1
|
Li H, Hu X, Zhang Y, Hou W, Wang W, Sun H. Relationship between dietary energy and macronutrient intake at dinner versus breakfast and biological aging and premature mortality: Assessment of 2003-2014 National Health and Nutrition Examination Survey participants. J Affect Disord 2025; 380:466-473. [PMID: 40154808 DOI: 10.1016/j.jad.2025.03.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The impact of dietary patterns on health and lifespan is well-established, yet the effects of meal timing on the aging process and risk of premature death remain unclear. This study aimed to investigate the association between the difference in energy and macronutrient intake at dinner versus breakfast and the risk of premature mortality and biological aging. METHODS Utilizing data from the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2014, a cohort of 27,261 adults was examined. Dietary data were collected through 24-h dietary recalls, and Cox proportional hazards models and binary logistic regression models were used to assess the risk of premature death and indicators of biological aging. RESULTS Individuals with higher energy and protein intake at dinner compared to breakfast exhibited an increased risk of premature death and higher biological aging indicators. Isocaloric substitution of energy and macronutrients from breakfast to dinner significantly increased the risk of aging. CONCLUSION The difference in energy and macronutrient intake at dinner versus breakfast is closely associated with the risk of premature death and biological aging. The findings underscore the potential impact of meal timing on metabolic health and lifespan extension.
Collapse
Affiliation(s)
- Hui Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Xierong Hu
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yue Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Wanying Hou
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Weiqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Hongru Sun
- Department of Epidemiology, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
2
|
Levy JL, Mirek ET, Rodriguez EM, Tolentino MJ, Zalma BA, Roepke TA, Wek RC, Cao R, Anthony TG. GCN2 drives diurnal patterns in the hepatic integrated stress response and maintains circadian rhythms in whole body metabolism during amino acid insufficiency. Am J Physiol Endocrinol Metab 2024; 327:E563-E576. [PMID: 39196798 PMCID: PMC11482268 DOI: 10.1152/ajpendo.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Disruptions in circadian rhythms are associated with an increased risk of developing metabolic diseases. General control nonderepressible 2 (GCN2), a primary sensor of amino acid insufficiency and activator of the integrated stress response (ISR), has emerged as a conserved regulator of the circadian clock in multiple organisms. The objective of this study was to examine diurnal patterns in hepatic ISR activation in the liver and whole body rhythms in metabolism. We hypothesized that GCN2 activation cues hepatic ISR signaling over a natural 24-h feeding-fasting cycle. To address our objective, wild-type (WT) and whole body Gcn2 knockout (GCN2 KO) mice were housed in metabolic cages and provided free access to either a control or leucine-devoid diet (LeuD) for 8 days in total darkness. On the last day, blood and livers were collected at CT3 (CT = circadian time) and CT15. In livers of WT mice, GCN2 phosphorylation followed a diurnal pattern that was guided by intracellular branched-chain amino acid concentrations (r2 = 0.93). Feeding LeuD to WT mice increased hepatic ISR activation at CT15 only. Diurnal oscillations in hepatic ISR signaling, the hepatic transcriptome including lipid metabolic genes, and triglyceride concentrations were substantially reduced or absent in GCN2 KO mice. Furthermore, mice lacking GCN2 were unable to maintain circadian rhythms in whole body energy expenditure, respiratory exchange ratio, and physical activity when fed LeuD. In conclusion, GCN2 activation functions to maintain diurnal ISR activation in the liver and has a vital role in the mechanisms by which nutrient stress affects whole body metabolism.NEW & NOTEWORTHY This work reveals that the eIF2 kinase GCN2 functions to support diurnal patterns in the hepatic integrated stress response during natural feeding and is necessary to maintain circadian rhythms in energy expenditure, respiratory exchange ratio, and physical activity during amino acid stress.
Collapse
Affiliation(s)
- Jordan L Levy
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Emily T Mirek
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Esther M Rodriguez
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Maria J Tolentino
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Brian A Zalma
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| |
Collapse
|
3
|
Liu L, Liu L, Deng S, Zou L, He Y, Zhu X, Li H, Hu Y, Chu W, Wang X. Circadian Rhythm Alteration of the Core Clock Genes and the Lipid Metabolism Genes Induced by High-Fat Diet (HFD) in the Liver Tissue of the Chinese Soft-Shelled Turtle ( Trionyx sinensis). Genes (Basel) 2024; 15:157. [PMID: 38397147 PMCID: PMC10888015 DOI: 10.3390/genes15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their rich nutritional and medicinal value, Chinese soft-shelled turtles (Trionyx sinensis) are very popular among the Chinese people. In the study, we aimed to investigate the influence of an HFD on the daily expression of both the core clock genes and the lipid metabolism genes in the liver tissue of the turtles. The two diets were formulated with 7.98% lipid (the CON group) and 13.86% lipid (the HFD group) to feed 180 juvenile turtles, which were randomly divided into two groups with three replicates per group and 30 turtles in each replicate for six weeks, and the diet experiment was administrated with a photophase regimen of a 24 h light/dark (12L:12D) cycle. At the end of the experiment, the liver tissue samples were collected from nine turtles per group every 3 h (zeitgeber time: ZT 0, 3, 6, 9, 12, 15, 18, 21 and 24) for 24 h to investigate the daily expression and correlation analysis of these genes. The results showed that 11 core clock genes [i.e., circadian locomotor output cycles kaput (Clock), brain and muscle arnt-like protein 1 and 2 (Bmal1/2), timeless (Tim), cryptochrome 1 (Cry2), period2 (Per2), nuclear factor IL-3 gene (Nfil3), nuclear receptor subfamily 1, treatment D, member 1 and 2 (Nr1d1/2) and retinoic acid related orphan receptor α/β/γ β and γ (Rorβ/γ)] exhibited circadian oscillation, but 6 genes did not, including neuronal PAS domain protein 2 (Npas2), Per1, Cry1, basic helix-loop-helix family, member E40 (Bhlhe40), Rorα and D-binding protein (Dbp), and 16 lipid metabolism genes including fatty acid synthase (Fas), diacylglycerol acyltransferase 1 (Dgat1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), Low-density lipoprotein receptor-related protein 1-like (Ldlr1), Lipin 1 (Lipin1), Carnitine palmitoyltransferase 1A (Cpt1a), Peroxisome proliferator activation receptor α, β and γ (Pparα/β/γ), Sirtuin 1 (Sirt1), Apoa (Apoa1), Apolipoprotein B (Apob), Pyruvate Dehydrogenase kinase 4 (Pdk4), Acyl-CoA synthase long-chain1 (Acsl1), Liver X receptors α (Lxrα) and Retinoid X receptor, α (Rxra) also demonstrated circadian oscillations, but 2 genes did not, Scd and Acaca, in the liver tissues of the CON group. However, in the HFD group, the circadian rhythms' expressional patterns were disrupted for the eight core clock genes, Clock, Cry2, Per2, Nfil3, Nr1d1/2 and Rorβ/γ, and the peak expression of Bmal1/2 and Tim showed delayed or advanced phases. Furthermore, four genes (Cry1, Per1, Dbp and Rorα) displayed no diurnal rhythm in the CON group; instead, significant circadian rhythms appeared in the HFD group. Meanwhile, the HFD disrupted the circadian rhythm expressions of seven fat metabolism genes (Fas, Cpt1a, Sirt1, Apoa1, Apob, Pdk4 and Acsl1). Meanwhile, the other nine genes in the HFD group also showed advanced or delayed expression peaks compared to the CON group. Most importantly of all, there were remarkably positive or negative correlations between the core clock genes and the lipid metabolism genes, and their correlation relationships were altered by the HFD. To sum up, circadian rhythm alterations of the core clock genes and the lipid metabolism genes were induced by the high-fat diet (HFD) in the liver tissues of T. sinensis. This result provides experimental and theoretical data for the mass breeding and production of T. sinensis in our country.
Collapse
Affiliation(s)
- Li Liu
- School of Medical Technology, Shaoyang University, Shaoyang 422000, China;
| | - Lingli Liu
- Fisheries Research Institute of Hunan Province, Changsha 410153, China; (L.L.); (S.D.)
| | - Shiming Deng
- Fisheries Research Institute of Hunan Province, Changsha 410153, China; (L.L.); (S.D.)
| | - Li Zou
- Fisheries Research Institute of Hunan Province, Changsha 410153, China; (L.L.); (S.D.)
| | - Yong He
- Fisheries Research Institute of Hunan Province, Changsha 410153, China; (L.L.); (S.D.)
| | - Xin Zhu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410003, China (H.L.)
| | - Honghui Li
- College of Biological and Chemical Engineering, Changsha University, Changsha 410003, China (H.L.)
| | - Yazhou Hu
- Fisheries College, Hunan Agriculture University, Changsha 410128, China;
| | - Wuying Chu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410003, China (H.L.)
| | - Xiaoqing Wang
- Fisheries College, Hunan Agriculture University, Changsha 410128, China;
| |
Collapse
|
4
|
Zhu X, Hou Q, Zhang L, Wang D, Tian Z, Liu Y, Wang Y, Li Y, Jiang H. Isorhynchophylline improves lipid metabolism disorder by mediating a circadian rhythm gene Bmal1 in spontaneously hypertensive rat. Phytother Res 2023; 37:5991-6005. [PMID: 37752617 DOI: 10.1002/ptr.8015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Hypertension is a progressive metabolic disease characterized by circadian regulation of lipid metabolism disorder. Identifying specific lipid components and maintaining circadian homeostasis of lipid metabolism might be a promising therapeutic strategy for hypertension. Isorhynchophylline (IRP) can regulate lipid metabolism; however, the underlying mechanism of IRP in improving lipid metabolism rhythm disorder is still unclear. The lipid circadian biomarkers and abnormal metabolic pathways intervened by IRP were investigated using diurnal lipidomic research methods. The 24-h circadian changes in mRNA and protein expression levels of circadian genes, including Bmal1, Clock, Cry1, Cry2, Per1, and Per2, and lipid metabolism-related factors (PPARα and LPL) were determined using RT-PCR and western blot analyses, respectively. The underlying mechanisms were intensively investigated by inhibiting Bmal1. Molecular docking and drug affinity responsive target stability analyses were performed to assess the binding affinity of IRP and Bmal1. IRP treatment could effectively improve 24-h blood pressure, ameliorate the lipid metabolic rhythm disorder, reverse the expression levels of circadian rhythm genes, and regulate lipid metabolism-related genes (PPARα and LPL) by mediating Bmal1. This study highlighted the potential effects of IRP in maintaining the circadian homeostasis of lipid metabolism and the treatment of hypertension.
Collapse
Affiliation(s)
- Xialin Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Qingqing Hou
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling Zhang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuecheng Liu
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Yu Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
6
|
Li X, Han T, Sun X, Chen Y, Xu J, Ma Y, Hou W, Sun C. Association of meal timing of energy, macronutrients and foods with hypercholesterolaemia in the US adults. Br J Nutr 2023; 130:304-311. [PMID: 36597806 DOI: 10.1017/s0007114522003257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Few studies examined the association of energy, macronutrients and food consumption at dinner v. breakfast with hypercholesterolaemia. A total of 27 911 participants from the National Health and Nutrition Examination Survey (2003-2016) were included in the cross-sectional study. Energy, macronutrients and food consumption at breakfast, dinner and the difference at dinner v. breakfast (Δratio) were calculated. Multiple logistic regression models and substitution effects of foods at dinner with breakfast were also performed. After adjustment for potential covariates, compared with the lowest quintile, participants in the highest quintile of Δratio in terms of energy had a higher risk of prevalent hypercholesterolaemia (ORΔratio of energy 1·16, 95 % CI (1·01, 1·33)) mainly due to Δratio of low-quality carbohydrates and plant protein (ORΔratio of low-quality carbohydrates 1·19; 95 % CI (1·05, 1·35)); ORΔratio of plant protein 1·13; 95 % CI (1·01, 1·28)). ΔAdded sugars and Δnuts were associated with hypercholesterolaemia (ORΔadded sugars 1·01; 95 % CI (1·00, 1·02)); ORΔnuts 1·08; 95 % CI (1·01, 1·16)). Furthermore, the substitution of added sugars, nuts and processed meat at dinner with breakfast could reduce the OR of hypercholesterolaemia. This study indicated that among US adults, overconsumption of energy, macronutrients including low-quality carbohydrates and plant protein at dinner than breakfast was significantly associated with a higher risk of prevalent hypercholesterolaemia. The replacing of added sugar, nuts and processed meat at dinner with breakfast reduced the risk of prevalent hypercholesterolaemia. This study emphasised the importance of meal timing in the prevention of hypercholesterolaemia.
Collapse
Affiliation(s)
- Xiangning Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xinyi Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yunyan Chen
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jiaxu Xu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yifan Ma
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Wanying Hou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, People's Republic of China
| |
Collapse
|
7
|
Abstract
Circadian rhythms are biological systems that synchronize cellular circadian oscillators with the organism's daily feeding-fasting or rest-activity cycles in mammals. Circadian rhythms regulate nutrient absorption and utilization at the cellular level and are closely related to obesity and metabolic disorders. Bile acids are important modulators that facilitate nutrient absorption and regulate energy metabolism. Here, we provide an overview of the current connections and future perspectives between the circadian clock and bile acid metabolism as well as related metabolic diseases. Feeding and fasting cycles influence bile acid pool size and composition, and bile acid signaling can respond to acute lipid and glucose utilization and mediate energy balance. Disruption of circadian rhythms such as shift work, irregular diet, and gene mutations can contribute to altered bile acid metabolism and heighten obesity risk. High-fat diets, alcohol, and gene mutations related to bile acid signaling result in desynchronized circadian rhythms. Gut microbiome also plays a role in connecting circadian rhythms with bile acid metabolism. The underlying mechanism of how circadian rhythms interact with bile acid metabolism has not been fully explored. Sustaining bile acid homeostasis based on circadian rhythms may be a potential therapy to alleviate metabolic disturbance.
Collapse
Affiliation(s)
- Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
8
|
Szmyd B, Rogut M, Białasiewicz P, Gabryelska A. The impact of glucocorticoids and statins on sleep quality. Sleep Med Rev 2020; 55:101380. [PMID: 33010620 DOI: 10.1016/j.smrv.2020.101380] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Glucocorticoids and statins are the foundation of lifelong therapies and as such, may generate a variety of side effects. Among these, sleep impairments are one of the least explored and, simultaneously, majorly underestimated in clinical practice. Based on the available evidence, we have concluded that glucocorticoid action on the suprachiasmatic nucleus (SCN) that drives sleep disturbances is dual in nature. It involves both serotonin depletion and reduced arginine vasopressin signalling in the SCN. The former seems to involve activation of glucocorticoid receptors in the dorsal raphe, whereas the latter likely results from changes in glucose serum levels affecting the SCN, among other blood-borne factors which are yet to be discovered. Literature remains inconclusive when it comes to statins. Their diverse potential to cross the blood-brain barrier is considered the key factor determining statins' capability to evoke sleep impairments. Concurrently, an effect similar to that produced by steroids occurs - alteration in serum levels of blood-borne factors, such as glucose, which is a likely cause of statin-induced sleep disturbances.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| | - Magdalena Rogut
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland.
| |
Collapse
|
9
|
Han T, Gao J, Wang L, Li C, Qi L, Sun C, Li Y. The Association of Energy and Macronutrient Intake at Dinner Versus Breakfast With Disease-Specific and All-Cause Mortality Among People With Diabetes: The U.S. National Health and Nutrition Examination Survey, 2003-2014. Diabetes Care 2020; 43:1442-1448. [PMID: 32354697 DOI: 10.2337/dc19-2289] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/04/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study aims to evaluate the association of energy and macronutrient intake at dinner versus breakfast with disease-specific and all-cause mortality in people with diabetes. RESEARCH DESIGN AND METHODS A total of 4,699 people with diabetes who enrolled in the National Health and Nutrition Examination Survey from 2003 to 2014 were recruited for this study. Energy and macronutrient intake was measured by a 24-h dietary recall. The differences (Δ) in energy and macronutrient intake between dinner and breakfast (Δ = dinner - breakfast) were categorized into quintiles. Death information was obtained from the National Death Index until 2015. Cox proportional hazards regression models were developed to evaluate the survival relationship between Δ and diabetes, cardiovascular disease (CVD), and all-cause mortality. RESULTS Among the 4,699 participants, 913 deaths, including 269 deaths due to diabetes and 314 deaths due to CVD, were documented. After adjustment for potential confounders, compared with participants in the lowest quintile of Δ in terms of total energy and protein, participants in the highest quintile were more likely to die due to diabetes (hazard ratio [HR]Δenergy 1.92, 99% CI 1.08-3.42; HRΔprotein 1.92, 99% CI 1.06-3.49) and CVD (HRΔenergy 1.69, 99% CI 1.02-2.80; HRΔprotein 1.96, 99% CI 1.14-3.39). The highest quintile of Δtotal fat was related to CVD mortality (HR 1.67, 99% CI 1.01-2.76). Isocalorically replacing 5% of total energy at dinner with breakfast was associated with 4% and 5% lower risk of diabetes (HR 0.96, 95% CI 0.94-0.98) and CVD (HR 0.95, 95% CI 0.93-0.97) mortality, respectively. CONCLUSIONS Higher intake of energy, total fat, and protein from dinner than breakfast was associated with greater diabetes, CVD, and all-cause mortality in people with diabetes.
Collapse
Affiliation(s)
- Tianshu Han
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.,Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Gao
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Li
- Medical University of South Carolina, Charleston, SC
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Sasaki H, Miyakawa H, Watanabe A, Nakayama Y, Lyu Y, Hama K, Shibata S. Mice Microbiota Composition Changes by Inulin Feeding with a Long Fasting Period under a Two-Meals-Per-Day Schedule. Nutrients 2019; 11:nu11112802. [PMID: 31744168 PMCID: PMC6893728 DOI: 10.3390/nu11112802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Water-soluble dietary fiber is known to modulate fecal microbiota. Although there are a few reports investigating the effects of fiber intake timing on metabolism, there are none on the effect of intake timing on microbiota. Therefore, in this study, we examined the timing effects of inulin-containing food on fecal microbiota. Mice were housed under conditions with a two-meals-per-day schedule, with a long fasting period in the morning and a short fasting period in the evening. Then, 10-14 days after inulin intake, cecal content and feces were collected, and cecal pH and short-chain fatty acids (SCFAs) were measured. The microbiome was determined using 16S rDNA sequencing. Inulin feeding in the morning rather than the evening decreased the cecal pH, increased SCFAs, and changed the microbiome composition. These data suggest that inulin is more easily digested by fecal microbiota during the active period than the inactive period. Furthermore, to confirm the effect of fasting length, mice were housed under a one-meal-per-day schedule. When the duration of fasting was equal, the difference between morning and evening nearly disappeared. Thus, our study demonstrates that consuming inulin at breakfast, which is generally after a longer fasting period, has a greater effect on the microbiota.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroki Miyakawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
| | - Aya Watanabe
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
| | - Yuki Nakayama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
| | - Yijin Lyu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
| | - Koki Hama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; (H.S.); (H.M.); (A.W.); (Y.N.); (Y.L.); (K.H.)
- Correspondence: ; Tel.: +81-3-5369-7318
| |
Collapse
|
11
|
Saderi N, Báez-Ruiz A, Azuara-Álvarez LE, Escobar C, Salgado-Delgado RC. Differential Recovery Speed of Activity and Metabolic Rhythms in Rats After an Experimental Protocol of Shift-Work. J Biol Rhythms 2019; 34:154-166. [PMID: 30764694 DOI: 10.1177/0748730419828534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The circadian system drives the temporal organization of body physiology in relation to the changing daily environment. Shift-work (SW) disrupts this temporal order and is associated with the loss of homeostasis and metabolic syndrome. In a rodent model of SW based on forced activity in the rest phase for 4 weeks, we describe the occurrence of circadian desynchrony, as well as metabolic and liver dysfunction. To provide better evidence for the impact of altered timing of activity, this study explored how long it takes to recover metabolic rhythms and behavior. Rats were submitted to experimental SW for 4 weeks and then were left to recover for one week. Daily locomotor activity, food intake patterns, serum glucose and triglycerides, and the expression levels of hepatic Pparα, Srebp-1c, Pepck, Bmal1 and Per2 were assessed during the recovery period and were compared with expected data according to a control condition. SW triggered the circadian desynchronization of all of the analyzed parameters. A difference in the time required for realignment was observed among parameters. Locomotor activity achieved the expected phase on day 2, whereas the nocturnal feeding pattern was restored on the sixth recovery day. Daily rhythms of plasma glucose and triglycerides and of Pparα, Pepck and Bmal1 expression in the liver resynchronized on the seventh day, whereas Srebp-1c and Per2 persisted arrhythmic for the entire recovery week. SW does not equally affect behavior and metabolic rhythms, leading to internal desynchrony during the recovery phase.
Collapse
Affiliation(s)
- Nadia Saderi
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Adrián Báez-Ruiz
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Lucia E Azuara-Álvarez
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carolina Escobar
- Departamento de Anatomia, Facultad de Medicina, Universidad Autónoma de Mexico, Distrito Federal, Mexico
| | - Roberto C Salgado-Delgado
- Departamento de Fisiología, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
12
|
Xie T, Liu B, Dai CG, Lu ZH, Dong J, Huang Q. Glioma stem cells reconstruct similar immunoinflammatory microenvironment in different transplant sites and induce malignant transformation of tumor microenvironment cells. J Cancer Res Clin Oncol 2019; 145:321-328. [PMID: 30415302 DOI: 10.1007/s00432-018-2786-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to examine whether the different tumor-transplanted sites could construct a similar immunoinflammatory microenvironment and to investigate the interactions between tumor microenvironment cells. METHODS The red fluorescent protein-SU3 (SU3-RFP) or SU3 glioma stem cells (GSC) were inoculated into the brain, liver, abdominal cavity, and subcutis of green fluorescent protein (GFP)-nude mice. The tumor tissues were taken to observe the tissue cell distribution. The single cell suspension of tumor tissues was prepared and cultured, while the SU3-RFP cells were co-cultured with the cells from GFP-transgenic mice. The RFP+, GFP+, and RFP+/GFP+ cells were traced by fluorescence microscope, and their protein expressions were determined by Western blot analysis. The markers of immunoinflammatory cells, including F4/80, CD11b, CD11c, CD80, CD47, and SIRP-α, were determined by RT-PCR and immunocytochemistry assays, respectively. RESULTS The xenograft models of all transplant sites were inducible, and the red tumor cells of tumor tissues were encircled by a great quantity of host-derived green cells, including immunoinflammatory cells with CD80, F4/80, CD11b, and CD11c expressions, which might generate the cell colonies and possess the pseudopodia. Additionally, the interactions between red tumor cells and green immunoinflammatory cells, including cell fusion process and yellow fusion cell formation, were observed in cultured cells. The fusion cells-derived B4 cells with expressions of CD47 and SIRP-α proteins had the strong proliferation ability and tumorigenic effect. CONCLUSIONS The similar tumor immunoinflammatory microenvironment was constructed by GSC in different transplant sites, and the cell fusion indicated a malignant transformation of the tumor microenvironment cells.
Collapse
Affiliation(s)
- Tao Xie
- The Experimental Center, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Bing Liu
- The Experimental Center, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Chun-Gang Dai
- The Experimental Center, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zhao-Hui Lu
- The Experimental Center, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Jun Dong
- The Experimental Center, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Qiang Huang
- The Experimental Center, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| |
Collapse
|
13
|
Saito S, Oishi S, Shudo A, Sugiura Y, Yasunaga K. Glucose Response during the Night Is Suppressed by Wheat Albumin in Healthy Participants: A Randomized Controlled Trial. Nutrients 2019; 11:nu11010187. [PMID: 30658460 PMCID: PMC6356374 DOI: 10.3390/nu11010187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
Postprandial blood glucose excursions are important for achieving optimal glycemic control. In normal-weight individuals, glucose tolerance is diminished in the evening compared to glucose tolerance in the morning. Wheat albumin (WA) has the potential to suppress the postprandial glucose response with a relatively small dose, compared to the dose required when using dietary fiber. In the present study, the effect of WA on glycemic control during the night was investigated after a late evening meal. A randomly assigned crossover trial involving a single oral ingestion in healthy male participants was performed in a double-blind placebo-controlled manner. The participants ingested the placebo (PL) tablets or the WA (1.5 g)-containing tablets 3 min before an evening meal at 22:00 hour, and blood samples were drawn during the night until 07:00 hour using an intravenous cannula. The participants slept from 00:30 hour to 06:30 hour. Glucose response, as a primary outcome during the night, was suppressed significantly by the WA treatment compared to the PL treatment, but the insulin response was not. Plasma glucose-dependent insulinotropic polypeptide concentration during the night was lowered significantly by the WA treatment compared to the PL treatment. In conclusion, WA may be a useful food constituent for glycemic control during the night.
Collapse
Affiliation(s)
- Shinichiro Saito
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Sachiko Oishi
- Biological Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Aiko Shudo
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Yoko Sugiura
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| | - Koichi Yasunaga
- Health Care Food Research Laboratories, Kao Corporation, 2-1-3 Bunka Sumida-ku, Tokyo 131-8501, Japan.
| |
Collapse
|
14
|
Kovač U, Skubic C, Bohinc L, Rozman D, Režen T. Oxysterols and Gastrointestinal Cancers Around the Clock. Front Endocrinol (Lausanne) 2019; 10:483. [PMID: 31379749 PMCID: PMC6653998 DOI: 10.3389/fendo.2019.00483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the role of oxidized sterols in three major gastrointestinal cancers (hepatocellular carcinoma, pancreatic, and colon cancer) and how the circadian clock affects the carcinogenesis by regulating the lipid metabolism and beyond. While each field of research (cancer, oxysterols, and circadian clock) is well-studied within their specialty, little is known about the intertwining mechanisms and how these influence the disease etiology in each cancer type. Oxysterols are involved in pathology of these cancers, but final conclusions about their protective or damaging effects are elusive, since the effect depends on the type of oxysterol, concentration, and the cell type. Oxysterol concentrations, the expression of key regulators liver X receptors (LXR), farnesoid X receptor (FXR), and oxysterol-binding proteins (OSBP) family are modulated in tumors and plasma of cancer patients, exposing these proteins and selected oxysterols as new potential biomarkers and drug targets. Evidence about how cholesterol/oxysterol pathways are intertwined with circadian clock is building. Identified key contact points are different forms of retinoic acid receptor related orphan receptors (ROR) and LXRs. RORs and LXRs are both regulated by sterols/oxysterols and the circadian clock and in return also regulate the same pathways, representing a complex interplay between sterol metabolism and the clock. With this in mind, in addition to classical therapies to modulate cholesterol in gastrointestinal cancers, such as the statin therapy, the time is ripe also for therapies where time and duration of the drug application is taken as an important factor for successful therapies. The final goal is the personalized approach with chronotherapy for disease management and treatment in order to increase the positive drug effects.
Collapse
|
15
|
Milanova IV, Kalsbeek MJT, Wang XL, Korpel NL, Stenvers DJ, Wolff SEC, de Goede P, Heijboer AC, Fliers E, la Fleur SE, Kalsbeek A, Yi CX. Diet-Induced Obesity Disturbs Microglial Immunometabolism in a Time-of-Day Manner. Front Endocrinol (Lausanne) 2019; 10:424. [PMID: 31316470 PMCID: PMC6611391 DOI: 10.3389/fendo.2019.00424] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Disturbance of immunometabolic signaling is a key process involved in the progression of obesity. Microglia-the resident immune cells in the brain, initiate local immune responses. It is known that hypercaloric diets lead to microglial activation. Previously, we observed that hypothalamic microglial cells from mice fed high-fat diet (HFD) lose their day/night rhythm and are constantly activated. However, little is known about daily rhythmicity in microglial circadian, immune and metabolic functions, either in lean or obese conditions. Therefore, we hypothesized that HFD disturbs microglial immunometabolism in a day/night-dependent manner. Methods: Obesity was induced in Wistar rats by feeding them HFD ad libitum for the duration of 8 weeks. Microglia were isolated from HFD- and chow-fed control animals at six time points during 24 h [every 4 h starting 2 h after lights on, i.e., Zeitgeber Time 2 (ZT2)]. Gene expression was evaluated using quantitative RT-PCR. JTK_Cycle software was used to estimate daily rhythmicity. Statistical analysis was performed with two-way ANOVA test. Results: Consumption of the obesogenic diet resulted in a 40 g significantly higher body weight gain in week 8, compared to chow diet (p < 0.0001), associated with increased adiposity. We observed significant rhythmicity of circadian clock genes in microglia under chow conditions, which was partially lost in diet-induced obesity (DIO). Microglial immune gene expression also showed time-of-day differences, which were disrupted in HFD-fed animals. Microglia responded to the obesogenic conditions by a shift of substrate utilization with decreased glutamate and glucose metabolism in the active period of the animals, and an overall increase of lipid metabolism, as indicated by gene expression evaluation. Additionally, data on mitochondria bioenergetics and dynamics suggested an increased energy production in microglia during the inactive period on HFD. Finally, evaluation of monocyte functional gene expression showed small or absent effect of HFD on peripheral myeloid cells, suggesting a cell-specific microglial inflammatory response in DIO. Conclusions: An obesogenic diet affects microglial immunometabolism in a time-of-day dependent manner. Given the central role of the brain in energy metabolism, a better knowledge of daily rhythms in microglial immunometabolism could lead to a better understanding of the pathogenesis of obesity.
Collapse
Affiliation(s)
- Irina V. Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Martin J. T. Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Xiao-Lan Wang
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Nikita L. Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Samantha E. C. Wolff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Paul de Goede
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Annemieke C. Heijboer
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Chun-Xia Yi
| |
Collapse
|
16
|
Liu L, Jiang G, Peng Z, Li Y, Li J, Zou L, He Z, Wang X, Chu W. The effect of high fat diet on daily rhythm of the core clock genes and muscle functional genes in the skeletal muscle of Chinese soft-shelled turtle ( Trionyx sinensis ). Comp Biochem Physiol B Biochem Mol Biol 2017; 213:17-27. [DOI: 10.1016/j.cbpb.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/07/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
17
|
Tatone C, Benedetti E, Vitti M, Di Emidio G, Ciriminna R, Vento ME, Cela V, Borzì P, Carta G, Lispi M, Cimini AM, Artini PG. Modulating Intrafollicular Hormonal Milieu in Controlled Ovarian Stimulation: Insights From PPAR Expression in Human Granulosa Cells. J Cell Physiol 2015; 231:908-14. [PMID: 26332656 DOI: 10.1002/jcp.25182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023]
Abstract
Controlled ovarian stimulation (COS) leading to ovulation of multiple follicles is a crucial aspect of biomedical infertility care. Nevertheless, biomarkers useful for COS management are still lacking. Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors relevant to steroid metabolism in granulosa cells (GCs). We investigated whether PPARs and their steroidogenic targets were differentially expressed in GCs differentiated under different recombinant or urinary gonadotropin preparations. GCs from women subjected to COS with r-hFSH, r-hFSH/r-hLH, or hMG-HP were processed to assess expression of PPARα, PPARβ/δ, PPARγ, and steroidogenic enzymes under PPAR modulation. As an evidence of their activation, all PPAR isotypes with their coactivators, the retinoic-X-receptors (RXRs), localized in the nucleus. When GCs from r-hFSH/r-hLH group were compared with r-hFSH, a significant reduction of PPARα protein was observed. By contrast, an increase of PPARβ/δ at both protein and mRNA levels along with that of PPARγ protein were detected. The steroidogenic enzymes 17βHSD IV, 3βHSD II, and HMG-CoA red were downregulated in the r-hFSH/r-hLH group in comparison to r-hFSH unlike CYP19A1 that remained unchanged. In GCs from urinary FSH-LH stimulation (hMG-HP), PPARα was more expressed in comparison with r-hFSH/r-hLH group. Likewise, 3βHSD II and 17βHSD IV were increased suggesting that hMG-HP partially mimicked r-hFSH/r-hLH effects. In summary, transcript analysis associated to protein investigation revealed differential effects of COS protocols on PPARs and their steroidogenic targets in relation to LH and gonadotropin source. These observations candidate PPARs as new biomarkers of follicle competence opening new hypotheses on COS effects on ovarian physiology. J. Cell. Physiol. 231: 908-914, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Gynecology and Fertility Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Vitti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Vito Cela
- Department of Experimental and Clinical Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Gynecology and Fertility Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Monica Lispi
- Medical Liaison Office, Merck Serono S.p.A., Rome, Italy
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Giovanni Artini
- Department of Experimental and Clinical Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | | |
Collapse
|
18
|
Huang Y, Zhu Z, Xie M, Xue J. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice. Nutr Res 2015; 35:792-9. [PMID: 26239949 DOI: 10.1016/j.nutres.2015.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/14/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou 215003, Jiangsu Province, China
| | - Zengyan Zhu
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China; Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou 215003, Jiangsu Province, China
| | - Meilin Xie
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jie Xue
- Department of Pharmacology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
19
|
Sasaki H, Hattori Y, Ikeda Y, Kamagata M, Shibata S. Eating meals before wheel-running exercise attenuate high fat diet-driven obesity in mice under two meals per day schedule. Chronobiol Int 2015; 32:677-86. [DOI: 10.3109/07420528.2015.1035439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice. Biochem Biophys Res Commun 2015; 458:86-91. [PMID: 25640840 DOI: 10.1016/j.bbrc.2015.01.072] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery.
Collapse
|
21
|
Wen M, Cui J, Xu J, Xue Y, Wang J, Xue C, Wang Y. Effects of dietary sea cucumber saponin on the gene expression rhythm involved in circadian clock and lipid metabolism in mice during nighttime-feeding. J Physiol Biochem 2014; 70:801-8. [PMID: 25059722 DOI: 10.1007/s13105-014-0349-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
In mammals, clock rhythms exist not only in the suprachiasmatic nucleus, which is entrained by light/dark (LD) cycles, but also in most peripheral tissues. Recent studies have revealed that most physiology and behavior are subject to well-controlled daily oscillations; similarly, metabolic state influences the diurnal rhythm too. Previous studies have indicated that dietary sea cucumber saponin (SCS) could improve glucose and lipid metabolism of rodent. However, whether SCS could affect the expression of clock genes, which is involved in lipid metabolism, is unknown at present. The aim of this study is to investigate the effects of SCS on the clock and clock-controlled genes involved in lipid metabolism. ICR male mice were divided into a control and SCS group mice (add 0.03% sea cucumber saponin to regular chow) and were fed at night (2030-0830 hours). After 2 weeks, clock genes expression in brain and liver, blood glucose, hormones, and lipid metabolic markers were analyzed. The results showed that dietary SCS caused alteration in rhythms and/or amplitudes of clock genes was more significant in brain than in liver. In addition, peroxisome proliferator-activated receptor (PPARα), sterol regulatory element binding protein-1c (SREBP-1c), together with their target genes carnitine palmitoyl transferase (CPT), and fatty acid synthase (FAS) showed marked changes in rhythm and/or amplitude in SCS group mice. These results suggested that SCS could affect the daily expression patterns of clock genes in brain and liver tissues, and alter the clock-controlled genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Min Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong Province, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Mazzoccoli G, Vinciguerra M, Oben J, Tarquini R, De Cosmo S. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int 2014; 34:1133-52. [PMID: 24649929 DOI: 10.1111/liv.12534] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/16/2014] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the accumulation of triglycerides in the hepatocytes in the absence of excess alcohol intake, and is caused by an imbalance between hepatic synthesis and breakdown of fats, as well as fatty acid storage and disposal. Liver metabolic pathways are driven by circadian biological clocks, and hepatic health is maintained by proper timing of circadian patterns of metabolic gene expression with the alternation of anabolic processes corresponding to feeding/activity during wake times, and catabolic processes characterizing fasting/resting during sleep. A number of nuclear receptors in the liver are expressed rhythmically, bind hormones and metabolites, sense energy flux and expenditure, and connect the metabolic pathways to the molecular clockwork throughout the 24-h day. In this review, we describe the role played by the nuclear receptors in the genesis of NAFLD in relationship with the circadian clock circuitry.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | | | | | | | | |
Collapse
|
23
|
Sasaki H, Ohtsu T, Ikeda Y, Tsubosaka M, Shibata S. Combination of meal and exercise timing with a high-fat diet influences energy expenditure and obesity in mice. Chronobiol Int 2014; 31:959-75. [PMID: 25007387 DOI: 10.3109/07420528.2014.935785] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mice, obesity has been observed not only in those freely fed a high-fat diet (HFD) but also in those fed while physically inactive. In contrast, a HFD during physically active periods protects against obesity and the impairments in the circadian rhythm induced by free feeding of a HFD. Although exercise is known to be effective for obesity prevention and management, the optimal timing of exercise has not yet been determined. In the present experiments, we aimed to determine the best combination of daily timing of HFD consumption and exercise for the prevention of HFD-induced weight gain in mice. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). Increases in body weight related to free feeding of a HFD was significantly reduced with 4 h of exercise during the late (evening) or middle (noon) active period compared to 4 h of exercise during the early (morning) active period or free access to exercise, which resulted in hours of exercise similar to that of morning exercise. These results suggested that eating in the morning or at noon followed by exercise in the evening could prevent weight gain more effectively than exercise in the morning followed by eating at noon or in the evening. The group fed a HFD for 4 h in the morning had lower body weight than the group fed a HFD for 4 h in the evening without exercise. The last group of experiments tested the hypothesis that there would be an interaction between mealtime and exercise time (i.e. time of day) versus order (i.e. which comes first) effects. We compared groups that exercised for 4 h at noon and were fed either in the morning or evening and groups that were fed for 4 h at noon and either exercised in the morning or evening. We found that the groups that were fed before exercise gained less body and fat weight and more skeletal muscle weight compared to the groups that exercised before eating. Corresponding to the body and fat weight changes, the respiratory exchange ratio (RER) was lower and energy expenditure was higher in the groups fed before exercise than in the groups fed after exercise, and these effects on energy metabolism were also observed in the early stage of HFD feeding before obesity. When obese mice fed a HFD for 12 weeks were exposed to a combination of feeding and exercise timing in an effort to reduce body weight, eating followed by exercise resulted in greater weight loss, similar to the experiments conducted to prevent weight gain. These results demonstrate that a combination of daily timing of eating and exercise may influence weight gain and that eating followed by exercise may be effective for minimizing increases in body and fat weight as well as maximizing increases in skeletal muscle weight.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University , Shinjuku-ku, Tokyo , Japan
| | | | | | | | | |
Collapse
|
24
|
Haraguchi A, Aoki N, Ohtsu T, Ikeda Y, Tahara Y, Shibata S. Controlling access time to a high-fat diet during the inactive period protects against obesity in mice. Chronobiol Int 2014; 31:935-44. [DOI: 10.3109/07420528.2014.931413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
A single daily meal at the beginning of the active or inactive period inhibits food deprivation-induced fatty liver in mice. Nutr Res 2014; 34:613-22. [PMID: 25150120 DOI: 10.1016/j.nutres.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 12/11/2022]
Abstract
Food deprivation (FD) induces hepatic steatosis in both rodents and humans. Although body composition, age, and sex influence hepatic triglyceride (TG) levels after FD, whether feeding patterns affect FD-induced liver TG increases is unknown. We hypothesized that restricted feeding (RF) of 1 meal per day during the active or inactive period (especially the inactive period) augments FD-induced elevation of liver TGs because RF in the inactive period impairs the circadian rhythm. Triglyceride levels and the expression of genes related to TG metabolism in the liver were examined by a bioassay and real-time reverse transcription-polymerase chain reaction, respectively. In the first experiment, when compared to nonfasted mice, mice that fasted for 24 hours showed a 1.5-fold (FD starting during the inactive period) to 3-fold (FD started during the active period) increase in liver TG levels. This experiment showed that TG levels depend upon the starting time of FD. In the second experiment, mice were given free access to food for 3 hours at the beginning of either the inactive ("supper-only") or the active ("breakfast-only") period for 2 weeks. Restricted feeding inhibited the FD-induced increases in liver and serum TG levels, serum free fatty acids, and the expression of genes related to fatty acid uptake in the liver, including fatty acid transport protein 1 (Fatp1) and 4 (Fatp4). Unexpectedly, compared to free feeding, RF during the active or inactive period resulted in resistance to FD-induced fatty liver. This is the first study to demonstrate that feeding patterns affect FD-induced TG accumulation in the mouse liver.
Collapse
|
26
|
Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor α–mediated mechanism in mice. Nutr Res 2014; 34:268-75. [DOI: 10.1016/j.nutres.2013.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 01/03/2023]
|
27
|
Richards J, All S, Skopis G, Cheng KY, Compton B, Srialluri N, Stow L, Jeffers LA, Gumz ML. Opposing actions of Per1 and Cry2 in the regulation of Per1 target gene expression in the liver and kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R735-47. [PMID: 23824961 DOI: 10.1152/ajpregu.00195.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mounting evidence suggests that the circadian clock plays an integral role in the regulation of many physiological processes including blood pressure, renal function, and metabolism. The canonical molecular clock functions via activation of circadian target genes by Clock/Bmal1 and repression of Clock/Bmal1 activity by Per1-3 and Cry1/2. However, we have previously shown that Per1 activates genes important for renal sodium reabsorption, which contradicts the canonical role of Per1 as a repressor. Moreover, Per1 knockout (KO) mice exhibit a lowered blood pressure and heavier body weight phenotype similar to Clock KO mice, and opposite that of Cry1/2 KO mice. Recent work has highlighted the potential role of Per1 in repression of Cry2. Therefore, we postulated that Per1 potentially activates target genes through a Cry2-Clock/Bmal1-dependent mechanism, in which Per1 antagonizes Cry2, preventing its repression of Clock/Bmal1. This hypothesis was tested in vitro and in vivo. The Per1 target genes αENaC and Fxyd5 were identified as Clock targets in mpkCCDc14 cells, a model of the renal cortical collecting duct. We identified PPARα and DEC1 as novel Per1 targets in the mouse hepatocyte cell line, AML12, and in the liver in vivo. Per1 knockdown resulted in upregulation of Cry2 in vitro, and this result was confirmed in vivo in mice with reduced expression of Per1. Importantly, siRNA-mediated knockdown of Cry2 and Per1 demonstrated opposing actions for Cry2 and Per1 on Per1 target genes, supporting the potential Cry2-Clock/Bmal1-dependent mechanism underlying Per1 action in the liver and kidney.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida, Gainesville, Florida; and
| | | | | | | | | | | | | | | | | |
Collapse
|