: 29868550 PMCID: PMC5954125 DOI: 10.3389/fchem.2018.00138] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Guigui Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Yuquan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Chenru Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Suling Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Yutong Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Shangkang Mai
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| |
Collapse
|
4
|
Negi A, Bhandari N, Shyamlal BRK, Chaudhary S. Inverse docking based screening and identification of protein targets for Cassiarin alkaloids against Plasmodium falciparum. Saudi Pharm J 2018; 26:546-567. [PMID: 29844728 PMCID: PMC5961758 DOI: 10.1016/j.jsps.2018.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Various reports have shown Cassiarin alkaloids, selective in vitro activities against various strains of Plasmodium falciparum with low cytotoxicity, which indicates their possible candidature as antimalarial drug. However, poor recognition of their protein targets and molecular binding behaviour, certainly limits their exploration as antimalarial drug candidature. To address this, we utilises inverse screening, based on three different docking methodologies in order to find their most putative protein targets. In our study, we screened 1047 protein structures from protein data bank, which belongs to 147 different proteins. Our investigation identified 16 protein targets for Cassiarins. In few cases of identified protein targets, the binding site was poorly studied, which encouraged us to perform comparative sequence and structural studies with their homologous proteins, like as in case of Kelch motif associated protein, Armadillo repeats only protein and Methionine aminopeptidase 1b. In our study, we also found Tryptophanyl-tRNA synthetase and 1-Deoxy-D-Xylose-5-phosphate reductoisomerase proteins are the most common targets for Cassiarins.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland, University Road, Galway H91 TK33, Ireland
| | - Nitisha Bhandari
- School of Biotechnology, Graphic Era University, Dehradun, Bell Road, Society Area, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Bharti Rajesh Kumar Shyamlal
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| |
Collapse
|
5
|
Ravikumar B, Aittokallio T. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery. Expert Opin Drug Discov 2017; 13:179-192. [DOI: 10.1080/17460441.2018.1413089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Balaguru Ravikumar
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Structural evidence of quercetin multi-target bioactivity: A reverse virtual screening strategy. Eur J Pharm Sci 2017. [PMID: 28636950 DOI: 10.1016/j.ejps.2017.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitous flavonoid quercetin is broadly recognized for showing diverse biological and health-promoting effects, such as anti-cancer, anti-inflammatory and cytoprotective activities. The therapeutic potential of quercetin and similar compounds for preventing such diverse oxidative stress-related pathologies has been generally attributed to their direct antioxidant properties. Nevertheless, accumulated evidence indicates that quercetin is also able to interact with multiple cellular targets influencing the activity of diverse signaling pathways. Even though there are a number of well-established protein targets such as phosphatidylinositol 3 kinase and xanthine oxidase, there remains a lack of a comprehensive knowledge of the potential mechanisms of action of quercetin and its target space. In the present work we adopted a reverse screening strategy based on ligand similarity (SHAFTS) and target structure (idTarget, LIBRA) resulting in a set of predicted protein target candidates. Furthermore, using this method we corroborated a broad array of previously experimentally tested candidates among the predicted targets, supporting the suitability of this screening approach. Notably, all of the predicted target candidates belonged to two main protein families, protein kinases and poly [ADP-ribose] polymerases. They also included key proteins involved at different points within the same signaling pathways or within interconnected signaling pathways, supporting a pleiotropic, multilevel and potentially synergistic mechanism of action of quercetin. In this context we highlight the value of quercetin's broad target profile for its therapeutic potential in diseases like inflammation, neurodegeneration and cancer.
Collapse
|
7
|
Chaudhari R, Tan Z, Huang B, Zhang S. Computational polypharmacology: a new paradigm for drug discovery. Expert Opin Drug Discov 2017; 12:279-291. [PMID: 28067061 PMCID: PMC7241838 DOI: 10.1080/17460441.2017.1280024] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Over the past couple of years, the cost of drug development has sharply increased along with the high rate of clinical trial failures. Such increase in expenses is partially due to the inability of the "one drug - one target" approach to predict drug side effects and toxicities. To tackle this issue, an alternative approach, known as polypharmacology, is being adopted to study small molecule interactions with multiple targets. Apart from developing more potent and effective drugs, this approach allows for studies of off-target activities and the facilitation of drug repositioning. Although exhaustive polypharmacology studies in-vitro or in-vivo are not practical, computational methods of predicting unknown targets or side effects are being developed. Areas covered: This article describes various computational approaches that have been developed to study polypharmacology profiles of small molecules. It also provides a brief description of the algorithms used in these state-of-the-art methods. Expert opinion: Recent success in computational prediction of multi-targeting drugs has established polypharmacology as a promising alternative approach to tackle some of the daunting complications in drug discovery. This will not only help discover more effective agents, but also present tremendous opportunities to study novel target pharmacology and facilitate drug repositioning efforts in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rajan Chaudhari
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zhi Tan
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Beibei Huang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
8
|
Lee A, Lee K, Kim D. Using reverse docking for target identification and its applications for drug discovery. Expert Opin Drug Discov 2016; 11:707-15. [PMID: 27186904 DOI: 10.1080/17460441.2016.1190706] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In contrast to traditional molecular docking, inverse or reverse docking is used for identifying receptors for a given ligand among a large number of receptors. Reverse docking can be used to discover new targets for existing drugs and natural compounds, explain polypharmacology and the molecular mechanism of a substance, find alternative indications of drugs through drug repositioning, and detecting adverse drug reactions and drug toxicity. AREAS COVERED In this review, the authors examine how reverse docking methods have evolved over the past fifteen years and how they have been used for target identification and related applications for drug discovery. They discuss various aspects of target databases, reverse docking tools and servers. EXPERT OPINION There are several issues related to reverse docking methods such as target structure dataset construction, computational efficiency, how to include receptor flexibility, and most importantly, how to properly normalize the docking scores. In order for reverse docking to become a truly useful tool for the drug discovery, these issues need to be adequately resolved.
Collapse
Affiliation(s)
- Aeri Lee
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| | - Kyoungyeul Lee
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| | - Dongsup Kim
- a Department of Bio and Brain Engineering , KAIST , Daejeon , South Korea
| |
Collapse
|
9
|
Tan Z, Chaudhai R, Zhang S. Polypharmacology in Drug Development: A Minireview of Current Technologies. ChemMedChem 2016; 11:1211-8. [PMID: 27154144 DOI: 10.1002/cmdc.201600067] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Indexed: 01/09/2023]
Abstract
Polypharmacology, the process in which a single drug is able to bind to multiple targets specifically and simultaneously, is an emerging paradigm in drug development. The potency of a given drug can be increased through the engagement of multiple targets involved in a certain disease. Polypharmacology may also help identify novel applications of existing drugs through drug repositioning. However, many problems and challenges remain in this field. Rather than covering all aspects of polypharmacology, this Minireview is focused primarily on recently reported techniques, from bioinformatics technologies to cheminformatics approaches as well as text-mining-based methods, all of which have made significant contributions to the research of polypharmacology.
Collapse
Affiliation(s)
- Zhi Tan
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Rajan Chaudhai
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Dai SX, Li WX, Li GH, Huang JF. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin. PeerJ 2016; 4:e1791. [PMID: 26989626 PMCID: PMC4793309 DOI: 10.7717/peerj.1791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view.
Collapse
Affiliation(s)
- Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China
- Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, Yunnan, China
| |
Collapse
|