1
|
Huang G, Wang D, Xue J. Research Progress on the Relationship Between PRPF8 and Cancer. Curr Issues Mol Biol 2025; 47:150. [PMID: 40136404 PMCID: PMC11941625 DOI: 10.3390/cimb47030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression and protein diversity, influencing both normal cellular function and pathological conditions, including cancer. Protein pre-mRNA processing factor 8 (PRPF8), a core component of the spliceosome, is integral to the splicing process, ensuring accurate gene transcription and spliceosome assembly. Disruptions in PRPF8 function are linked to a variety of cancers, as mutations in this gene can induce abnormal splicing events that contribute to tumorigenesis, metastasis, and drug resistance. This review provides an in-depth analysis of the mechanisms by which PRPF8 regulates tumorigenesis through AS, exploring its role in diverse cancer types, including breast, liver, myeloid, and colorectal cancers. Furthermore, we examine the molecular pathways associated with PRPF8 dysregulation and their impact on cancer progression. We also discuss the emerging potential of targeting PRPF8 in cancer therapy, highlighting challenges in drug development.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | | | | |
Collapse
|
2
|
Li C, Zhang Y, Wang Y, Ouyang J, Yang Y, Zhu Q, Lu Y, Kang T, Li Y, Xia M, Chen J, Li Q, Zhu C, Ye L. RNA-binding protein LSM7 facilitates breast cancer metastasis through mediating alternative splicing of CD44. Life Sci 2024; 356:123013. [PMID: 39182568 DOI: 10.1016/j.lfs.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIMS The RNA-binding protein LSM7 is essential for RNA splicing, acting as a key component of the spliceosome complex; however, its specific role in breast cancer (BC) has not been extensively investigated. MATERIALS AND METHODS LSM7 expression in BC samples was evaluated through bioinformatics analysis and immunohistochemistry. The impact of LSM7 on promoting metastatic tumor characteristics was examined using transwell and wound healing assays, as well as an orthotopic xenograft model. Additionally, the involvement of LSM7 in alternative splicing of CD44 was explored via RNA immunoprecipitation and third-generation sequencing. The regulatory role of TCF3 in modulating LSM7 gene expression was further elucidated using luciferase reporter assays and chromatin immunoprecipitation. KEY FINDINGS Our findings demonstrate that LSM7 was significantly overexpressed in metastatic BC tissues and was associated with poor prognostic outcomes in patients with BC. LSM7 overexpression markedly increased the migratory and invasive capabilities of BC cells in vitro and significantly promoted spontaneous lung metastasis in vivo. Furthermore, RIP-seq analysis revealed that LSM7 binded to CD44 RNA, enhancing the expression of its alternatively spliced isoform CD44s, thereby driving BC metastasis and invasion. Additionally, the transcription factor TCF3 was found to activate LSM7 transcription by directly binding to its promoter. SIGNIFICANCE In summary, this study highlights the pivotal role of LSM7 in the production of the CD44s isoform and the promotion of breast cancer metastasis. Targeting the TCF3/LSM7/CD44s axis may offer a promising therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuhao Zhang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jing Ouyang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yingqian Yang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Ming Xia
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinrun Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Zhang Y, Simko AC, Okoro U, Sibert DJ, Moon JH, Liu B, Matin A. Commitment Complex Splicing Factors in Cancers of the Gastrointestinal Tract-An In Silico Study. Bioinform Biol Insights 2024; 18:11779322241287115. [PMID: 39421280 PMCID: PMC11483837 DOI: 10.1177/11779322241287115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The initial step in pre-mRNA splicing involves formation of a spliceosome commitment complex (CC) or E-complex by factors that serve to bind and mark the exon-intron boundaries that will undergo splicing. The CC component U1 snRNP assembles at the 5'-splice site (ss), whereas SF1, U2AF2, and U2AF1 define the 3'-ss of the intron. A PRP40 protein bridges U1 snRNP with factors at the 3'-ss. To determine how defects in CC components impact cancers, we analyzed human gastrointestinal (GI) cancer patient tissue and clinical data from cBioPortal. cBioPortal datasets were analyzed for CC factor alterations and patient outcomes in GI cancers (bowel, stomach, esophagus, pancreas, and liver). In addition, co-expression datasets were used to determine the splicing targets of the CC. Our analysis found that frequency of genetic changes was low (1%-13%), but when combined with changes in expression levels, there was an overall surprisingly high incidence of CC component (>30%) alterations in GI cancers. Colon cancer patients carrying BRAF driver gene mutations had high incidences of CC alterations (19%-61%), whereas patients with APC, KRAS, or TP53 gene mutations had low (<5%) incidences of CC alterations. Most significantly, patients with mutations in CC genes exhibited a consistent trend of favorable survival rates, indicating that mutations that impair or lower CC component expression favor patient survival. Conversely, patients with high CC expression had worse survival. Pathway analysis indicates that the CC regulates specific metabolic and tumor suppressor pathways. Metabolic pathways involved in cell survival, nutrition, biosynthesis, autophagy, cellular movement (invasion), or immune surveillance pathways correlated with CC factor upregulation, whereas tumor suppressor pathways, which regulate cell proliferation and apoptosis, were inversely correlated with CC factor upregulation. This study demonstrates the versatility of in silico analysis to determine molecular function of large macromolecular complexes such as the spliceosome CC. Furthermore, our analysis indicates that therapeutic lowering of CC levels in colon cancer patients may enhance patient survival.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | | | - Uzondu Okoro
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA
| | - Deja Jamese Sibert
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jin Hyung Moon
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angabin Matin
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
4
|
Kasperczak M, Bromiński G, Kołodziejczak-Guglas I, Antczak A, Wiznerowicz M. Prognostic Significance of Elevated UCHL1, SNRNP200, and PAK4 Expression in High-Grade Clear Cell Renal Cell Carcinoma: Insights from LC-MS/MS Analysis and Immunohistochemical Validation. Cancers (Basel) 2024; 16:2844. [PMID: 39199615 PMCID: PMC11352290 DOI: 10.3390/cancers16162844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in proteomics have enhanced our understanding of clear cell renal cell carcinoma (CCRCC). Utilizing a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by immunohistochemical validation, we investigated the expression levels of UCHL1, PAK4, and SNRNP200 in high-grade CCRCC samples. Our analysis also integrated Reactome pathway enrichment to elucidate the roles of these proteins in cancer-related pathways. Our results revealed significant upregulation of UCHL1 and SNRNP200 and downregulation of PAK4 in high-grade CCRCC tissues compared to non-cancerous tissues. UCHL1, a member of the ubiquitin carboxy-terminal hydrolase family, showed variable expression across different tissues and was notably involved in the Akt signaling pathway, which plays a critical role in cellular survival in various cancers. SNRNP200, a key component of the RNA splicing machinery, was found to be essential for proper cell cycle progression and possibly linked to autosomal dominant retinitis pigmentosa. PAK4's role was noted as critical in RCC cell proliferation and invasion and its expression correlated significantly with poor progression-free survival in CCRCC. Additionally, the expression patterns of these proteins suggested potential as prognostic markers for aggressive disease phenotypes. This study confirms the upregulation of UCHL1, SNRNP200, and PAK4 as significant factors in the progression of high-grade CCRCC, linking their enhanced expression to poor clinical outcomes. These findings propose these proteins as potential prognostic markers and therapeutic targets in CCRCC, offering novel insights into the molecular landscape of this malignancy and highlighting the importance of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Michał Kasperczak
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Gabriel Bromiński
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | | | - Andrzej Antczak
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Maciej Wiznerowicz
- Department of Urology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
- University Hospital of Lord’s Transfiguration, 61-848 Poznań, Poland
| |
Collapse
|
5
|
Xue D, Zuo Q, Chang J, Wu X. The correlation between TRIM28 expression and immune checkpoints in CRPC. FASEB J 2024; 38:e23663. [PMID: 38958986 DOI: 10.1096/fj.202400061rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024]
Abstract
This study delves into the unexplored realm of castration-resistant prostate cancer (CRPC) by investigating the role of TRIM28 and its intricate molecular mechanisms using high-throughput single-cell transcriptome sequencing and advanced bioinformatics analysis. Our comprehensive examination unveiled dynamic TRIM28 expression changes, particularly in immune cells such as macrophages and CD8+ T cells within CRPC. Correlation analyses with TCGA data highlighted the connection between TRIM28 and immune checkpoint expression and emphasized its pivotal influence on the quantity and functionality of immune cells. Using TRIM28 knockout mouse models, we identified differentially expressed genes and enriched pathways, unraveling the potential regulatory involvement of TRIM28 in the cGAS-STING pathway. In vitro, experiments further illuminated that TRIM28 knockout in prostate cancer cells induced a notable anti-tumor immune effect by inhibiting M2 macrophage polarization and enhancing CD8+ T cell activity. This impactful discovery was validated in an in situ transplant tumor model, where TRIM28 knockout exhibited a deceleration in tumor growth, reduced proportions of M2 macrophages, and enhanced infiltration of CD8+ T cells. In summary, this study elucidates the hitherto unknown anti-tumor immune role of TRIM28 in CRPC and unravels its potential regulatory mechanism via the cGAS-STING signaling pathway. These findings provide novel insights into the immune landscape of CRPC, offering promising directions for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dun Xue
- Department of Medical, the First Hospital of Changsha, Changsha, P. R. China
| | - Qian Zuo
- Department of Radiology, the First Hospital of Changsha, Changsha, P. R. China
| | - Jie Chang
- Department of Outpatient, the First Hospital of Changsha, Changsha, P. R. China
| | - Xinghui Wu
- Department of Urology, the First Hospital of Changsha, Changsha, P. R. China
| |
Collapse
|
6
|
Li N, Jia W, Wang J, Shao Q, Feng X, Li Z, Sun W, Kang M, Hu D, Xing L, Zhan X. Clinically relevant immune subtypes based on alternative splicing landscape of immune-related genes for lung cancer advanced PPPM approach. EPMA J 2024; 15:345-373. [PMID: 38841624 PMCID: PMC11147996 DOI: 10.1007/s13167-024-00366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Background Alternative splicing (AS) occurs in the process of gene post-transcriptional process, which is very important for the correct synthesis and function of protein. The change of AS pattern may lead to the change of expression level or function of lung cancer-related genes, and then affect the occurrence and development of lung cancers. The specific AS pattern might be used as a biomarker for early warning and prognostic assessment of a cancer in the framework of predictive, preventive, and personalized medicine (PPPM; 3PM). AS events of immune-related genes (IRGs) were closely associated with tumor progression and immunotherapy. We hypothesize that IRG-AS events are significantly different in lung adenocarcinomas (LUADs) vs. controls or in lung squamous cell carcinomas (LUSCs) vs. controls. IRG-AS alteration profiling was identified to construct IRG-differentially expressed AS (IRG-DEAS) signature models. Study on the selective AS events of specific IRGs in lung cancer patients might be of great significance for further exploring the pathogenesis of lung cancer, realizing early detection and effective monitoring of lung cancer, finding new therapeutic targets, overcoming drug resistance, and developing more effective therapeutic strategies, and better used for the prediction, diagnosis, prevention, and personalized medicine of lung cancer. Methods The transcriptomic, clinical, and AS data of LUADs and LUSCs were downloaded from TCGA and its SpliceSeq databases. IRG-DEAS events were identified in LUAD and LUSC, followed by their functional characteristics, and overall survival (OS) analyses. OS-related IRG-DEAS prognostic models were constructed for LUAD and LUSC with Lasso regression, which were used to classify LUADs and LUSCs into low- and high-risk score groups. Furthermore, the immune cell distribution, immune-related scores, drug sensitivity, mutation status, and GSEA/GSVA status were analyzed between low- and high-risk score groups. Also, low- and high-immunity clusters and AS factor (SF)-OS-related-AS co-expression network and verification of cell function of CELF6 were analyzed in LUAD and LUSC. Results Comprehensive analysis of transcriptomic, clinical, and AS data of LUADs and LUSCs identified IRG-AS events in LUAD (n = 1607) and LUSC (n = 1656), including OS-related IRG-AS events in LUAD (n = 127) and LUSC (n = 105). A total of 66 IRG-DEAS events in LUAD and 89 IRG-DEAS events in LUSC were identified compared to controls. The overlapping analysis between IRG-DEASs and OS-related IRG-AS events revealed 14 OS-related IRG-DEAS events for LUAD and 16 OS-related IRG-DEAS events for LUSC, which were used to identify and optimize a 12-OS-related-IRG-DEAS signature prognostic model for LUAD and an 11-OS-related-IRG-DEAS signature prognostic model for LUSC. These two prognostic models effectively divided LUAD or LUSC samples into low- and high-risk score groups that were closely associated with OS, clinical characteristics, and tumor immune microenvironment, with significant gene sets and pathways enriched in the two groups. Moreover, weighted gene co-expression network (WGCNA) and nonnegative matrix factorization method (NMF) analyses identified four OS-relevant subtypes of LUAD and six OS-relevant subtypes of LUSC, and ssGSEA identified five immunity-relevant subtypes of LUAD and five immunity-relevant subtypes of LUSC. Interestingly, splicing factors-OS-related-AS network revealed hub molecule CELF6 was significantly related to the malignant phenotype in lung cancer cells. Conclusions This study established two reliable IRG-DEAS signature prognostic models and constructed interesting splicing factor-splicing event networks in LUAD and LUSC, which can be used to construct clinically relevant immune subtypes, patient stratification, prognostic prediction, and personalized medical services in the PPPM practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00366-4.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Baiyun Road 1083, Guangzhou, Guangdong 510515 People’s Republic of China
| | - Qianwen Shao
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhijun Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Wenhao Sun
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Ming Kang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Dongming Hu
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Ligang Xing
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
7
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
8
|
Zhang Y, Li N, Yang L, Jia W, Li Z, Shao Q, Zhan X. Quantitative phosphoproteomics reveals molecular pathway network alterations in human early-stage primary hepatic carcinomas: potential for 3P medical approach. EPMA J 2023; 14:477-502. [PMID: 37605650 PMCID: PMC10439880 DOI: 10.1007/s13167-023-00335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Objective Hepatic carcinoma is one of the most common types of malignant tumors in the digestive system, and its biological characteristics determine its high rate of metastasis and recurrence after radical resection, leading to a poor prognosis for patients. Increasing evidence demonstrates that phosphoproteins and phosphorylation-mediated molecular pathways influence the occurrence and development of hepatic carcinoma. It is urgent need to develop early-stage biomarkers for improving diagnosis, therapy, medical service, and prognostic assessment. We hypothesize that phosphoproteome and phosphorylation-mediated signaling pathway networks significantly differ in human early-stage primary hepatic carcinomas relative to control liver tissues, which will identify the key differentially phosphorylated proteins and phosphorylation-mediated signaling pathway network alterations in human early-stage primary hepatic carcinoma to innovate predictive diagnosis, prognostic assessment, and personalized medical services and progress beyond the state of the art in the framework of predictive, preventive, and personalized medicine (PPPM). Methods Tandem mass tag (TMT)-based quantitative proteomics coupled with TiO2 enrichment of phosphopeptides was used to identify phosphorylation profiling, and bioinformatics was used to analyze the pathways and biological functions of phosphorylation profiling between early-stage hepatic carcinoma tissues and tumor-adjacent normal control tissues. Furthermore, the integrative analysis with transcriptomic data from TCGA database obtained differently expressed genes (DEGs) corresponding to differentially phosphorylated proteins (DPPs) and overall survival (OS)-related DPPs. Results A total of 1326 phosphopeptides derived from 858 DPPs in human early-stage primary hepatic carcinoma were identified. KEGG pathway network analysis of 858 DPPs revealed 33 statistically significant signaling pathways, including spliceosome, glycolysis/gluconeogenesis, B-cell receptor signaling pathway, HIF-1 signaling pathway, and fatty acid degradation. Gene Ontology (GO) analysis of 858 DPPs revealed that protein phosphorylation was involved in 57 biological processes, 40 cellular components, and 37 molecular functions. Protein-protein interaction (PPI) network constructed multiple high-combined scores and co-expressed DPPs. Integrative analysis of transcriptomic data and DPP data identified 105 overlapped molecules (DPPs; DEGs) between hepatic carcinoma tissues and control tissues and 125 OS-related DPPs. Overlapping Venn plots showed 14 common molecules among datasets of DPPs, DEGs, and OS-related DDPs, including FTCD, NDRG2, CCT2, PECR, SLC23A2, PNPLA7, ANLN, HNRNPM, HJURP, MCM2, STMN1, TCOF1, TOP2A, and SSRP1. The drug sensitivities of OS-related DPPs were identified, including LMOD1, CAV2, UBE2E2, RAPH1, ANXA5, HDLBP, CUEDC1, APBB1IP, VCL, SRSF10, SLC23A2, EPB41L2, ESR1, PLEKHA4, SAFB2, SMARCAD1, VCAN, PSD4, RDH16, NOP56, MEF2C, BAIAP2L2, NAGS, SRSF2, FHOD3, and STMN1. Conclusions Identification and annotation of phosphoproteomes and phosphorylation-mediated signaling pathways in human early-stage primary hepatic carcinoma tissues provided new directions for tumor prevention and treatment, which (i) helps to enrich phosphorylation functional research and develop new biomarkers; (ii) enriches phosphorylation-mediated signaling pathways to gain a deeper understanding of the underlying mechanisms of early-stage primary hepatic carcinoma; and (iii) develops anti-tumor drugs that facilitate targeted phosphorylated sites. We recommend quantitative phosphoproteomics in early-stage primary hepatic carcinoma, which offers great promise for in-depth insight into the molecular mechanism of early-stage primary hepatic carcinoma, the discovery of effective therapeutic targets/drugs, and the construction of reliable phosphorylation-related biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized medical services in the framework of PPPM. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00335-3.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzi Po Road, Changsha, Hunan 410013 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhijun Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Qianwen Shao
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
9
|
Alternatively Spliced Isoforms of MUC4 and ADAM12 as Biomarkers for Colorectal Cancer Metastasis. J Pers Med 2023; 13:jpm13010135. [PMID: 36675796 PMCID: PMC9861497 DOI: 10.3390/jpm13010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
There is a pertinent need to develop prognostic biomarkers for practicing predictive, preventive and personalized medicine (PPPM) in colorectal cancer metastasis. The analysis of isoform expression data governed by alternative splicing provides a high-resolution picture of mRNAs in a defined condition. This information would not be available by studying gene expression changes alone. Hence, we utilized our prior data from an exon microarray and found ADAM12 and MUC4 to be strong biomarker candidates based on their alternative splicing scores and pattern. In this study, we characterized their isoform expression in a cell line model of metastatic colorectal cancer (SW480 & SW620). These two genes were found to be good prognostic indicators in two cohorts from The Cancer Genome Atlas database. We studied their exon structure using sequence information in the NCBI and ENSEMBL genome databases to amplify and validate six isoforms each for the ADAM12 and MUC4 genes. The differential expression of these isoforms was observed between normal, primary and metastatic colorectal cancer cell lines. RNA-Seq analysis further proved the differential expression of the gene isoforms. The isoforms of MUC4 and ADAM12 were found to change expression levels in response to 5-Fluorouracil (5-FU) treatment in a dose-, time- and cell line-dependent manner. Furthermore, we successfully detected the protein isoforms of ADAM12 and MUC4 in cell lysates, reflecting the differential expression at the protein level. The change in the mRNA and protein expression of MUC4 and ADAM12 in primary and metastatic cells and in response to 5-FU qualifies them to be studied as potential biomarkers. This comprehensive study underscores the importance of studying alternatively spliced isoforms and their potential use as prognostic and/or predictive biomarkers in the PPPM approach towards cancer.
Collapse
|
10
|
Identification of immune and stromal cell infiltration-related gene signature for prognosis prediction in acute lymphoblastic leukemia. Aging (Albany NY) 2022; 14:7470-7504. [PMID: 36126190 PMCID: PMC9550239 DOI: 10.18632/aging.204292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common and life-threatening hematologic malignancy, its occurrence and progression are closely related to immune/stromal cell infiltration in the bone marrow (BM) microenvironment. However, no studies have described an immune/stromal cell infiltration-related gene (ISCIRG)-based prognostic signature for ALL. A total of 444 patients involving 437 bulk and 7 single-cell RNA-seq datasets were included in this study. Eligible datasets were searched and reviewed from the database of TCGA, TARGET project and GEO. Then an integrated bioinformatics analysis was performed to select optimal prognosis-related genes from ISCIRGs, construct a nomogram model for predicting prognosis, and assess the predictive power. After LASSO and multivariate Cox regression analyses, a seven ISCIRGs-based signature was proved to be able to significantly stratify patients into high- and low-risk groups in terms of OS. The seven genes were confirmed that directly related to the composition and status of immune/stromal cells in BM microenvironment by analyzing bulk and single-cell RNA-seq datasets. The calibration plot showed that the predicted results of the nomogram were consistent with the actual observation results of training/validation cohort. This study offers a reference for future research regarding the role of ISCIRGs in ALL and the clinical care of patients.
Collapse
|