1
|
Reppe S, Gundersen S, Sandve GK, Wang Y, Andreassen OA, Medina-Gomez C, Rivadeneira F, Utheim TP, Hovig E, Gautvik KM. Identification of Transcripts with Shared Roles in the Pathogenesis of Postmenopausal Osteoporosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:5554. [PMID: 38791593 PMCID: PMC11121938 DOI: 10.3390/ijms25105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, 0313 Oslo, Norway
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
| | - Yunpeng Wang
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway; (Y.W.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0424 Oslo, Norway
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (C.M.-G.); (F.R.)
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0424 Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, 0373 Oslo, Norway; (G.K.S.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Kaare M. Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, 0440 Oslo, Norway
| |
Collapse
|
2
|
Zhou L, Liu T, Yan T, Yang M, Wang P, Shi L. 'Nine Steaming Nine Sun-drying' processing enhanced properties of Polygonatum kingianum against inflammation, oxidative stress and hyperglycemia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3123-3138. [PMID: 38072675 DOI: 10.1002/jsfa.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Polygonatum kingianum Coll. & Hemsl (PK), a prominent medicine and food homology plant, has been consumed as a decoction from boiling water for thousands of years. 'Nine Steaming Nine Sun-drying' processing has been considered an effective method for enriching tonic properties, but studies investigating such impacts on PK and underlying mechanisms are extremely rare. RESULTS We first demonstrated substantial improvements in the anti-oxidative, anti-inflammatory and anti-hyperglycemia effects of the Nine Steaming Nine Sun-drying processed PK water extracts compared with crude PK in cell models (i.e., HepG2 and Raw 264.7 cells). We then integrated foodomics and network pharmacology analysis to uncover the key compounds responsible for the improved benefits. A total of 551 metabolites of PK extracts were identified, including polyphenols, flavonoids, alkaloids, and organic acids. During processing, 204 metabolites were enhanced, and 32 metabolites were recognized as key constituents of processed PK responsible for the improved health-promoting activities, which may affect PI3K-Akt-, MAPK-, and HIF-1 pathways. We further confirmed the high affinity between identified key constituents of processed PK and their predicted acting targets using molecular docking. CONCLUSION Our results provide novel insights into bioactive compounds of processed PK, elaborating the rationality of processing from the perspective of tonic effects. Consuming processed PK could be an efficacious strategy to combat the high prevalence of metabolic diseases that currently affect millions of people worldwide. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Tao Yan
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Minmin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Wang
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
3
|
Medina-Vera D, López-Gambero AJ, Navarro JA, Sanjuan C, Baixeras E, Decara J, de Fonseca FR. Novel insights into D-Pinitol based therapies: a link between tau hyperphosphorylation and insulin resistance. Neural Regen Res 2024; 19:289-295. [PMID: 37488880 PMCID: PMC10503604 DOI: 10.4103/1673-5374.379015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer's disease. The pathogenesis of Alzheimer's disease is mainly mediated by the phosphorylation and aggregation of tau protein. Among the multiple causes of tau hyperphosphorylation, brain insulin resistance has generated much attention, and inositols as insulin sensitizers, are currently considered candidates for drug development. The present narrative review revises the interactions between these three elements: Alzheimer's disease-tau-inositols, which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | | | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
4
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
6
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Zhang Y, Lan M, Liu C, Wang T, Liu C, Wu S, Meng Q. Islr regulates insulin sensitivity by interacting with Psma4 to control insulin receptor alpha levels in obese mice. Int J Biochem Cell Biol 2023; 159:106420. [PMID: 37116777 DOI: 10.1016/j.biocel.2023.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Insulin resistance is the leading cause of type 2 diabetes (T2D), and dysfunctional insulin receptor signaling is a major manifestation of this insulin resistance. In T2D, the corresponding insulin receptor levels are aberrantly down-regulated, which is one of the major factors underlying obesity-induced insulin resistance in adipose tissue. However, the precise mechanism of insulin receptor impairment in obese individuals remains unclear. In the current study, we established that immunoglobulin superfamily containing leucine-rich repeat (Islr) is highly expressed in adipocytes of mice fed a high-fat diet. We further demonstrated that Islr mediates the ubiquitin-independent proteasomal degradation of insulin receptor alpha (Insrα) by specifically interacting with proteasome subunit alpha type 4 (Psma4). Islr knockout increased the corresponding Insrα subunit levels and enhanced insulin sensitivity in adipocytes, ultimately improving systemic metabolism. Further, siRNA-mediated down-regulation of Islr expression in the white adipose tissue of obese mice increased insulin sensitivity. Overall, Islr regulates insulin sensitivity by interacting with Psma4 to control the ubiquitin-independent proteasomal degradation of Insrα in obese mice, indicating that Islr may be a potential therapeutic target for ameliorating insulin resistance.
Collapse
Affiliation(s)
- Yuying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Miaomiao Lan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Tongtong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Chuncheng Liu
- State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Sen Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China
| | - Qingyong Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China; State Key Laboratories of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian, Beijing 100193, China.
| |
Collapse
|
8
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Zhang ZH, Li J, Li J, Ma Z, Huang XJ. Veratrilla baillonii Franch Ameliorates Diabetic Liver Injury by Alleviating Insulin Resistance in Rats. Front Pharmacol 2021; 12:775563. [PMID: 34899339 PMCID: PMC8662784 DOI: 10.3389/fphar.2021.775563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and polygenic disorder with diverse complications. Veratrilla baillonii Franch (V. baillonii) has been applied in the intervention and treatment a diverse range of diseases, including diabetes. In this study, we revealed that water extracts of V. baillonii (WVBF) can ameliorate liver injury and insulin resistance in T2DM rat model. To elucidate the anti-diabetic mechanisms of WVBF, we performed liver transcriptome analysis that displayed WVBF treatment significantly suppressed many gene expressions involved in insulin resistance. Furthermore, functional experiments showed that WVBF treatment reduced the pathological damages of liver and pancreas, which may be regulated by Foxo1, Sirt1, G6pc, c-Met, Irs1, Akt1, Pik3r1. These results indicated that WVBF improves diabetic liver injury and insulin resistance in diabetic rats. Therefore, this study demonstrated WVBF could be used as a promising therapeutic agent for intervention and treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xian-Ju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
10
|
Liu W, Zhou Y, Sun H, Li R, Qin Y, Yu L, Chen Y, Li Y, Tan Y, Zhao R, Zhang W, Jiang S, Xu Y. Goat Milk Improves Glucose Homeostasis via Enhancement of Hepatic and Skeletal Muscle AMP-Activated Protein Kinase Activation and Modulation of Gut Microbiota in Streptozocin-Induced Diabetic Rats. Mol Nutr Food Res 2021; 65:e2000888. [PMID: 33555137 DOI: 10.1002/mnfr.202000888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Indexed: 11/12/2022]
Abstract
SCOPE Previously, the metabolic benefits of goat milk consumption in high-fat diet-fed rats are demonstrated. However, the effects are only reported in one animal model and the involvement of gut microbiota is not investigated. The aim of this study is to investigate the effects of goat milk consumption on glucose homeostasis and gut microbiota in streptozocin (STZ)-induced diabetic rats. METHODS AND RESULTS STZ-induced diabetic rats are fed with three dosages of goat milk: 2.5, 5, and 10 g kg-1 . Parameters related to glucose homeostasis, hepatic and skeletal muscle AMP-activated protein kinase (AMPK) activation, and gut microbiota are investigated. The dose of 10 g kg-1 exerts more metabolic benefits. Goat milk consumption improves fasting glucose levels, glucose tolerance, insulin sensitivity, and promotes hepatic and skeletal muscle AMPK activation in STZ-injected diabetic rats. Goat milk modulates gut microbiota, increases the relative abundance of Lactobacillus, and augments levels of propionic and butyric acids. CONCLUSION This study demonstrates the metabolic benefits of goat milk consumption in STZ-induced diabetic rats, which is consistent with the previous observations in high-fat diet-induced diabetic rats. Furthermore, this study elucidates the modulation of gut microbiota by goat milk, which likely mediates the metabolic effects of goat milk.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Han Sun
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuwei Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Runlong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Wei Zhang
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Shilong Jiang
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Xueyuan Road 38, Haidian, Beijing, 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| |
Collapse
|
11
|
Yegorova S, Yegorov O, Ferreira LF. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Gene 2020; 770:145356. [PMID: 33333219 DOI: 10.1016/j.gene.2020.145356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
The diaphragm is the main inspiratory muscle, and the chronic phase post-myocardial infarction (MI) is characterized by diaphragm morphological, contractile, and metabolic abnormalities. However, the mechanisms of diaphragm weakness are not fully understood. In the current study, we aimed to identify the transcriptome changes associated with diaphragm abnormalities in the chronic stage MI. We ligated the left coronary artery to cause MI in rats and performed RNA-sequencing (RNA-Seq) in diaphragm samples 16 weeks post-surgery. The sham group underwent thoracotomy and pericardiotomy but no artery ligation. We identified 112 differentially expressed genes (DEGs) out of a total of 9664 genes. Myocardial infarction upregulated and downregulated 42 and 70 genes, respectively. Analysis of DEGs in the framework of skeletal muscle-specific biological networks suggest remodeling in the neuromuscular junction, extracellular matrix, sarcomere, cytoskeleton, and changes in metabolism and iron homeostasis. Overall, the data are consistent with pathological remodeling of the diaphragm and reveal potential biological targets to prevent diaphragm weakness in the chronic stage MI.
Collapse
Affiliation(s)
- Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | - Oleg Yegorov
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA.
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
12
|
Rey D, Fernandes TA, Sulis PM, Gonçalves R, Sepúlveda R M, Silva Frederico MJ, Aragon M, Ospina LF, Costa GM, Silva FRMB. Cellular target of isoquercetin from Passiflora ligularis Juss for glucose uptake in rat soleus muscle. Chem Biol Interact 2020; 330:109198. [PMID: 32692981 DOI: 10.1016/j.cbi.2020.109198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022]
Abstract
Quercetin 3-O-beta-d-glucopyranoside (isoquercetin) is one of the most frequent metabolites of the Passiflora ligularis Juss. The purpose of this study was to investigate the effect of the aqueous extract and ethanol fraction from P. ligularis Juss leaves on glycaemia and the mechanism of action of isoquercetin on glucose uptake. In the glucose tolerance test, the aqueous extract and ethanol fraction from P. ligularis Juss (125 mg/kg to 500 mg/kg o. g.) reduced glycaemia and increased the hepatic and muscular glycogen content. Phytochemical analysis evidenced the dominant presence of isoquercetin in the extract and fraction from leaves of P. ligularis Juss. Isoquercetin mediates the stimulatory effect on glucose uptake independent of insulin receptor activation but, involve PI3K, MAPK, MEK/ERK pathways and de novo protein synthesis to GLUT-4 translocation. Overall findings revealed that isoquercetin and aqueous extract and ethanol fraction of P. ligularis Juss leaves might be a promising functional food or medicine for the treatment or prevention of diabetes.
Collapse
Affiliation(s)
- Diana Rey
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Thaís Alves Fernandes
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Paola Miranda Sulis
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Renata Gonçalves
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil
| | - Michelle Sepúlveda R
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Marisa Jádna Silva Frederico
- Universidade Federal do Ceará, Departamento de Farmacologia e Fisiologia, Faculdade de Medicina, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Rua Coronel Nunes de Melo, 1000 - Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Marcela Aragon
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Luís Fernando Ospina
- Universidad Nacional de Colombia, Departamento de Farmácia, Facultad de Ciencias, Cra. 30 45-03, 111321, Bogotá, DC, Colombia
| | - Geison M Costa
- Pontificia Universidad Javeriana, Departamento de Química, Facultad de Ciencias, Carrera 7 43-82, Edificio Carlos Ortiz (52), Oficina 617, 110231, Bogotá, DC, Colombia
| | - Fátima Regina Mena Barreto Silva
- Universidade Federal de Santa Catarina, Departamento de Bioquímica - Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Cx. Postal 5069, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
13
|
Navarro-Tableros V, Gai C, Gomez Y, Giunti S, Pasquino C, Deregibus MC, Tapparo M, Pitino A, Tetta C, Brizzi MF, Ricordi C, Camussi G. Islet-Like Structures Generated In Vitro from Adult Human Liver Stem Cells Revert Hyperglycemia in Diabetic SCID Mice. Stem Cell Rev Rep 2020; 15:93-111. [PMID: 30191384 PMCID: PMC6510809 DOI: 10.1007/s12015-018-9845-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A potential therapeutic strategy for diabetes is the transplantation of induced-insulin secreting cells. Based on the common embryonic origin of liver and pancreas, we studied the potential of adult human liver stem-like cells (HLSC) to generate in vitro insulin-producing 3D spheroid structures (HLSC-ILS). HLSC-ILS were generated by a one-step protocol based on charge dependent aggregation of HLSC induced by protamine. 3D aggregation promoted the spontaneous differentiation into cells expressing insulin and several key markers of pancreatic β cells. HLSC-ILS showed endocrine granules similar to those seen in human β cells. In static and dynamic in vitro conditions, such structures produced C-peptide after stimulation with high glucose. HLSC-ILS significantly reduced hyperglycemia and restored a normo-glycemic profile when implanted in streptozotocin-diabetic SCID mice. Diabetic mice expressed human C-peptide and very low or undetectable levels of murine C-peptide. Hyperglycemia and a diabetic profile were restored after HLSC-ISL explant. The gene expression profile of in vitro generated HLSC-ILS showed a differentiation from HLSC profile and an endocrine commitment with the enhanced expression of several markers of β cell differentiation. The comparative analysis of gene expression profiles after 2 and 4 weeks of in vivo implantation showed a further β-cell differentiation, with a genetic profile still immature but closer to that of human islets. In conclusion, protamine-induced spheroid aggregation of HLSC triggers a spontaneous differentiation to an endocrine phenotype. Although the in vitro differentiated HLSC-ILS were immature, they responded to high glucose with insulin secretion and in vivo reversed hyperglycemia in diabetic SCID mice.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T - Scarl.-Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Sara Giunti
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Chiara Pasquino
- Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy.,Molecular Biotechnology and Health Sciences, MBC, Via Nizza, 52, 10126, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T - Scarl.-Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Adriana Pitino
- Molecular Biotechnology and Health Sciences, MBC, Via Nizza, 52, 10126, Turin, Italy
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy. .,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
14
|
Yang Q, Wen YM, Shen J, Chen MM, Wen JH, Li ZM, Liang YZ, Xia N. Guava Leaf Extract Attenuates Insulin Resistance via the PI3K/Akt Signaling Pathway in a Type 2 Diabetic Mouse Model. Diabetes Metab Syndr Obes 2020; 13:713-718. [PMID: 32214834 PMCID: PMC7078673 DOI: 10.2147/dmso.s231979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Insulin resistance is well known to exhibit essential effects on the progression of diabetes mellitus (DM). Guava leaf was also reported to exhibit anti-diabetic effects including decreasing blood glucose. Therefore, this present study aims to explore the role guava leaf extract (GLE) plays in insulin resistance and its mechanism of action via the PI3K/Akt signaling pathway. METHODS KK-Ay mice is a spontaneous genetic type 2 diabetes mouse model induced by feeding a high fat and high sugar diet. Mice were randomly assigned into three groups: diabetic mice (DM), DM + MET (diabetic mice treated with metformin) and DM + GLE (diabetic mice treated with GLE) groups. After 8 weeks of treatment, body weight and levels of fasting plasma glucose (FPG), fasting insulin and lipids in plasma were measured. Mice were sacrificed and mRNA and protein expression of insulin receptor substrate1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase protein B (Akt) in livers were measured. RESULTS GLE markedly reduced body weight, FPG, fasting insulin and insulin resistance index but increased the insulin sensitivity index of diabetic KK-Ay mice. Moreover, GLE upregulated the expression of IRS-1, PI3K and Akt mRNAs in livers of diabetic KK-Ay mice. In addition, GLE also elevated IRS-1, PI3K, Akt, p-PI3K and p-Akt protein expression in their livers. The results of the DM + MET group were similar to those of the DM + GLE group. CONCLUSION GLE plays anti-diabetic roles by ameliorating insulin resistance in KK-Ay diabetic mice and this is related to the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qiong Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yu-Mei Wen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Jing Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Mei-Mei Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Jiang-Hua Wen
- Department of Health Examination, Jiangmen Central Hospital, Jiangmen, Guangdong529070, People’s Republic of China
| | - Zheng-Ming Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Yu-Zhen Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
| | - Ning Xia
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of China
- Correspondence: Ning Xia Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning530021, People’s Republic of ChinaTel +86 77 1280 2380 Email
| |
Collapse
|
15
|
Abdolmaleki F, Heidarianpour A. Endurance exercise training restores diabetes-induced alteration in circulating Glycosylphosphatidylinositol-specific phospholipase D levels in rats. Diabetol Metab Syndr 2020; 12:43. [PMID: 32467736 PMCID: PMC7236206 DOI: 10.1186/s13098-020-00553-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glycosylphosphatidylinositol-specific phospholipase D (GPLD1) is responsible for cleaving membrane-associated glycosylphosphatidylinositol (GPI) molecules, which is affected by diabetes. We aimed to examine the effect of 14 weeks treadmill running on serum GPLD1 levels and its association with glycemic indexes and serum glypican-4 (GPC-4), a novel GPI-anchored adipokine, in streptozotocin-nicotinamide-induced diabetic rats. METHODS Thirty-six male Wister rats were randomly divided into three groups of twelve animals each, involving sedentary control (SC), sedentary diabetic (SD), and trained diabetic (TD) groups. The diabetes was induced through intraperitoneal injection of 120 mg/kg nicotinamide 15 min prior to intraperitoneal injection of 65 mg/kg streptozotocin in SD and TD groups. The TD group was exercised on a treadmill for 60 min/days, 5 days/wk at 26 m/min, and zero grade for 14 weeks. Following the experiment period, blood samples were taken from all animals and analyzed for experimental indexes via sandwich ELISA. RESULTS Exercise training caused a significant decrease in the elevated blood glucose levels and a significant increase in the lowered blood insulin levels in TD rats (both p < 0.001). Glucose tolerance of TD rats significantly improved following experimental protocol, as indicated by OGTT (p < 0.001). Experimental diabetes significantly increased serum GPLD1 levels (p < 0.001), while exercise training significantly decreased its levels (p < 0.001). Serum GPLD1 levels correlated directly with glycemic indexes involving FBS, 2hOGTT, and AUC of glucose (r = 0.80, r = 0.79, r = 0.79, respectively, all p < 0.001) and inversely with serum insulin levels (r = - 0.83, p < 0.001). There were no significant differences in serum GPC-4 levels among groups, and no association with GPLD1 alteration. CONCLUSIONS Sedentary diabetic rats have higher circulating GPLD1 compared to controls, which can be reversed by exercise training and is associated with modifying in glycemic and insulin profile.
Collapse
Affiliation(s)
- Farzad Abdolmaleki
- Department of Exercise Physiology, Faculty of Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Sport Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
16
|
Curcumin exerts beneficial role on insulin resistance through modulation of SOCS3 and Rac-1 pathways in type 2 diabetic rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Nepstad I, Hatfield KJ, Grønningsæter IS, Aasebø E, Hernandez-Valladares M, Hagen KM, Rye KP, Berven FS, Selheim F, Reikvam H, Bruserud Ø. Effects of insulin and pathway inhibitors on the PI3K-Akt-mTOR phosphorylation profile in acute myeloid leukemia cells. Signal Transduct Target Ther 2019; 4:20. [PMID: 31240133 PMCID: PMC6582141 DOI: 10.1038/s41392-019-0050-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/05/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway is constitutively activated in human acute myeloid leukemia (AML) cells and is regarded as a possible therapeutic target. Insulin is an agonist of this pathway and a growth factor for AML cells. We characterized the effect of insulin on the phosphorylation of 10 mediators in the main track of the PI3K-Akt-mTOR pathway in AML cells from 76 consecutive patients. The overall results showed that insulin significantly increased the phosphorylation of all investigated mediators. However, insulin effects on the pathway activation profile varied among patients, and increased phosphorylation in all mediators was observed only in a minority of patients; in other patients, insulin had divergent effects. Global gene expression profiling and proteomic/phosphoproteomic comparisons suggested that AML cells from these two patient subsets differed with regard to AML cell differentiation, transcriptional regulation, RNA metabolism, and cellular metabolism. Strong insulin-induced phosphorylation was associated with weakened antiproliferative effects of metabolic inhibitors. PI3K, Akt, and mTOR inhibitors also caused divergent effects on the overall pathway phosphorylation profile in the presence of insulin, although PI3K and Akt inhibition caused a general reduction in Akt pT308 and 4EBP1 pT36/pT45 phosphorylation. For Akt inhibition, the phosphorylation of upstream mediators was generally increased or unaltered. In contrast, mTOR inhibition reduced mTOR pS2448 and S6 pS244 phosphorylation but increased Akt pT308 phosphorylation. In conclusion, the effects of both insulin and PI3K-Akt-mTOR inhibitors differ between AML patient subsets, and differences in insulin responsiveness are associated with differential susceptibility to metabolic targeting.
Collapse
Affiliation(s)
- Ina Nepstad
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kimberley Joanne Hatfield
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ida Sofie Grønningsæter
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Karen Marie Hagen
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin Paulsen Rye
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Frode S. Berven
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Frode Selheim
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Alfredo Martinez J. Association of Methylation Signatures at Hepatocellular Carcinoma Pathway Genes with Adiposity and Insulin Resistance Phenotypes. Nutr Cancer 2018; 71:840-851. [PMID: 30457363 DOI: 10.1080/01635581.2018.1531136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes mellitus are independent risk factors for the onset and progression of hepatocellular carcinoma (HCC). This study aimed to analyze the association of DNA methylation signatures at HCC pathway genes with obesity and related metabolic disturbances. A population of 474 adults within the Methyl Epigenome Network Association (MENA) project was included. DNA methylation levels were measured in white blood cells by microarray. The identification and discrimination of HCC pathway genes were performed using KEGG and PathDIP databases. Anthropometry measurements, the blood metabolic profile, and clinical data were analyzed. The methylation patterns of 20 CpG sites at HCC pathway genes strongly correlated with BMI (FDR <0.0001). These genes encompassed GADD45A, MTOR, FRAT2, E2F3, WNT7B, FRAT1, LRP5, DPF3, GSTA2, APC, MYC, WNT10B, ARID1B, AKT1, GSTA1, WNT5A, CDK4, GAB1, TCF7, which statistically contributed to the regulation of the HCC pathway (P = 2.10e-07). The main biological process where these genes were implicated included uncontrolled cell proliferation, DNA damage, increased survival, and altered oncogenic expression. Interestingly, 9 out of 20 BMI-associated CpGs also correlated with waist circumference and HOMA-IR index. In conclusion, pathway analysis revealed potential associations of DNA methylation signatures at HCC pathway genes with adiposity and insulin resistance phenotypes.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Jose I Riezu-Boj
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
| | - Fermin I Milagro
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- c CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute , Madrid , Spain
| | - J Alfredo Martinez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
- c CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute , Madrid , Spain
- d Madrid Institute of Advanced Studies (IMDEA Food) , Madrid , Spain
| |
Collapse
|
19
|
Inhibition of SphK2 Stimulated Hepatic Gluconeogenesis Associated with Dephosphorylation and Deacetylation of STAT3. Arch Med Res 2018; 49:335-341. [PMID: 30448236 DOI: 10.1016/j.arcmed.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sphingosine kinase (SphK) is considered as a potential target for developing novel therapeutics of cancer and other diseases including diabetes. As the major SphK isoform in the liver, much less is known the role of SphK2 involved in regulating hepatic glucose metabolism. METHOD In this study, RNA interference, real time RT-PCR, western blot and immunoprecipitation method was used to investigate the regulation of SphK2 in hepatic glucose metabolism. RESULTS Both siRNA and SphK2 inhibitor ABC294640 stimulated expression of gluconeogenetic gene PEPCK and G6Pase but not enzymes of hepatic glycogenolysis, glycolysis and glycogen synthesis. Inhibition of SphK2 also prevented insulin repressed PEPCK and G6Pase expression as well as glucose production levels. Furtherly, inhibition of SphK2 inactivated STAT3 by decreasing both phosphorylation on Tyr705 and acetylation on lysine residue, and led to stimulation of PEPCK and G6Pase expression. Inhibition of SphK2 also prevented IL-6 dependent activation of STAT3 and suppression of PEPCK and G6pase expression both in vitro and in vivo. CONCLUSION Our study suggests that SphK2 participates in hepatic glucose metabolism related to activation of STAT3.
Collapse
|
20
|
SIRT5 deacylates metabolism-related proteins and attenuates hepatic steatosis in ob/ob mice. EBioMedicine 2018; 36:347-357. [PMID: 30279144 PMCID: PMC6197389 DOI: 10.1016/j.ebiom.2018.09.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022] Open
Abstract
Background Sirtuin 5 (SIRT5) is a NAD+-dependent lysine deacylase. The SIRT5 deficiency mouse model shows that it is dispensable for metabolic homeostasis under normal conditions. However, the biological role of SIRT5 and acylation in pathological states such as obesity and type 2 diabetes (T2D) remains elusive. Methods The hepatic SIRT5-overexpressing ob/ob mouse model (ob/ob-SIRT5 OE) was established by CRISPR/Cas9 gene editing tool Protein malonylation and succinylation lysine sites were identified by immunoprecipitation coupled lipid chromatography - tandem mass spectrometry (LC-MS/MS) methods. Findings The ob/ob-SIRT5 OE mice showed decreased malonylation and succinylation, improved cellular glycolysis, suppressed gluconeogenesis, enhanced fatty acid oxidation, and attenuated hepatic steatosis. A total of 955 malonylation sites on 434 proteins and 1377 succinylation sites on 429 proteins were identified and quantitated. Bioinformatics analysis revealed that malonylation was the major SIRT5 target in the glycolysis/gluconeogenesis pathway, whereas succinylation was the preferred SIRT5 target in the oxidative phosphorylation pathway. Interpretation Hepatic overexpression of SIRT5 ameliorated the metabolic abnormalities of ob/ob mice, probably through demalonylating and desuccinylating proteins in the main metabolic pathways. SIRT5 and related acylation might be potential targets for metabolic disorders. Fund National Key R&D Program of China, the National Natural Science Foundation of China, the Strategic Priority Research Programs (Category A) of the Chinese Academy of Sciences, the Interdisciplinary Medicine Seed Fund of Peking University and the National Laboratory of Biomacromolecules.
Collapse
|
21
|
Abdolmaleki F, Heidarianpour A. The response of serum Glypican-4 levels and its potential regulatory mechanism to endurance training and chamomile flowers' hydroethanolic extract in streptozotocin-nicotinamide-induced diabetic rats. Acta Diabetol 2018; 55:935-942. [PMID: 29948407 DOI: 10.1007/s00592-018-1173-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
Abstract
AIMS Glypican-4 (GPC-4) is a novel adipomyokine that enhances insulin signaling. Glycosylphosphatidylinositol-specific phospholipase D (GPLD1) is thought to release GPC-4 and is itself an insulin-regulated enzyme. Beneficial effects of exercise training and chamomile flowers extract (CFE) are shown through activation of PPARγ, which is a promising drug target in diabetes and associated with GPC-4 synthesis. This study investigated the effects of 14-week treadmill running and CFE on serum GPC-4, GPLD1, and insulin levels in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. METHODS Thirty-two STZ-NA-induced diabetic male Wistar rats were randomly assigned to four groups: control (C), training (T), CFE treatment (CFE), and training plus CFE treatment (TCFE) groups. The training groups were exercised on treadmill 5 days/week and the treating groups were fed with 200 mg/kg/day CFE in drinking water for 14 weeks. Finally, serum GPC-4, GPLD1, and insulin levels were analyzed via sandwich ELISA. RESULTS Compared to the control group, serum insulin levels were significantly higher in the T, CFE, and TCFE groups (p < 0.05, p < 0.05, p < 0.01, respectively), while OGTT and serum GPLD1 levels were significantly lower in the T, CFE, and TCFE groups (all p < 0.001). Changes in serum GPC-4 levels were not significant. Serum GPLD1 levels were negatively correlated with insulin levels and HOMA-IS (both p < 0.001). CONCLUSIONS This study suggests that endurance training and CFE may downregulate serum GPLD1 levels in STZ-NA-induced diabetic rats, which associate with the serum insulin profile. However, the results show that endurance training and CFE may not cause serum GPC-4 adaptation in STZ-NA-induced diabetic rats.
Collapse
Affiliation(s)
- Farzad Abdolmaleki
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamadan, Iran
| | - Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamadan, Iran.
| |
Collapse
|
22
|
Matoba K, Lu Y, Zhang R, Chen ER, Sangwung P, Wang B, Prosdocimo DA, Jain MK. Adipose KLF15 Controls Lipid Handling to Adapt to Nutrient Availability. Cell Rep 2018; 21:3129-3140. [PMID: 29241541 DOI: 10.1016/j.celrep.2017.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/13/2017] [Accepted: 11/09/2017] [Indexed: 12/24/2022] Open
Abstract
Adipose tissue stores energy in the form of triglycerides. The ability to regulate triglyceride synthesis and breakdown based on nutrient status (e.g., fed versus fasted) is critical for physiological homeostasis and dysregulation of this process can contribute to metabolic disease. Whereas much is known about hormonal control of this cycle, transcriptional regulation is not well understood. Here, we show that the transcription factor Kruppel-like factor 15 (KLF15) is critical for the control of adipocyte lipid turnover. Mice lacking Klf15 in adipose tissue (AK15KO) display decreased adiposity and are protected from diet-induced obesity. Mechanistic studies suggest that adipose KLF15 regulates key genes of triglyceride synthesis and inhibits lipolytic action, thereby promoting lipid storage in an insulin-dependent manner. Finally, AK15KO mice demonstrate accelerated lipolysis and altered systemic energetics (e.g., locomotion, ketogenesis) during fasting conditions. Our study identifies adipose KLF15 as an essential regulator of adipocyte lipid metabolism and systemic energy balance.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yuan Lu
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Rongli Zhang
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Eric R Chen
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benlian Wang
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Abstract
Heart diseases are major causes of mortality. Cardiac hypertrophy, myocardial infarction (MI), viral cardiomyopathy, ischemic and reperfusion (I/R) heart injury finally lead to heart failure and death. Insulin and IGF1 signal pathways play key roles in normal cardiomyocyte growth and physiological cardiac hypertrophy while inflammatory signal pathway is associated with pathological cardiac hypertrophy, MI, viral cardiomyopathy, I/R heart injury, and heart failure. Adapter proteins are the major family proteins, which transduce signals from insulin, IGF1, or cytokine receptors to the downstream pathways and have been shown to regulate variety of heart diseases. Here, we summarized the recent advances in understanding the physiological and pathological roles of adapter proteins in heart failure.
Collapse
Affiliation(s)
- Li Tao
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yuntian Li
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Chengyun Song
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China.
| | - Zheng Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
24
|
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci 2017; 74:3941-3954. [PMID: 28819865 PMCID: PMC11107716 DOI: 10.1007/s00018-017-2611-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina.
| | - Daniel E Vigo
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina
| |
Collapse
|
25
|
Al-Salam A, Irwin DM. Evolution of the vertebrate insulin receptor substrate (Irs) gene family. BMC Evol Biol 2017; 17:148. [PMID: 28645244 PMCID: PMC5482937 DOI: 10.1186/s12862-017-0994-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. RESULTS Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. CONCLUSIONS The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.
Collapse
Affiliation(s)
- Ahmad Al-Salam
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Chen Z. Adapter proteins regulate insulin resistance and lipid metabolism in obesity. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
28
|
Dornellas APS, Watanabe RLH, Pimentel GD, Boldarine VT, Nascimento CMO, Oyama LM, Ghebremeskel K, Wang Y, Bueno AA, Ribeiro EB. Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:21-9. [PMID: 26525379 DOI: 10.1016/j.plefa.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023]
Abstract
Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.
Collapse
Affiliation(s)
- A P S Dornellas
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - R L H Watanabe
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - G D Pimentel
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - V T Boldarine
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - C M O Nascimento
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - L M Oyama
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - K Ghebremeskel
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | - Y Wang
- Department of Medicine, Division of Infectious Diseases, Section of Paediatrics, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - A A Bueno
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - E B Ribeiro
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil.
| |
Collapse
|
29
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
30
|
White AT, LaBarge SA, McCurdy CE, Schenk S. Knockout of STAT3 in skeletal muscle does not prevent high-fat diet-induced insulin resistance. Mol Metab 2015; 4:569-75. [PMID: 26266089 PMCID: PMC4529495 DOI: 10.1016/j.molmet.2015.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Objective Increased signal transducer and activator of transcription 3 (STAT3) signaling has been implicated in the development of skeletal muscle insulin resistance, though its contribution, in vivo, remains to be fully defined. Therefore, the aim of this study was to determine whether knockout of skeletal muscle STAT3 would prevent high-fat diet (HFD)-induced insulin resistance. Methods We used Cre-LoxP methodology to generate mice with muscle-specific knockout (KO) of STAT3 (mKO). Beginning at 10 weeks of age, mKO mice and their wildtype/floxed (WT) littermates either continued consuming a low fat, control diet (CON; 10% of calories from fat) or were switched to a HFD (60% of calories from fat) for 20 days. We measured body composition, energy expenditure, oral glucose tolerance and in vivo insulin action using hyperinsulinemic-euglycemic clamps. We also measured insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake technique. Results STAT3 protein expression was reduced ∼75–100% in muscle from mKO vs. WT mice. Fat mass and body fat percentage did not differ between WT and mKO mice on CON and were increased equally by HFD. There were also no genotype differences in energy expenditure or whole-body fat oxidation. As determined, in vivo (hyperinsulinemic-euglycemic clamps) and ex vivo (2DOG uptake), skeletal muscle insulin sensitivity did not differ between CON-fed mice, and was impaired similarly by HFD. Conclusions These results demonstrate that STAT3 activation does not underlie the development of HFD-induced skeletal muscle insulin resistance. Loss of STAT3 in skeletal muscle does not effect whole body energy expenditure in mice. Mice with knockout of STAT3 in skeletal muscle (mKO) develop glucose intolerance with HFD feeding similar to littermate controls. HFD-induced insulin resistance in skeletal muscle is not prevented by knockout of STAT3.
Collapse
Key Words
- 2DOG, 2-deoxyglucose
- AT, adipose tissue
- Adgre1, adhesion G protein-coupled receptor E1
- CON, normal chow, control diet
- Clamp
- Cre-LoxP
- EDL, extensor digitorum longus
- GA, gastrocnemius
- GIR, glucose infusion rate
- Glucose homeostasis
- HFD, high-fat diet
- HGP, hepatic glucose production
- HYP-EUG, hyperinsulinemic-euglycemic
- IL, interleukin
- IS-GDR, insulin-stimulated glucose disposal rate
- In vivo
- KO, knockout
- MCK, muscle creatine kinase
- Obesity
- STAT3
- STAT3, signal transducer and activator of transcription 3
- T2D, type 2 diabetes
- WT, wild-type
- mKO, muscle-specific knockout of STAT3
Collapse
Affiliation(s)
- Amanda T White
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA ; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA ; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|