1
|
Cosola C, Pesce F, De Angelis M, Maranzano V, Zito A, Montemurno E, Dalfino G, Loiudice S, Creanza V, Pompa G, Ciccone MM, Grandaliano G, Stallone G, Gesualdo L. Effects of low-sodium bread on dietary compliance and fecal cultivable bacteria in a randomized controlled pilot trial in hypertensive subjects. BMC Nutr 2024; 10:31. [PMID: 38383476 PMCID: PMC10882934 DOI: 10.1186/s40795-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
High salt intake and compliance to low-sodium (LS) diets are critical in hypertension. Salt reduction in processed foods can help to achieve the target sodium intake. To verify the hypothesis that an innovative LS formulation of a traditional bread could result in a reduction of sodium intake and blood pressure, we performed a 6-month randomized controlled pilot trial on hypertensive patients. We additionally explored the effects of sodium restriction on blood pressure and fecal cultivable bacteria.Fifty-seven patients were randomized in three groups. Group A (n = 19) followed a free diet using standard bread (750 mg Na/100 g), group B (n = 18) followed a LS diet (2300 mg Na/die) using standard bread, group C (n = 20) followed a LS diet (2300 mg Na/die) using LS bread (280 mg Na/100 g). We measured 24-h urinary sodium, blood pressure, routine parameters, fecal microbial counts (26 patients).After 6 months, as compared to group A, group C showed a reduction of 24-h urinary sodium excretion (-908 mg/24 h), diastolic pressure (-9 mmHg) and microbial counts of Bacteroides, Porphyromonas, Prevotella, Enterobacteriaceae, Staphylococcus, Micrococcus. These results suggest that LS bread could increase the adherence to a LS diet, reducing sodium excretion, diastolic pressure and abundance of some fecal cultivable bacteria.Trial registration Registration nr. NCT03127553, on 25/04/2017.
Collapse
Affiliation(s)
- Carmela Cosola
- Dipartimento Di Medicina Di Precisione E Rigenerativa E Area Jonica - (DiMePRe-J), Università Degli Studi Di Bari Aldo Moro, 70124, Bari, Italy.
| | - Francesco Pesce
- Division of Renal Medicine, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - Maria De Angelis
- Dipartimento Di Scienze del Suolo, Della Pianta E Degli Alimenti (Di.S.S.P.A.), Università Degli Studi Di Bari Aldo Moro, 70126, Bari, Italy
| | - Valentina Maranzano
- Dipartimento Di Medicina Di Precisione E Rigenerativa E Area Jonica - (DiMePRe-J), Università Degli Studi Di Bari Aldo Moro, 70124, Bari, Italy
| | - Annapaola Zito
- Cardiovascular Disease Section, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Eustacchio Montemurno
- Dipartimento Di Medicina Di Precisione E Rigenerativa E Area Jonica - (DiMePRe-J), Università Degli Studi Di Bari Aldo Moro, 70124, Bari, Italy
| | - Giuseppe Dalfino
- Istituto di Gastroenterologia IRCCS "Saverio de Bellis", 70013, Castellana Grotte, Italy
| | | | | | - Giovanni Pompa
- Dipartimento Di Scienze Mediche E Chirurgiche, Università Degli Studi Di Foggia, 71122, Foggia, Italy
| | - Marco Matteo Ciccone
- Cardiovascular Disease Section, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Grandaliano
- Dipartimento Di Scienze Mediche E Chirurgiche, Policlinico Universitario Agostino Gemelli, 00168, Rome, Italy
| | - Giovanni Stallone
- Dipartimento Di Scienze Mediche E Chirurgiche, Università Degli Studi Di Foggia, 71122, Foggia, Italy
| | - Loreto Gesualdo
- Dipartimento Di Medicina Di Precisione E Rigenerativa E Area Jonica - (DiMePRe-J), Università Degli Studi Di Bari Aldo Moro, 70124, Bari, Italy
| |
Collapse
|
2
|
Mirmiran P, Teymoori F, Farhadnejad H, Mokhtari E, Salehi-Sahlabadi A. Nitrate containing vegetables and dietary nitrate and nonalcoholic fatty liver disease: a case control study. Nutr J 2023; 22:3. [PMID: 36627671 PMCID: PMC9830756 DOI: 10.1186/s12937-023-00834-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Vegetables is the main sources of dietary nitrate. Studies suggested the potential link between nitrate content of vegetables and reduce the risk of chronic diseases. We aimed to assess the association between nitrate-containing vegetables (NCVs) with odds of nonalcoholic fatty liver diseases (NAFLD) in Iranian adults. METHOD This case-control study was performed on a total of 225 newly diagnosed NAFLD cases and 450 controls aged 20-60 years. Individuals' dietary intakes were determined using a valid and reliable food frequency questionnaire. RESULTS The mean ± SD age and BMI of participants were 38.1 ± 8.8 years and 26.8 ± 4.3 kg/m2, respectively. In the fully adjusted model, the odds of NAFLD were decreased across tertiles of total NCVs [(adjusted OR: 0.20, 95%CI: 0.10-0.40), (Ptrend < 0.001)] and low-nitrate vegetables [(adjusted OR: 0.22, 95%CI: 0.11-0.48), (Ptrend < 0.001)]. Our results showed that each one SD increments in nitrate content of vegetables (adjusted OR: 0.73, 95%CI: 0.55-0.97) and nitrate content of fruits (adjusted OR: 0.59, 95%CI: 0.36-0.97) was associated with reduced odds of NAFLD (P < 0.05). However, there was a positive association between each one SD increments in nitrate content of dairy products and meats and processed meats with odds of NAFLD (adjusted OR: 1.34, 95%CI: 1.03-1.74), (P < 0.05). CONCLUSION Our finding suggested that a higher intake of vegetable nitrate may be related to a decrease the odds of NAFLD.
Collapse
Affiliation(s)
- Parvin Mirmiran
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Clinical Nutrition and Dietetics, Facualty of Nutrition and Food Technology, National Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mokhtari
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ammar Salehi-Sahlabadi
- grid.411600.2Department of Clinical Nutrition and Dietetics, Facualty of Nutrition and Food Technology, National Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liddle L, Monaghan C, Burleigh MC, Baczynska KA, Muggeridge DJ, Easton C. Reduced nitric oxide synthesis in winter: A potential contributing factor to increased cardiovascular risk. Nitric Oxide 2022; 127:1-9. [PMID: 35792235 DOI: 10.1016/j.niox.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nitric oxide is a key signalling molecule that elicits a range of biological functions to maintain vascular homeostasis. A reduced availability of nitric oxide is implicated in the progression of cardiovascular diseases and increases the risk of pathogenic events. AIMS To compare the concentration of nitric oxide metabolites in healthy adults between winter and summer months. DESIGN An observational study of healthy adults (age 32 ± 9 years) living in central Scotland. METHODS Thirty-four healthy adults (13 females) were monitored for 7 days in summer and winter to record sunlight exposure (ultraviolet-A (UV-A) radiation), diet, and physical activity. At the end of each phase, blood pressure was measured, and samples of blood and saliva collected. The samples were analysed to determine the concentrations of plasma and salivary nitrate and nitrite and serum 25-hydroxyvitamin D (25(OH)D). RESULTS The participants maintained similar diets in each measurement phase but were exposed to more UV-A radiation (550%) and undertook more moderate-vigorous physical activity (23%) in the summer than in winter. Plasma nitrite (46%) and serum 25(OH)D (59%) were higher and blood pressure was lower in the summer compared to winter months. Plasma nitrite concentration was negatively associated with systolic, diastolic, and mean arterial blood pressure. CONCLUSIONS Plasma nitrite, an established marker of nitric oxide synthesis, is higher in healthy adults during the summer than in winter. This may be mediated by a greater exposure to UV-A which stimulates the release of nitric oxide metabolites from skin stores. While it is possible that seasonal variation in nitric oxide availability may contribute to an increased blood pressure in the winter months, the overall impact on cardiovascular health remains to be determined.
Collapse
Affiliation(s)
- Luke Liddle
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK; School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, UK
| | - Christopher Monaghan
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Mia C Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK
| | - Katarzyna A Baczynska
- Laser and Optical Radiation Dosimetry Group, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, UK
| | | | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, UK.
| |
Collapse
|
4
|
Li X, Zhang W, Laden F, Curhan GC, Rimm EB, Guo X, Hart JE, Wu S. Dietary nitrate intake and vegetable consumption, ambient particulate matter, and risk of hypertension in the Nurses' Health study. ENVIRONMENT INTERNATIONAL 2022; 161:107100. [PMID: 35066305 PMCID: PMC11968144 DOI: 10.1016/j.envint.2022.107100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Studies have suggested that dietary nitrate could lower blood pressure levels whereas ambient particulate matter (PM) may increase risk of hypertension. However, it is unknown if these exposures may modify each other. OBJECTIVES We collected information on dietary nitrate intake and vegetables consumption and estimated long-term exposures to ambient PM for women in the Nurses' Health Study. METHODS Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for risk of hypertension were calculated using Cox proportional hazards models with adjustment for potential demographic, lifestyle and dietary confounders. Interactions were assessed with multiplicative interaction terms and stratified models. RESULTS Increases in dietary nitrate intake (per 150 mg/d) and green leafy vegetables consumption (per serving/day) were both significantly associated with decreases in hypertension risk (both multivariable-adjusted HRs were 0.97, 95% CI: 0.94, 0.99). Long-term exposure to ambient PM with an aerodynamic diameter ≤ 2.5 µm (PM2.5) was associated with an increased risk of hypertension, with a multivariable-adjusted HR of hypertension of 1.06 (95% CI: 1.02, 1.11) per 10 µg/m3 increase in PM2.5. Ambient PM2.5 significantly modified the associations of dietary nitrate intake (Pinteraction = 0.02) and green leafy vegetables consumption (Pinteraction = 0.004). The associations with dietary factors were gradually weakened with increasing PM2.5: the fully-adjusted HRs for risk of hypertension were 0.94 (95% CI: 0.89, 0.99) and 0.94 (95% CI: 0.90, 0.99) for per 150 mg/d increase in nitrate intake and per serving/d increase in green leafy vegetables consumption, respectively, in the lowest PM2.5 quartile, and 1.00 (95% CI: 0.94, 1.06) and 1.02 (95% CI: 0.97, 1.08), respectively, in the highest PM2.5 quartile. CONCLUSION Our research highlights a potentially protective effect of dietary nitrate intake in the prevention of hypertension and suggests that these benefits are attenuated by increasing exposure to ambient PM2.5.
Collapse
Affiliation(s)
- Xianggui Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Weidong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Renal (Kidney) Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Amdahl MB, DeMartino AW, Gladwin MT. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol Chem 2020; 401:201-211. [PMID: 31747370 DOI: 10.1515/hsz-2019-0349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The bioactivation of inorganic nitrite refers to the conversion of otherwise 'inert' nitrite to the diatomic signaling molecule nitric oxide (NO), which plays important roles in human physiology and disease, notably in the regulation of vascular tone and blood flow. While the most well-known sources of NO are the nitric oxide synthase (NOS) enzymes, another source of NO is the nitrate-nitrite-NO pathway, whereby nitrite (obtained from reduction of dietary nitrate) is further reduced to form NO. The past few decades have seen extensive study of the mechanisms of NO generation through nitrate and nitrite bioactivation, as well as growing appreciation of the contribution of this pathway to NO signaling in vivo. This review, prepared for the volume 400 celebration issue of Biological Chemistry, summarizes some of the key reactions of the nitrate-nitrite-NO pathway such as reduction, disproportionation, dehydration, and oxidative denitrosylation, as well as current evidence for the contribution of the pathway to human cardiovascular physiology. Finally, ongoing efforts to develop novel medical therapies for multifarious conditions, especially those related to pathologic vasoconstriction and ischemia/reperfusion injury, are also explored.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Jackson JK, Patterson AJ, MacDonald-Wicks LK, Oldmeadow C, McEvoy MA. The role of inorganic nitrate and nitrite in cardiovascular disease risk factors: a systematic review and meta-analysis of human evidence. Nutr Rev 2019; 76:348-371. [PMID: 29506204 DOI: 10.1093/nutrit/nuy005] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Context Depleted nitric oxide levels in the human body play a major role in cardiovascular disease pathogenesis. Inorganic nitrate/nitrite (rich dietary sources include beetroot and spinach) can act as a nitric oxide donor because nitrate/nitrite can be metabolized to produce nitric oxide. Objective This review and meta-analysis sought to investigate the role of inorganic nitrate/nitrite in preventing or treating cardiovascular disease risk factors in humans. Data Sources Electronic databases, including Medline, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane, and Scopus, were searched. Data Extraction Experimental trials examining the effect of oral inorganic nitrate/nitrite intake on cardiovascular disease risk factors were included for systematic analysis. Results Thirty-four studies were included for qualitative synthesis, 23 of which were eligible for meta-analysis. Included studies measured the following outcomes: blood pressure, endothelial function, arterial stiffness, platelet aggregation, and/or blood lipids. Inorganic nitrate intake was found to significantly reduce resting blood pressure (systolic blood pressure: -4.80 mmHg, P < 0.0001; diastolic blood pressure: -1.74 mmHg, P = 0.001), improve endothelial function (flow-mediated dilatation: 0.59%, P < 0.0001), reduce arterial stiffness (pulse wave velocity: -0.23 m/s, P < 0.0001; augmentation index: -2.1%, P = 0.05), and reduce platelet aggregation by 18.9% (P < 0.0001). Conclusions Inorganic nitrate consumption represents a simple strategy for targeting cardiovascular disease risk factors. Future studies investigating the long-term effects of inorganic nitrate on cardiovascular disease outcomes are warranted.
Collapse
Affiliation(s)
- Jacklyn K Jackson
- Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda J Patterson
- Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lesley K MacDonald-Wicks
- Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher Oldmeadow
- Clinical Research Design and Statistical Services, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark A McEvoy
- Centre for Clinical Epidemiology and Biostatistics, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
7
|
Bahadoran Z, Mirmiran P, Jeddi S, Carlström M, Azizi F, Ghasemi A. Circulating markers of nitric oxide homeostasis and cardiometabolic diseases: insights from population-based studies. Free Radic Res 2019; 53:359-376. [PMID: 30821533 DOI: 10.1080/10715762.2019.1587168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging data suggest that impaired nitric oxide (NO) homeostasis has a key role in development of cardiometabolic disorders. The association between circulating levels of NO metabolites, i.e. nitrate and nitrite (NOx), and risk of chronic diseases has not yet been fully clarified. This work aims to address epidemiologic aspects of NO metabolism and discusses different physiologic and pathophysiologic conditions influencing circulating NOx. Further, cross-sectional associations of serum NOx with metabolic disorders are described and along the way, potential short-term and long-term power of serum NOx for predicting cardiometabolic outcomes are reviewed. Results from population-based studies show that circulating NOx is affected by aging, smoking habits, pregnancy, menopause status, thyroid hormones, and various pathologic conditions including type 2 diabetes, insulin resistance, hypertension, and renal dysfunction. Lifestyle factors, especially dietary habits, but also smoking habits and the degree of physical activity influence NO homeostasis and the circulating levels of NOx. Elevated serum NOx, due to increased iNOS activity, is associated with increased incidence of metabolic syndrome, different obesity phenotypes, and cardiovascular events.
Collapse
Affiliation(s)
- Zahra Bahadoran
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvin Mirmiran
- b Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sajad Jeddi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mattias Carlström
- d Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Fereidoun Azizi
- e Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
8
|
Vegetable Nitrate Intakes Are Associated with Reduced Self-Reported Cardiovascular-Related Complications within a Representative Sample of Middle-Aged Australian Women, Prospectively Followed up for 15 Years. Nutrients 2019; 11:nu11020240. [PMID: 30678264 PMCID: PMC6412377 DOI: 10.3390/nu11020240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/26/2022] Open
Abstract
Nitric oxide (NO) facilitates anti-atherosclerotic effects. Vegetables are a major source of dietary nitrate. Experimental data indicates that dietary nitrate can significantly reduce major risk factors for atherosclerosis and subsequent cardiovascular disease (CVD), as nitrate can be metabolized to produce NO via the nitrate-nitrite-NO pathway. The purpose of this study was to prospectively investigate the association between habitual dietary nitrate intakes and the incidence of self-reported CVD-related complications within a representative sample of middle-aged Australian women (1946–1951 cohort of the Australian Longitudinal Study on Women’s Health). Women free from disease at baseline who had completed the food frequency questionnaire data were included. Generalized estimating equations were used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) across quartiles for nitrate intakes. Of the 5324 women included for analysis, there were 1951 new cases of CVD-related complications over 15-years of follow-up. Women reporting higher total dietary nitrate intakes (Q4 > 78.2 mg/day) and vegetable nitrate intakes (Q4 > 64.4 mg/day) were 25% and 27% reduced risk of developing CVD-related complications respectively, compared with women reporting low total (Q1 < 45.5 mg/day) and vegetable nitrate intakes (Q1 < 34.8 mg/day). Our findings were consistent with other observational data indicating that dietary nitrate may explain some of the cardiovascular benefits of vegetable consumption.
Collapse
|
9
|
Hosseini-Esfahani F, Hosseinpour-Niazi S, Asghari G, Bahadoran Z, Moslehi N, Golzarand M, Ejtahed HS, Mirmiran P, Azizi F. Nutrition and Cardio-Metabolic Risk Factors: Findings from 20 Years of the Tehran Lipid and Glucose Study. Int J Endocrinol Metab 2018; 16:e84772. [PMID: 30584439 PMCID: PMC6289298 DOI: 10.5812/ijem.84772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 11/16/2022] Open
Abstract
CONTEXT Genetic and environmental factors contribute to the incidence of metabolic syndrome (MetS). This study aimed to review all findings of studies conducted in framework of the Tehran lipid and glucose study (TLGS) regarding the association of dietary factors with cardio-metabolic risk factors. EVIDENCE ACQUISITION All English-language studies were searched using PubMed and Scopus databases from 2000 to 2017. Finally, 105 relevant papers were included in this review. RESULTS Whole grains, legumes, nuts and healthy dietary patterns (DPs) reduced risk of MetS, while white rice, salty/sweet snacks increased this. The western DP had a significant interaction with APOC3, APOA1 and MC4R polymorphisms in relation to MetS. After 6.5 years of follow-up, odds of reaching menarche ≤ 12 years was significantly higher in girls with higher intakes of milk, calcium, magnesium, and phosphorous. Among children and adolescents, higher adherence to the dietary approaches to stop hypertension (DASH)-style diet decreased the risk of abdominal obesity, whereas increased adherence to the western DP could contribute to general and abdominal obesity. A three-year follow-up of adult participants showed that higher intakes of phytochemical-rich foods were inversely related to development of insulin resistance. Higher adherence to the healthy DPs was associated with the reduced risk of hyperlipidemia and hypertention. Nutrition interventions postponed rise in the prevalence of MetS. The DASH diet resulted in weight reduction compared to control diet. CONCLUSIONS Higher adherence to healthy food choices was associated with reduced odds of MetS, abdominal obesity, dyslipidemia and hypertension. The western DP accentuated the association of polymorphisms with MetS.
Collapse
Affiliation(s)
- Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Moslehi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Golzarand
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bondonno CP, Blekkenhorst LC, Liu AH, Bondonno NP, Ward NC, Croft KD, Hodgson JM. Vegetable-derived bioactive nitrate and cardiovascular health. Mol Aspects Med 2018; 61:83-91. [DOI: 10.1016/j.mam.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
11
|
Burleigh MC, Liddle L, Monaghan C, Muggeridge DJ, Sculthorpe N, Butcher JP, Henriquez FL, Allen JD, Easton C. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol Med 2018; 120:80-88. [PMID: 29550328 DOI: 10.1016/j.freeradbiomed.2018.03.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) can be generated endogenously via NO synthases or via the diet following the action of symbiotic nitrate-reducing bacteria in the oral cavity. Given the important role of NO in smooth muscle control there is an intriguing suggestion that cardiovascular homeostasis may be intertwined with the presence of these bacteria. Here, we measured the abundance of nitrate-reducing bacteria in the oral cavity of 25 healthy humans using 16S rRNA sequencing and observed, for 3.5 h, the physiological responses to dietary nitrate ingestion via measurement of blood pressure, and salivary and plasma NO metabolites. We identified 7 species of bacteria previously known to contribute to nitrate-reduction, the most prevalent of which were Prevotella melaninogenica and Veillonella dispar. Following dietary nitrate supplementation, blood pressure was reduced and salivary and plasma nitrate and nitrite increased substantially. We found that the abundance of nitrate-reducing bacteria was associated with the generation of salivary nitrite but not with any other measured variable. To examine the impact of bacterial abundance on pharmacokinetics we also categorised our participants into two groups; those with a higher abundance of nitrate reducing bacteria (> 50%), and those with a lower abundance (< 50%). Salivary nitrite production was lower in participants with lower abundance of bacteria and these individuals also exhibited slower salivary nitrite pharmacokinetics. We therefore show that the rate of nitrate to nitrite reduction in the oral cavity is associated with the abundance of nitrate-reducing bacteria. Nevertheless, higher abundance of these bacteria did not result in an exaggerated plasma nitrite response, the best known marker of NO bioavailability. These data from healthy young adults suggest that the abundance of oral nitrate-reducing bacteria does not influence the generation of NO through the diet, at least when the host has a functional minimum threshold of these microorganisms.
Collapse
Affiliation(s)
- Mia C Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - Luke Liddle
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - Chris Monaghan
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - David J Muggeridge
- Physical Activity and Health Group, School of Psychological Science and Health, University of Strathclyde, Glasgow, UK
| | - Nicholas Sculthorpe
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - John P Butcher
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK; Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK
| | - Jason D Allen
- Department of Kinesiology, Curry School of Education, University of Virginia, Charlottesville, VA 22904, USA
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK.
| |
Collapse
|
12
|
Blekkenhorst LC, Bondonno NP, Liu AH, Ward NC, Prince RL, Lewis JR, Devine A, Croft KD, Hodgson JM, Bondonno CP. Nitrate, the oral microbiome, and cardiovascular health: a systematic literature review of human and animal studies. Am J Clin Nutr 2018; 107:504-522. [PMID: 29635489 DOI: 10.1093/ajcn/nqx046] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Dietary nitrate is an important source of nitric oxide (NO), a molecule critical for cardiovascular health. Nitrate is sequentially reduced to NO through an enterosalivary nitrate-nitrite-NO pathway that involves the oral microbiome. This pathway is considered an important adjunct pathway to the classical l-arginine-NO synthase pathway. Objective The objective of this study was to systematically assess the evidence for dietary nitrate intake and improved cardiovascular health from both human and animal studies. Design A systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by using key search terms in Medline and EMBASE databases and defined inclusion and exclusion criteria. Results Thirty-seven articles on humans and 14 articles on animals were included from 12,541 screened references. Data on the effects of dietary nitrate on blood pressure, endothelial function, ischemic reperfusion injury, arterial stiffness, platelet function, and cerebral blood flow in both human and animal models were identified. Beneficial effects of nitrate on vascular health have predominantly been observed in healthy human populations, whereas effects in populations at risk of cardiovascular disease are less clear. Few studies have investigated the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. In animal studies, there is evidence that nitrate improves blood pressure and endothelial function, particularly in animal models with reduced NO bioavailability. Nitrate dose seems to be a critical factor because there is evidence of cross-talk between the 2 pathways of NO production. Conclusions Evidence for a beneficial effect in humans at risk of cardiovascular disease is limited. Furthermore, there is a need to investigate the long-term effects of dietary nitrate on cardiovascular disease clinical endpoints. Further animal studies are required to elucidate the mechanisms behind the observed effects.
Collapse
Affiliation(s)
- Lauren C Blekkenhorst
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Alex H Liu
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Richard L Prince
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua R Lewis
- Medical School, Queen Elizabeth Medical Center Unit, University of Western Australia, Nedlands, Western Australia, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin D Croft
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine P Bondonno
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
13
|
Dietary nitrate lowers ambulatory blood pressure in treated, uncontrolled hypertension: a 7-d, double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 2018; 119:658-663. [DOI: 10.1017/s0007114518000144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractDietary nitrate has been shown to increase nitrate/nitrite levels and decrease blood pressure (BP) in multiple populations. There are few reports among hypertensives and these reports have provided conflicting evidence. We aimed to assess the effect of daily nitrate compared with placebo in subjects with uncontrolled hypertension (HTN). On day 0, hypertensives wore an ambulatory BP monitor (ABPM) for 24 h and blood was taken. Subjects were then randomised to 7-d nitrate-rich beetroot juice (NO3−) (12·9 mmol nitrate) followed by 7-d nitrate-depleted beetroot juice (0·5 mmol nitrate) or vice versa. ABPM and blood were assessed before and after both conditions. In all, twenty subjects with treated yet uncontrolled HTN entered and completed the trial (mean age=62·5 years, mean BMI=30·7 kg/m2). Baseline BP was 137/80 (sd7/7) mmHg. Dietary nitrate was well tolerated and resulted in significantly increased plasma nitrite (P=0·0004) and decreased 24-h systolic BP and diastolic BP compared with placebo (−8 mmHg;P=0·012 and −4 mmHg;P=0·018, respectively). Our results support the existing data suggesting an anti-hypertensive effect of dietary nitrate in treated yet uncontrolled hypertensives. Targeted dietary strategies appear promising contributors to BP control.
Collapse
|
14
|
Bahadoran Z, Mirmiran P, Azizi F, Ghasemi A. Nitrate-rich dietary supplementation during pregnancy: The pros and cons. Pregnancy Hypertens 2018. [PMID: 29523272 DOI: 10.1016/j.preghy.2017.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inorganic nitrate (NO3) due to its potential endogenous conversion to nitric oxide (NO), is suggested as a compensatory fuel for disrupted NO pathways in the case of pathological stats during pregnancy. Dietary NO3-rich supplement in the NO-deficient pregnant women is now suggested as a more appealing choice with fewer off-target effects which can attenuate hypertension and preeclampsia, improve placental blood flow and subsequently enhance maternal and neonatal health. There is also an increasing public interest and common health claims regarding beneficial effects of NO3-rich dietary supplements like beetroot byproducts in pregnant women. Conversely, NO3-rich dietary supplementation during pregnancy may be accompanied with a wide range of unexpected maternal and fatal adverse outcomes such as methemoglobinemia, alteration in embryonic cells and malignant transformation, as well as thyroid disorders. In conclusion, use of dietary inorganic NO3 as a common supplement during pregnancy is currently on a long way from bench to bedside.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Schwingshackl L, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, Andriolo V, Bechthold A, Schlesinger S, Boeing H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2017; 8:793-803. [PMID: 29141965 PMCID: PMC5683007 DOI: 10.3945/an.117.017178] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of this systematic review and meta-analysis was to summarize the evidence on the relation of the intakes of 12 major food groups, including whole grains, refined grains, vegetables, fruits, nuts, legumes, eggs, dairy, fish, red meat, processed meat, and sugar-sweetened beverages (SSBs) with the risk of hypertension. PubMed, Scopus, and Web of Science were searched systematically until June 2017 for prospective studies having quantitatively investigated the above-mentioned foods. We conducted meta-analysis on the highest compared with the lowest intake categories and linear and nonlinear dose-response meta-analyses to analyze the association. Summary RRs and 95% CIs were estimated by using a random-effects model. Overall, 28 reports were included in the meta-analysis. An inverse association for the risk of hypertension was observed for 30 g whole grains/d (RR: 0.92; 95% CI: 0.87, 0.98), 100 g fruits/d (RR: 0.97; 95% CI: 0.96, 0.99), 28 g nuts/d (RR: 0.70; 95% CI: 0.45, 1.08), and 200 g dairy/d (RR: 0.95; 95% CI: 0.94, 0.97), whereas a positive association for 100 g red meat/d (RR: 1.14; 95% CI: 1.02, 1.28), 50 g processed meat/d (RR: 1.12; 95% CI: 1.00, 1.26), and 250 mL SSB/d (RR: 1.07; 95% CI: 1.04, 1.10) was seen in the linear dose-response meta-analysis. Indication for nonlinear relations of the intakes of whole grains, fruits, fish, and processed meats with the risk of hypertension was detected. In summary, this comprehensive dose-response meta-analysis of 28 reports identified optimal intakes of whole grains, fruits, nuts, legumes, dairy, red and processed meats, and SSBs related to the risk of hypertension. These findings need to be seen under the light of very-low to low quality of meta-evidence. However, the findings support the current dietary guidelines in the prevention of hypertension.
Collapse
Affiliation(s)
- Lukas Schwingshackl
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Carolina Schwedhelm
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Georg Hoffmann
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Sven Knüppel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Khalid Iqbal
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Violetta Andriolo
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Sabrina Schlesinger
- Institute for Biometry and Epidemiology, German Diabetes Center at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Early interventional trials reported improvements in cardiac and exercise outcomes with inorganic nitrate ingestion. The current review aims to provide a brief update of recent evidence regarding ergogenic and cardiovascular effects of dietary nitrate and practical recommendations. RECENT FINDINGS Recent evidence has been inconsistent and questions remain regarding effective dose, duration, and source of nitrate and cohorts likely to benefit. Dietary nitrate may be most relevant to those with vascular/metabolic impairments, those engaging in short-term, intense exercise, deconditioned individuals, and those with a low dietary nitrate intake. SUMMARY The evidence for cardiovascular/exercise benefit is plausible but inconsistent. However, dietary nitrate, in contrast to pharmacological nitrate, has a high benefit-risk ratio. Although nitrate supplementation has grown in popularity, it is suggested that increased green vegetables consumption may provide similar/superior benefits to nitrate supplementation in a cheaper, safer, and potentially tastier context.
Collapse
Affiliation(s)
- Conor P Kerley
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue, N.W. Ste. 400, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Tang GY, Meng X, Li Y, Zhao CN, Liu Q, Li HB. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017; 9:nu9080857. [PMID: 28796173 PMCID: PMC5579650 DOI: 10.3390/nu9080857] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies have shown that vegetable consumption is inversely related to the risk of cardiovascular diseases. Moreover, research has indicated that many vegetables like potatoes, soybeans, sesame, tomatoes, dioscorea, onions, celery, broccoli, lettuce and asparagus showed great potential in preventing and treating cardiovascular diseases, and vitamins, essential elements, dietary fibers, botanic proteins and phytochemicals were bioactive components. The cardioprotective effects of vegetables might involve antioxidation; anti-inflammation; anti-platelet; regulating blood pressure, blood glucose, and lipid profile; attenuating myocardial damage; and modulating relevant enzyme activities, gene expression, and signaling pathways as well as some other biomarkers associated to cardiovascular diseases. In addition, several vegetables and their bioactive components have been proven to protect against cardiovascular diseases in clinical trials. In this review, we analyze and summarize the effects of vegetables on cardiovascular diseases based on epidemiological studies, experimental research, and clinical trials, which are significant to the application of vegetables in prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Abstract
AbstractCVD is the leading cause of death worldwide, a consequence of mostly poor lifestyle and dietary behaviours. Although whole fruit and vegetable consumption has been consistently shown to reduce CVD risk, the exact protective constituents of these foods are yet to be clearly identified. A recent and biologically plausible hypothesis supporting the cardioprotective effects of vegetables has been linked to their inorganic nitrate content. Approximately 60–80 % inorganic nitrate exposure in the human diet is contributed by vegetable consumption. Although inorganic nitrate is a relatively stable molecule, under specific conditions it can be metabolised in the body to produce NO via the newly discovered nitrate–nitrite–NO pathway. NO is a major signalling molecule in the human body, and has a key role in maintaining vascular tone, smooth muscle cell proliferation, platelet activity and inflammation. Currently, there is accumulating evidence demonstrating that inorganic nitrate can lead to lower blood pressure and improved vascular compliance in humans. The aim of this review is to present an informative, balanced and critical review of the current evidence investigating the role of inorganic nitrate and nitrite in the development, prevention and/or treatment of CVD. Although there is evidence supporting short-term inorganic nitrate intakes for reduced blood pressure, there is a severe lack of research examining the role of long-term nitrate intakes in the treatment and/or prevention of hard CVD outcomes, such as myocardial infarction and cardiovascular mortality. Epidemiological evidence is needed in this field to justify continued research efforts.
Collapse
|
19
|
Bahadoran Z, Mirmiran P, Ghasemi A, Carlström M, Azizi F, Hadaegh F. Association between Dietary Intakes of Nitrate and Nitrite and the Risk of Hypertension and Chronic Kidney Disease: Tehran Lipid and Glucose Study. Nutrients 2016; 8:nu8120811. [PMID: 28009811 PMCID: PMC5188466 DOI: 10.3390/nu8120811] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Background and Aim: The association of habitual intakes of dietary nitrate (NO3−) and nitrite (NO2−) with blood pressure and renal function is not clear. Here, we investigated a potential effect of dietary NO3− and NO2− on the occurrence of hypertension (HTN) and chronic kidney disease (CKD). Methods: A total of 2799 Iranian adults aged ≥20 years, participating in the Tehran Lipid and Glucose Study (TLGS), were included and followed for a median of 5.8 years. Dietary intakes of NO3− and NO2− were estimated using a semi-quantitative food frequency questionnaire. Demographics, anthropometrics, blood pressure and biochemical variables were evaluated at baseline and during follow-up examinations. To identify the odds ratio (OR) and 95% confidence interval (CI) of HTN and CKD across tertile categories of residual energy-adjusted NO3− and NO2− intakes, multivariate logistic regression models were used. Results: Dietary intake of NO3− had no significant association with the risk of HTN or CKD. Compared to the lowest tertile category (median intake < 6.04 mg/day), the highest intake (median intake ≥ 12.7 mg/day) of dietary NO2− was accompanied with a significant reduced risk of HTN, in the fully adjusted model (OR = 0.58, 95% CI = 0.33–0.98; p for trend = 0.054). The highest compared to the lowest tertile of dietary NO2− was also accompanied with a reduced risk of CKD (OR = 0.50, 95% CI = 0.24–0.89, p for trend = 0.07). Conclusion: Our findings indicated that higher intakes of NO2− might be an independent dietary protective factor against the development of HTN and CKD, which are major risk factors for adverse cardiovascular events.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 76, Sweden.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| |
Collapse
|
20
|
Mirmiran P, Bahadoran Z, Golzarand M, Asghari G, Azizi F. Consumption of nitrate containing vegetables and the risk of chronic kidney disease: Tehran Lipid and Glucose Study. Ren Fail 2016; 38:937-44. [PMID: 27055566 DOI: 10.3109/0886022x.2016.1165118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is growing evidence regarding the potential properties of nitrate-rich foods in development of chronic diseases. In this study, we investigated the association of nitrate-containing vegetables (NCVs) and the risk of chronic kidney disease (CKD). METHODS We evaluated 1546 eligible adult participants of the Tehran Lipid and Glucose Study (TLGS), at baseline (2006-2008) and again after 3 years (2009-2011). Dietary intake was collected using the validated semi-quantitative food frequency questionnaire. Nitrate-containing vegetables and its categories including high-, medium-, and low-nitrate vegetables were defined. Estimated glomerular filtration rate (eGFR) and CKD were defined. Association between NCVs and CKD in the cross-sectional phase and the predictability of NCVs consumption in CKD occurrence were assessed using multivariable logistic regression models with adjustment for potential confounders. RESULTS Mean dietary intake of energy-adjusted NCVs was 298.0 ± 177.3 g/day. Highest compared to the lowest tertile of NCVs was accompanied with a significantly lower mean eGFR (76.6 vs. 83.3, mL/min/1.73 m(2), p < 0.001) and a higher prevalence of CKD (21.7 vs. 9.9%, p < 0.001). At baseline, higher intake of high-NCVs was associated with a 48% higher chance of having CKD (OR = 1.48, 95% CI = 1.05-2.13). After 3 years of follow-up, there was no significant association between consumption of total NCVs and its categories with the occurrence of CKD. CONCLUSION Considering the lack of association between high-NCVs intakes and the risk of CKD in prospective analysis, additional research is recommended to clarify possible effect of nitrate intakes from vegetables on kidney function.
Collapse
Affiliation(s)
- Parvin Mirmiran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zahra Bahadoran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahdieh Golzarand
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Golaleh Asghari
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fereidoun Azizi
- b Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|