1
|
Darwitz BP, Genito CJ, Thurlow LR. Triple threat: how diabetes results in worsened bacterial infections. Infect Immun 2024; 92:e0050923. [PMID: 38526063 PMCID: PMC11385445 DOI: 10.1128/iai.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.
Collapse
Affiliation(s)
- Benjamin P. Darwitz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher J. Genito
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Lance R. Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Kurian SJ, Baral T, Unnikrishnan MK, Benson R, Munisamy M, Saravu K, Rodrigues GS, Rao M, Kumar A, Miraj SS. The association between micronutrient levels and diabetic foot ulcer: A systematic review with meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1152854. [PMID: 37065742 PMCID: PMC10090454 DOI: 10.3389/fendo.2023.1152854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus (DM). Nutrient deficiencies are among the major risk factors in DFU development and healing. In this context, we aimed to investigate the possible association between micronutrient status and risk of DFU. METHODS A systematic review (Prospero registration: CRD42021259817) of articles, published in PubMed, Web of Science, Scopus, CINAHL Complete, and Embase, that measured the status of micronutrients in DFU patients was performed. RESULTS Thirty-seven studies were considered, of which thirty were included for meta-analysis. These studies reported levels of 11 micronutrients: vitamins B9, B12, C, D, E, calcium, magnesium, iron, selenium, copper, and zinc. DFU, compared to healthy controls (HC) had significantly lower vitamin D (MD: -10.82 14 ng/ml, 95% CI: -20.47, -1.16), magnesium (MD: -0.45 mg/dL, 95% CI: -0.78, -0.12) and selenium (MD: -0.33 µmol/L, 95% CI: -0.34, -0.32) levels. DFU, compared to DM patients without DFU, had significantly lower vitamin D (MD: -5.41 ng/ml, 95% CI: -8.06, -2.76), and magnesium (MD: -0.20 mg/dL, 95% CI: -0.25, -0.15) levels. The overall analysis showed lower levels of vitamin D [15.55ng/ml (95% CI:13.44, 17.65)], vitamin C [4.99µmol/L (95% CI:3.16, 6.83)], magnesium [1.53mg/dL (95% CI:1.28, 1.78)] and selenium [0.54µmol/L (95% CI:0.45, 0.64)]. CONCLUSION This review provides evidence that micronutrient levels significantly differ in DFU patients, suggesting an association between micronutrient status and risk of DFU. Therefore, routine monitoring and supplementations are warranted in DFU patients. We suggest that personalized nutrition therapy may be considered in the DFU management guidelines. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=259817, identifier CRD42021259817.
Collapse
Affiliation(s)
- Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Tejaswini Baral
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Ruby Benson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Kavitha Saravu
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Amit Kumar
- Department of Laboratory Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- *Correspondence: Sonal Sekhar Miraj,
| |
Collapse
|
3
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
4
|
Alay H, Laloglu E, Kesmez Can F. An evaluation of ischaemia-modified albumin levels in the development of diabetic foot ulcer. Int J Clin Pract 2021; 75:e14589. [PMID: 34227201 DOI: 10.1111/ijcp.14589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION This study investigated the status of serum ischaemia-modified albumin (IMA) levels in the development of diabetic foot ulcer (DFU) in patients with diabetes mellitus (DM) and in predicting ulcer formation and ulcer grading. MATERIALS AND METHOD Thirty patients with DM, 30 with DFU and 30 healthy controls were included in the study. All participants' demographic characteristics and serum IMA, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cell (WBC) levels and DFU infection grades were recorded. RESULTS Nine (30%) patients with DFU were grade 2 according to the grading of International Working Group of the Diabetic Foot, 14 (46.7%) were grade 3 and seven (23.3%) were grade 4. Significant, powerful and positive correlation was determined between serum IMA and albumin-adjusted IMA levels and degrees of DFU (r = 0.878 and r = 0.846, P < .001 for both). Serum IMA levels in the DFU group were significantly higher than in the DM and control groups (P < .001). The optimal cut-off values for IMA in predicting DFU was 23.5 ng/mL (sensitivity 96%, specificity 87% and AUC = 0.97, P < .001). Additionally, at a cut-off value of 20.6 ng/mL, serum albumin-adjusted IMA differentiated cases of DFU from healthy individuals with 90% sensitivity and 83% specificity (AUC = 0.95, P < .001) Serum IMA levels exhibited significant, positive correlation with CRP, ESR, WBC, fasting plasma glucose and HbA1c (r = 0.575, r = 0.592, r = 0.597, r = 0.68 and r = 0.74, respectively, P < .001). Serum albumin levels were significantly negatively correlated with IMA, CRP, ESR and WBC values (r = -0.49, r = -0.56, r = -0.62 and r = -0.53, respectively, P < .001). CONCLUSION Our study findings indicate that together with CRP, ESH, WBC and albumin, increased IMA levels in patients with DM can be useful in the early prevention of DFU development and in predicting the severity of DFU infection.
Collapse
Affiliation(s)
- Handan Alay
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Esra Laloglu
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatma Kesmez Can
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Emwas AHM, Al-Rifai N, Szczepski K, Alsuhaymi S, Rayyan S, Almahasheer H, Jaremko M, Brennan L, Lachowicz JI. You Are What You Eat: Application of Metabolomics Approaches to Advance Nutrition Research. Foods 2021; 10:1249. [PMID: 34072780 PMCID: PMC8229064 DOI: 10.3390/foods10061249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
A healthy condition is defined by complex human metabolic pathways that only function properly when fully satisfied by nutritional inputs. Poor nutritional intakes are associated with a number of metabolic diseases, such as diabetes, obesity, atherosclerosis, hypertension, and osteoporosis. In recent years, nutrition science has undergone an extraordinary transformation driven by the development of innovative software and analytical platforms. However, the complexity and variety of the chemical components present in different food types, and the diversity of interactions in the biochemical networks and biological systems, makes nutrition research a complicated field. Metabolomics science is an "-omic", joining proteomics, transcriptomics, and genomics in affording a global understanding of biological systems. In this review, we present the main metabolomics approaches, and highlight the applications and the potential for metabolomics approaches in advancing nutritional food research.
Collapse
Affiliation(s)
- Abdul-Hamid M. Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Nahla Al-Rifai
- Environmental Technology Management (2005-2012), College for Women, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (S.A.); (M.J.)
| | - Shuruq Alsuhaymi
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (S.A.); (M.J.)
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit 627, Palestine;
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia;
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (S.A.); (M.J.)
| | - Lorraine Brennan
- Institute of Food and Health and Conway Institute, School of Agriculture & Food Science, Dublin 4, Ireland;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| |
Collapse
|
6
|
Sharma N, Gulati A. Selective binding of Ni 2+ and Cu 2+ metal ions with naphthazarin esters isolated from Arnebia euchroma. Biotechnol Prog 2020; 36:e2985. [PMID: 32103632 DOI: 10.1002/btpr.2985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/25/2020] [Accepted: 02/16/2020] [Indexed: 11/10/2022]
Abstract
Naphthazarin esters (C1-C4) isolated from the roots of Arnebia euchroma are found as skilled dual chemosensors for Ni2+ and Cu2+ among Pb2+ , Na2+ , K2+ , Hg2+ , Mg2+ , and Ca2+ metal ions. C1-C4 esters exhibited a red shift of 54 nm with Ni2+ and 30 nm with Cu2+ metal ions in absorption. There is a formation of red-shifted bands between 517 and 613 nm in the absorption spectrum of C1-C4 sensors on binding with Ni2+ and Cu2+ ions. The addition of Ni2+ and Cu2+ ions to sensors C1-C4 stimulates a remarkable color change from reddish pink to purple and light blue, respectively. These color changes can be identified with the naked eye. The significant downfield shifts of CO and OH peaks in nuclear magnetic resonance (NMR) spectrum confirm the chelation as binding mechanism. With ultraviolet-visble and NMR studies, it is found that C1-C4 esters possessed notable selectivity and sensitivity toward Ni2+ and Cu2+ over other metal ions.
Collapse
Affiliation(s)
- Nidhi Sharma
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Road Research Institute (CRRI), New Delhi, India.,Food and Nutraceutical Division, Natural Product Chemistry & Process Development Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ashu Gulati
- Food and Nutraceutical Division, Natural Product Chemistry & Process Development Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
7
|
Huo G, Chen W, Wang J, Chu X, Xu W, Li B, Zhang Y, Xu B, Zhou X. His18 promotes reactive oxidative stress production in copper-ion mediated human islet amyloid polypeptide aggregation. RSC Adv 2020; 10:5566-5571. [PMID: 35497413 PMCID: PMC9049296 DOI: 10.1039/c9ra09943c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
Copper ions play a critical role in human islet amyloid polypeptide (hIAPP) aggregation, which has been found in more than 90% of patients with type-2 diabetes (T2D). The role of Cu(ii) in the cell cytotoxicity with hIAPP has been explored in two aspects: inhibiting the formation of fibrillar structures and stimulating the generation of reactive oxygen species (ROS). In this work, we carried out spectroscopic studies of Cu(ii) interacting with several hIAPP fragments and their variants as well. Electron paramagnetic resonance (EPR) measurements and Amplex Red analysis showed that the amount of H2O2 generated in hIAPP(11-28) solution co-incubated with Cu(ii) was remarkably more than hIAPP(1-11) and hIAPP(28-37). Furthermore, the H2O2 level was seriously reduced when His18 of hIAPP(11-28) was replaced by Arg(R) or Ser(S), indicating that His18 is the key residue of Cu(ii) binding to hIAPP(11-28) to promote H2O2 generation. This is likely because the donation of electrons from the peptide to Cu(ii) ions would result in the formation of the redox-active complexes, which could stimulate the formation of H2O2. Overall, this study provides further insight into the molecular mechanism of Cu(ii) induced ROS generation. His18 promotes H2O2 production in copper-ion mediated hIAPP aggregation.![]()
Collapse
Affiliation(s)
- Gengyang Huo
- School of Physics Science and Technology
- Ningbo University
- China
| | - Wenyong Chen
- School of Physics Science and Technology
- Ningbo University
- China
| | - Jianhua Wang
- School of Physics Science and Technology
- Ningbo University
- China
| | - Xinxing Chu
- School of Physics Science and Technology
- Ningbo University
- China
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
| | - Wei Xu
- School of Physics Science and Technology
- Ningbo University
- China
| | - Bin Li
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- China
| | - Yi Zhang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- China
| | - Binqian Xu
- Single Molecule Study Laboratory
- College of Engineering
- University of Georgia
- Athens
- USA
| | - Xingfei Zhou
- School of Physics Science and Technology
- Ningbo University
- China
| |
Collapse
|
8
|
Active-site environment of Cu bound amyloid β and amylin peptides. J Biol Inorg Chem 2019; 24:1245-1259. [DOI: 10.1007/s00775-019-01724-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
|
9
|
Metalloprotein and multielemental content profiling in serum samples from diabetic and hypothyroid persons based on PCA analysis. Microchem J 2018. [DOI: 10.1016/j.microc.2017.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Seal M, Dey SG. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes. Inorg Chem 2017; 57:129-138. [DOI: 10.1021/acs.inorgchem.7b02266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Manas Seal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Seal M, Mukherjee S, Dey SG. Fe–oxy adducts of heme–Aβ and heme–hIAPP complexes: intermediates in ROS generation. Metallomics 2016; 8:1266-1272. [DOI: 10.1039/c6mt00214e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|