1
|
Abstract
Carbohydrate-responsive element binding protein (ChREBP (MLXIPL)) is emerging as an important mediator of glucotoxity both in the liver and in the pancreatic β-cells. Although the regulation of its nuclear translocation and transcriptional activation by glucose has been the subject of intensive research, it is still not fully understood. We have recently uncovered a novel mechanism in the excitable pancreatic β-cell where ChREBP interacts with sorcin, a penta-EF-hand Ca(2)(+)-binding protein, and is sequestered in the cytosol at low glucose concentrations. Upon stimulation with glucose and activation of Ca(2)(+) influx, or application of ATP as an intracellular Ca(2)(+)-mobilising agent, ChREBP rapidly translocates to the nucleus. In sorcin-silenced cells, ChREBP is constitutively present in the nucleus, and both glucose and Ca(2)(+) are ineffective in stimulating further ChREBP nuclear shuttling. Whether an active Ca(2)(+)-sorcin element of ChREBP activation also exists in non-excitable cells is discussed.
Collapse
Affiliation(s)
- Isabelle Leclerc
- Division of Diabetes, Endocrinology and Metabolism, Section of Cell Biology, Department of Medicine, Imperial College London, SW7 2AZ London, UK.
| | | | | | | |
Collapse
|
2
|
Sarang Z, Molnár P, Németh T, Gomba S, Kardon T, Melino G, Cotecchia S, Fésüs L, Szondy Z. Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fas-mediated cell death in mice. Hepatology 2005; 42:578-87. [PMID: 16108039 DOI: 10.1002/hep.20812] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tissue transglutaminase (TG2) is a protein cross-linking enzyme known to be expressed by hepatocytes and to be induced during the in vivo hepatic apoptosis program. TG2 is also a G protein that mediates intracellular signaling by the alpha-1b-adrenergic receptor (AR) in liver cells. Fas/Fas ligand interaction plays a crucial role in various liver diseases, and administration of agonistic anti-Fas antibodies to mice causes both disseminated endothelial cell apoptosis and fulminant hepatic failure. Here we report that an intraperitoneal dose of anti-Fas antibodies, which is sublethal for wild-type mice, kills all the TG2 knock-out mice within 20 hours. Although TG2-/- thymocytes exposed to anti-Fas antibodies die at the same rate as wild-type mice, TG2-/- hepatocytes show increased sensitivity toward anti-Fas treatment both in vivo and in vitro, with no change in their cell surface expression of Fas, levels of FLIP(L) (FLICE-inhibitory protein), or the rate of I-kappaBalpha degradation, but a decrease in the Bcl-xL expression. We provide evidence that this is the consequence of the impaired AR signaling that normally regulates the levels of Bcl-xL in the liver. In conclusion, our data suggest the involvement of adrenergic signaling pathways in the hepatic regeneration program, in which Fas ligand-induced hepatocyte proliferation with a simultaneous inhibition of the Fas-death pathway plays a determinant role.
Collapse
Affiliation(s)
- Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Signaling and Apoptosis Research Group, Hungarian Academy of Sciences, Research Center of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Csala M, Bánhegyi G, Braun L, Szirmai R, Burchell A, Burchell B, Benedetti A, Mandl J. Beta-glucuronidase latency in isolated murine hepatocytes. Biochem Pharmacol 2000; 59:801-5. [PMID: 10718338 DOI: 10.1016/s0006-2952(99)00392-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological function of microsomal beta-glucuronidase is unclear. Substrates may be either glucuronides produced in the lumen of endoplasmic reticulum (ER) or those taken up by hepatocytes. In the latter case, efficient inward transport of glucuronides at the plasma membrane and the ER membrane would be required. Therefore, the potential role of beta-glucuronidase in ER was investigated. Isolated mouse hepatocytes and mouse and rat liver microsomal vesicles were used in the experiments. Selective permeabilization of the plasma membrane of isolated hepatocytes with saponin or digitonin resulted in an almost 4-fold elevation in the rate of beta-nitrophenol glucuronide hydrolysis, while the permeabilization of plasma membrane plus ER membrane by Triton X-100 caused a further 2-fold elevation. In microsomal vesicles, the p-nitrophenol glucuronide or phenolphthalein glucuronide beta-glucuronidase activity showed about 50% latency as revealed by alamethicin or Triton X-100 treatment. A light-scattering study indicated that the microsomes are relatively impermeable to both glucuronides and to glucuronate. On the basis of our results, the role of liver microsomal beta-glucuronidase in the deconjugation of glucuronides taken up by the liver seems unlikely. Hydrolysis of the glucuronides produced in the ER lumen may play a role in substrate supply for ascorbate synthesis or in "proofreading" of glucuronidation.
Collapse
Affiliation(s)
- M Csala
- Department of Medical Chemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
A hypothesis for the hormonal regulation of gluconeogenesis, in which increases in cytosolic free-Ca2+ levels ([Ca2+]i) play a major role, is presented. This hypothesis is based on the observation that gluconeogenic hormones evoke a common pattern of Ca2+ redistribution, resulting in increases in [Ca2+]i. Current concepts of hormonally evoked Ca2+ fluxes are presented and discussed. It is suggested that the increase in [Ca2+]i is functionally linked to stimulation of gluconeogenesis. The stimulation of gluconeogenesis is accomplished in two ways: (1) by increasing the activities of the Krebs cycle and the electron-transfer chain, thereby supplying adenosine triphosphates (ATP) and reducing equivalents to the process; and (2) by stimulating the activities of key gluconeogenic enzymes, such as pyruvate carboxylase. The hypothesis presents a conceptual framework that ties together two interrelated manifestations of hormone action: signal transduction and metabolism.
Collapse
Affiliation(s)
- N Kraus-Friedmann
- Department of Integrative Biology, University of Texas Medical School at Houston, 77225-0708, USA
| | | |
Collapse
|
5
|
Combettes L, Berthon B, Claret M. Caffeine inhibits cytosolic calcium oscillations induced by noradrenaline and vasopressin in rat hepatocytes. Biochem J 1994; 301 ( Pt 3):737-44. [PMID: 7519848 PMCID: PMC1137049 DOI: 10.1042/bj3010737] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effects of caffeine on agonist-induced changes in intracellular Ca2+ concentration ([Ca2+]i) were studied in single fura 2-loaded cells and suspensions of rat hepatocytes. In single cells, caffeine (5-10 mM) inhibited [Ca2+]i oscillations induced both by noradrenaline (0.1 microM) and by vasopressin (0.1 nM). Caffeine shifted the dose-response curves of the [Ca2+]i rise induced by vasopressin (0.5 to 2 nM) and noradrenaline (from 80 to 580 nM) in suspensions of liver cells loaded with quin2. This inhibitory effect of caffeine was not due to inhibition of phosphodiesterase enzymes and elevation of cyclic AMP levels, because application of 3-isobutyl-1-methylxanthine, forskolin or 8-bromo cyclic AMP had no inhibitory effect on the intracellular Ca2+ rise induced by inositol 1,4,5-trisphosphate (InsP3)-dependent agonists. We demonstrate that the inhibitory effect of caffeine may result from at least three actions of caffeine: (1) inhibition of receptor-stimulated InsP3 formation; (2) inhibition of agonist-stimulated Ca2+ influx; and (3) direct inhibition of the InsP3-sensitive Ca(2+)-release channel.
Collapse
Affiliation(s)
- L Combettes
- Unité de Recherche U274, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, Orsay, France
| | | | | |
Collapse
|
6
|
Kass GE, Gahm A, Llopis J. Cyclic AMP stimulates Ca2+ entry in rat hepatocytes by interacting with the plasma membrane carriers involved in receptor-mediated Ca2+ influx. Cell Signal 1994; 6:493-501. [PMID: 7818985 DOI: 10.1016/0898-6568(94)90003-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The regulation of Ca2+ influx in rat hepatocytes by glucagon and cyclic AMP (cAMP) was investigated. Exposing hepatocytes to glucagon resulted in an increase in the initial rate of Ca2+ entry. The concentrations of glucagon producing half-maximal and maximal stimulation of Ca2+ entry were 10(-10) and 10(-8) M, respectively. A similar stimulation of Ca2+ influx was obtained in cells exposed to cAMP analogues or to forskolin. Exposing hepatocytes suspended in nominally Ca(2+)-free medium to glucagon for 3 min produced a 9% decrease in the size of the vasopressin-sensitive Ca2+ pool; in contrast, N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (Bt2cAMP) slightly augmented the size of this pool. Glucagon and Bt2cAMP synergized the initial vasopressin-stimulated Ca2+ and Mn2+ influx rates, but only moderately increased the initial rate of Ca2+ entry after thapsigargin addition. The glucagon- and Bt2cAMP-stimulated Ca2+ influx was inhibited by the same antagonists of the plasma membrane Ca2+ carriers that mediate Ca2+ entry during stimulation by vasopressin. Thus, cAMP does not stimulate Ca2+ entry through either a capacitative type of mechanism or inositol phosphate turnover. The authors' findings instead suggest that cAMP acts directly, or through protein kinase A on the same Ca2+ carriers that are activated by phospholipase C-linked receptor agonists.
Collapse
Affiliation(s)
- G E Kass
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Bygrave FL, Benedetti A. Calcium: its modulation in liver by cross-talk between the actions of glucagon and calcium-mobilizing agonists. Biochem J 1993; 296 ( Pt 1):1-14. [PMID: 8250828 PMCID: PMC1137647 DOI: 10.1042/bj2960001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F L Bygrave
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, ACT
| | | |
Collapse
|
8
|
Bánhegyi G, Garzó T, Fulceri R, Benedetti A, Mandl J. Latency is the major determinant of UDP-glucuronosyltransferase activity in isolated hepatocytes. FEBS Lett 1993; 328:149-52. [PMID: 8393805 DOI: 10.1016/0014-5793(93)80983-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The glucuronidation of p-nitrophenol was measured in intact, saponin- and alamethicin-treated isolated mouse hepatocytes. In saponin-permeabilized cells the elevation of extrareticular UDP-glucuronic acid concentration enhanced the rate of glucuronidation threefold. When intracellular membranes were also permeabilized by alamethicin, a further tenfold increase in the glucuronidation of p-nitrophenol was present. Parallel measurements of the ER mannose 6-phosphatase activity revealed that saponin selectively permeabilized the plasma membrane, whereas alamethicin permeabilized both plasma membrane and ER membranes. The inhibition of p-nitrophenol glucuronidation by dbcAMP in intact hepatocytes was still present in saponin-treated cells and disappeared in alamethicin-permeabilized hepatocytes. It is suggested that the permeability of the endoplasmic reticulum membrane is a major determinant of glucuronidation not only in microsomes but in isolated hepatocytes as well.
Collapse
Affiliation(s)
- G Bánhegyi
- 1st Institute of Biochemistry, Semmelweis Medical University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
9
|
Bánhegyi G, Bellomo G, Fulceri R, Mandl J, Benedetti A. Intraluminal calcium of the liver endoplasmic reticulum stimulates the glucuronidation of p-nitrophenol. Biochem J 1993; 292 ( Pt 1):99-104. [PMID: 8503866 PMCID: PMC1134274 DOI: 10.1042/bj2920099] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relationship between the intraluminal Ca2+ content of endoplasmic reticulum and the rate of the glucuronidation of p-nitrophenol was investigated in isolated rat hepatocytes. Different agents which decrease the Ca2+ level in the endoplasmic reticulum [calcium ionophores (A23187, ionomycin) or Ca(2+)-ATPase inhibitors(thapsigargin,2,5-di-(t-butyl)-1,4-benzohydroquinone+ ++)] inhibited the conjugation of p-nitrophenol. Depletion of intracellular Ca2+ stores by preincubation of hepatocytes in the absence of free Ca2+ (in the presence of excess EGTA) also decreased the rate of glucuronidation; Ca2+ re-admission to EGTA-treated hepatocytes restored glucuronidation. In intact liver microsomes the p-nitrophenol UDP-glucuronosyl-transferase activity was not modified by varying the external free Ca2+ concentrations within a cytosol-like range. Emptying of the Ca2+ from the lumen of microsomal vesicles by A23187, after MgATP-stimulated Ca2+ sequestration, decreased the glucuronidation of p-nitrophenol. A similar effect was observed in filipin-permeabilized hepatocytes. In native and in detergent-treated microsomes, Ca2+ (1-10 mM) increased the p-nitrophenol UDP-glucuronosyltransferase activity. It is suggested that the physiological concentration of Ca2+ in the lumen of the endoplasmic reticulum is necessary for the optimal activity of p-nitrophenol UDP-glucuronosyltransferase; the depletion of Ca2+ decreases the activity of the enzyme.
Collapse
Affiliation(s)
- G Bánhegyi
- 1st Institute of Biochemistry, Semmelweis Medical University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
10
|
Bygrave FL, Gamberucci A, Fulceri R, Benedetti A. Evidence that stimulation of plasma-membrane Ca2+ inflow is an early action of glucagon and dibutyryl cyclic AMP in rat hepatocytes. Biochem J 1993; 292 ( Pt 1):19-22. [PMID: 8389124 PMCID: PMC1134262 DOI: 10.1042/bj2920019] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of glucagon (1 nM) and of dibutyryl cyclic AMP (50 microM) to increase cytosolic free Ca2+ concentration ([Ca2+]i) in Fura-loaded rat hepatocytes was examined in a system wherein Ca2+ inflow was induced by the re-admission of excess Ca2+ to a nominally Ca(2+)-free medium. An increase in [Ca2+]i did not occur in the absence of either agonist, but did so after co-addition of either agonist with Ca2+. Increasing the time between addition of dibutyryl cyclic AMP (or of glucagon) and Ca2+ led to increases in [Ca2+]i; half-maximal and maximal increases were observed at 0 s (i.e. at co-addition) and 5-7 s respectively. Dibutyryl cyclic AMP and Ca2+ each exhibited a concentration-dependence when their respective concentrations were changed for a fixed time interval between additions. Half-maximal and maximal effects were obtained with 30 microM and 50 microM dibutyryl cyclic AMP and with 0.5 mM and approx. 1 mM Ca2+ respectively. The data demonstrate an early action of glucagon and dibutyryl cyclic AMP on [Ca2+]i. It is argued that the agonist-induced rise in [Ca2+]i results from an increase in plasma-membrane Ca2+ inflow, an effect that appears to occur much earlier than that on mobilization of internal stores of Ca2+.
Collapse
Affiliation(s)
- F L Bygrave
- Istituto di Patologia Generale, Universita di Siena, Italy
| | | | | | | |
Collapse
|
11
|
Keppens S. The complex interaction of ATP and UTP with isolated hepatocytes. How many receptors? GENERAL PHARMACOLOGY 1993; 24:283-9. [PMID: 8482512 DOI: 10.1016/0306-3623(93)90304-g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. ATP exerts multiple receptor-mediated effects on isolated hepatocytes: glycogenolysis through the activation of glycogen phosphorylase (cAMP-independent, IP3/calcium-mediated), inactivation of glycogen synthase, inhibition of the glucagon effect on cAMP, activation of phospholipase D. The fact that some of these effects can be selectively altered and that they are not, or differently, reproduced by some other analogues of ATP, suggests the presence of more than one receptor. (i) Pertussis toxin abolishes the anti-glucagon effect of ATP without affecting its glycogenolytic effect. (ii) Single cell calcium measurements reveal major differences between ATP and ADP, (iii) 2MeSATP and ADP beta S, in clear contrast to ATP, barely increase the levels of IP3 and their glycogenolytic effects is completely blocked by phorbol ester treatment of hepatocytes. (iv) 2MeSATP differs from ADP beta S since it has no anti-glucagon effect. 2. Effects of UTP on isolated hepatocytes so far do not show any difference with effects of ATP, suggesting interaction with the same receptor(s). 3. It is proposed that liver plasma membranes contain (at least) three different receptors mediating (a) the activation of phospholipase C, (b) the activation of phospholipase D and (c) the inhibition of adenylate cyclase.
Collapse
Affiliation(s)
- S Keppens
- Department of Biochemistry, Faculty of Medicine, Katholieke Universiteit te Leuven, Belgium
| |
Collapse
|
12
|
Feng L, Pereira B, Kraus-Friedmann N. Different localization of inositol 1,4,5-trisphosphate and ryanodine binding sites in rat liver. Cell Calcium 1992; 13:79-87. [PMID: 1321686 DOI: 10.1016/0143-4160(92)90001-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of inositol 1,4,5-trisphosphate and ryanodine binding sites between plasma membrane, microsomal, and mitochondrial fractions of rat liver were compared. IP3 bound mostly to the plasma membrane fraction (Kd = 6 nM; Bmax = 802 fmol/mg protein). Some IP3 binding sites were also present in the microsomal and mitochondrial fractions (Kd = 2.5 and 2.9 nM; Bmax = 35 and 23 fmol/mg protein respectively). The possibility that these binding sites are due to contamination of the fractions with plasma membrane cannot be excluded. Binding of IP3 to the plasma membrane was inhibited by heparin but not by either caffeine or tetracaine. High-affinity ryanodine binding sites were present mostly in the microsomal fraction (Kd = 13 nM; Bmax = 301 fmol/mg protein). Lower affinity binding sites were also found to be present in the mitochondrial and plasma membrane fractions. Binding of ryanodine to the microsomal fraction was inhibited by both caffeine and tetracaine but not by heparin. These data demonstrate that IP3 and ryanodine binding sites are present in different cellular compartments in the liver. These differences in the localization of the binding sites might be indicative of their functional differences.
Collapse
Affiliation(s)
- L Feng
- Department of Physiology and Cell Biology, University of Texas Medical School, Health Science Center, Houston
| | | | | |
Collapse
|
13
|
Fulceri R, Bellomo G, Mirabelli F, Gamberucci A, Benedetti A. Measurement of mitochondrial and non-mitochondrial Ca2+ in isolated intact hepatocytes: a critical re-evaluation of the use of mitochondrial inhibitors. Cell Calcium 1991; 12:431-9. [PMID: 1653113 DOI: 10.1016/0143-4160(91)90069-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isolated rat hepatocytes treated with mitochondrial inhibitors FCCP or antimycin A release discrete amounts of Ca2+ in a Ca(2+)-free extracellular medium as revealed by changes in the absorbance of the Ca2+ indicator arsenazo III. The process is completed in 2 min and the amount of Ca2+ released is not affected by the type of the mitochondrial poison employed. The subsequent treatment with the cation ionophore A23187 causes a further release of Ca2+ that does not appear related to the specificity of the previous treatment with FCCP or antimycin A. Both FCCP and antimycin A cause a progressive loss of cellular ATP associated with a decrease in the ATP/ADP ratio from 6 to 2-1.5. However, this decrease does not significantly prevent 45Ca2+ accumulation in isolated liver microsomes. Moreover, the decrease of the ATP/ADP ratio to 1, does not promote a significant release of 45Ca2+ from 45Ca(2+)-preloaded microsomes. Finally, experiments with Fura-2-loaded hepatocytes reveal that agents specifically releasing Ca2+ from non-mitochondrial stores (vasopressin and 2,5-di-tert-butyl-1-4-benzohydroquinone) are still able to increase the cytosolic Ca2+ concentration in FCCP-treated cells. Taken together, these findings demonstrate that, in freshly isolated hepatocytes, FCCP specifically releases Ca2+ from mitochondrial stores without significantly affecting active Ca2+ sequestration in other cellular pools. For these reasons, FCCP can be used to release and quantitate mitochondrial Ca2+ in liver cells.
Collapse
Affiliation(s)
- R Fulceri
- Istituto di Patologia Generale, University of Siena, Italy
| | | | | | | | | |
Collapse
|