1
|
Steib CJ, Bilzer M, op den Winkel M, Pfeiler S, Hartmann AC, Hennenberg M, Göke B, Gerbes AL. Treatment with the leukotriene inhibitor montelukast for 10 days attenuates portal hypertension in rat liver cirrhosis. Hepatology 2010; 51:2086-96. [PMID: 20512996 DOI: 10.1002/hep.23596] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The mechanisms underlying intrahepatic vasoconstriction are not fully elucidated. Here we investigated the Kupffer cell (KC)-dependent increase in portal pressure by way of actions of vasoconstrictive cysteinyl leukotrienes (Cys-LTs). Liver cirrhosis was induced in rats by bile duct ligation (BDL for 4 weeks; controls: sham-operation) and thioacetamide application (18 weeks). Infusion of leukotriene (LT) C(4) or LTD(4) in isolated perfused livers (20 nM, BDL and sham) demonstrated that LTC(4) is a more relevant vasoconstrictor. In BDL animals the Cys-LT(1) receptor inhibitor montelukast (1 microM) reduced the maximal portal perfusion pressure following LTC(4) or LTD(4) infusion. The infusion of LTC(4) or D(4) in vivo (15 microg/kg b.w.) confirmed LTC(4) as the more relevant vasoconstrictor. Activation of KCs with zymosan (150 microg/mL) in isolated perfused BDL livers increased the portal perfusion pressure markedly, which was attenuated by LT receptor blockade (Ly171883, 20 microM). Cys-LTs in the effluent perfusate increased with KC activation but less with additional blockade of KCs with gadolinium chloride (10 mg/kg body weight, 48 and 24 hours pretreatment). KCs were isolated from normal rat livers and activated with zymosan or lipopolysaccharide at different timepoints. This resulted in an increase in Cys-LT production that was not influenced by preincubation with montelukast (1 microM). Infusion of LTC(4) (20 nM) and the thromboxane analog U46619 (0.1 microM) further enhanced portal pressure, indicating additive effects. Treatment with montelukast for 10 days resulted in an impressive reduction in the basal portal pressure and an attenuation of the KC-dependent increase in portal pressure. CONCLUSION Activation of isolated KCs produced Cys-LTs. Infusion of Cys-LTs increased portal pressure and, vice versa, treatment with montelukast reduced portal pressure in rat liver cirrhosis. Therefore, montelukast may be of therapeutic benefit for patients with portal hypertension.
Collapse
Affiliation(s)
- Christian J Steib
- Department of Medicine II (Gastroenterology and Hepatology), Liver Center Munich, University of Munich, Grosshadern, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Chu CJ, Hsiao CC, Wang TF, Chan CY, Lee FY, Chang FY, Chen YC, Huang HC, Wang SS, Lee SD. Prostacyclin inhibition by indomethacin aggravates hepatic damage and encephalopathy in rats with thioacetamide-induced fulminant hepatic failure. World J Gastroenterol 2005; 11:232-6. [PMID: 15633222 PMCID: PMC4205408 DOI: 10.3748/wjg.v11.i2.232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Vasodilatation and increased capillary permeability have been proposed to be involved in the pathogenesis of acute and chronic form of hepatic encephalopathy. Prostacyclin (PGI2) and nitric oxide (NO) are important contributors to hyperdynamic circulation in portal hypertensive states. Our previous study showed that chronic inhibition of NO had detrimental effects on the severity of encephalopathy in thioacetamide (TAA)-treated rats due to aggravation of liver damage. To date, there are no detailed data concerning the effects of PGI2 inhibition on the severity of hepatic encephalopathy during fulminant hepatic failure.
METHODS: Male Sprague-Dawley rats weighing 300-350 g were used. Fulminant hepatic failure was induced by intraperitoneal injection of TAA (350 mg/(kg.d) for 3 d. Rats were divided into two groups to receive intraperitoneal injection of indomethacin (5 mg/(kg.d), n = 20) or normal saline (N/S, n = 20) for 5 d, starting 2 d before TAA administration. Severity of encephalopathy was assessed by the counts of motor activity measured with Opto-Varimex animal activity meter. Plasma tumor necrosis factor-α (TNF-α, an index of liver injury) and 6-keto-PGF1α (a metabolite of PGI2) levels were measured by enzyme-linked immunosorbent assay.
RESULTS: As compared with N/S-treated rats, the mortality rate was significantly higher in rats receiving indomethacin (20% vs 5%, P<0.01). Inhibition of PGI2 created detrimental effects on total movement counts (indomethacin vs N/S: 438±102 vs 841±145 counts/30 min, P<0.05). Rats treated with indomethacin had significant higher plasma levels of TNF-α (indomethacin vs N/S: 22±5 vs 10±1 pg/mL, P<0.05) and lower plasma levels of 6-keto-PGF1α (P<0.001), but not total bilirubin or creatinine (P>0.05), as compared with rats treated with N/S.
CONCLUSION: Chronic indomethacin administration has detrimental effects on the severity of encephalopathy in TAA-treated rats and this phenomenon may be attributed to the aggravation of liver injury. This study suggests that PGI2 may provide a protective role in the development of fulminant hepatic failure.
Collapse
Affiliation(s)
- Chi-Jen Chu
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Leukotrienes are potent biological mediators implicated in an increasing number of disease processes. This review outlines the basic biology of leukotrienes and discusses recent developments in our understanding of the specific role of cysteinyl-leukotrienes (cLTs) in cholestasis, hepatic inflammation, portal hypertension, and the pathogenesis of the hepatorenal syndrome (HRS).
Collapse
Affiliation(s)
- Ramin Farzaneh-Far
- Department of Medicine, Centre for Hepatology, Royal Free & University College Medical School, Rowland Hill St., London NW3 2PF, UK
| | | |
Collapse
|
4
|
Rodríguez-Ortigosa CM, Vesperinas I, Qian C, Quiroga J, Medina JF, Prieto J. Taurocholate-stimulated leukotriene C4 biosynthesis and leukotriene C4-stimulated choleresis in isolated rat liver. Gastroenterology 1995; 108:1793-801. [PMID: 7768385 DOI: 10.1016/0016-5085(95)90142-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS Cysteinyl-containing leukotrienes seem to exert a cholestatic effect. However, leukotriene inhibitors were found to reduce bile salt efflux in isolated rat hepatocytes, suggesting a role for leukotrienes in bile flow formation. METHODS In the isolated rat liver, the effects of two different concentrations of leukotriene C4 on bile flow and bile salt excretion are analyzed, as well as the possible effect of taurocholate on the hepatic production of cysteinyl-containing leukotrienes. RESULTS Leukotriene C4 (0.25 fmol) increased bile salt excretion (+22.2%; P < 0.05), whereas a much higher dose (0.25 x 10(6) fmol) showed the known cholestatic effect, reducing bile salt excretion (-25.9%; P < 0.01). These dose-dependent biphasic effects were specific because they could be prevented by the simultaneous administration of cysteinyl-containing leukotriene antagonists. On the other hand, taurocholate administration induced a dose-dependent increase in biliary excretion of cysteinyl-containing leukotrienes. Furthermore, taurocholate increased messenger RNA levels of 5-lipoxygenase, a key enzyme in leukotriene biosynthesis. Taurocholate increase of hepatocyte intracellular calcium was not significant, suggesting that taurocholate effects are not mediated by stimulation of calcium metabolism. CONCLUSIONS These results constitute evidence for the existence of a positive feedback mechanism by which bile salts stimulate the synthesis of leukotrienes that, in turn, stimulate bile salt excretion.
Collapse
Affiliation(s)
- C M Rodríguez-Ortigosa
- Department of Medicine, University Clinic and Medical School, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- G Tiegs
- Faculty of Biology, University of Konstanz, Germany
| |
Collapse
|
6
|
Bilzer M, Lauterburg BH. Peptidoleukotrienes increase the efflux of glutathione from perfused rat liver. Prostaglandins Leukot Essent Fatty Acids 1993; 49:715-21. [PMID: 8248280 DOI: 10.1016/0952-3278(93)90084-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of peptidoleukotrienes (LT) on the efflux of glutathione (GSH) from the perfused rat liver was investigated. LTD4, C4 and E4 were infused at a final concentration of 20 nM into the portal vein of rat livers perfused with Krebs-Henseleit buffer. Perfusion pressure, efflux of glucose and release of LDH increased during the infusion of LTC4 and D4 and returned to baseline upon cessation of the infusion of LT. In contrast, the efflux of GSH did not change during the infusion of LT, but increased from 15 +/- 2 to 26 +/- 4 nmol/min.g liver 20 min after cessation of the infusion of LTC4. LTE4 did not increase the efflux of LDH, glucose, lactate, or GSH. During the LTC4- and LTD4-induced rise in perfusion pressure bile-flow decreased transiently by one third. The biliary excretion of GSH, however, decreased by an average of 75% and recovered more slowly than the cholestasis. In the presence of the selective LTD4 receptor antagonist LY171883 the effects of LTC4 and LTD4 were largely abolished. The delayed effects of LT on GSH efflux suggest that LT shift the efflux of GSH from the canalicular towards the sinusoidal side of the hepatocyte independent of other effects of LT on hepatic function. The sustained increase in efflux of GSH resulting from LT will raise the extracellular concentration of this antioxidant, such that more GSH is available at sites of inflammation to detoxify reactive oxygen species released by activated inflammatory cells.
Collapse
Affiliation(s)
- M Bilzer
- Department of Clinical Pharmacology, University of Bern, Switzerland
| | | |
Collapse
|
7
|
Abstract
During the last decade intensive work on the relationships between the liver and the arachidonic acid cascade has greatly expanded our knowledge of this area of research. The liver has emerged as the major organ participating in the degradation and elimination of arachidonate products of systemic origin. The synthesis in the liver of arachidonate products derived from the cyclooxygenase, lipoxygenase and cytochrome P450 system pathways has been demonstrated. The participation of leukotriene B4 and cysteinyl-leukotrienes as mediators of liver damage and the possible therapeutic usefulness of prostaglandins (PGs) in acute liver injury has attracted the interest of clinicians. This article reviews the essential features regarding the role of arachidonate metabolites in liver disease and specially focuses on the cytoprotective effects on the liver displayed by PGE2, PGE1, PGI2 and synthetic PG analogs in experimental models of liver damage induced by ischemia-reperfusion injury, carbon tetrachloride, bacterial lipopolysaccharide and viral hepatitis and on the possible mechanisms underlying liver cytoprotection in these experimental models. The therapeutic usefulness of PGs in clinical practice is critically analyzed on the basis of available evidence in patients with fulminant hepatic failure and primary graft nonfunction following liver transplantation.
Collapse
Affiliation(s)
- J Quiroga
- Department of Internal Medicine, University of Navarra School of Medicine, Pamplona, Spain
| | | |
Collapse
|
8
|
Hagmann W, Hacker HJ, Buchholz U. Resident mast cells are the main initiators of anaphylactic leukotriene production in the liver. Hepatology 1992; 16:1477-84. [PMID: 1446900 DOI: 10.1002/hep.1840160625] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During anaphylaxis the sensitized liver can have substantial capacity for leukotriene production. However, the intrahepatic cellular source for these potent eicosanoid mediators has been unclear so far. We therefore analyzed the appropriate role of resident liver cells in organ-specific generation of leukotrienes by immunohistochemical localization of 5-lipoxygenase, by measurement of cysteinyl leukotriene production in animals or isolated livers and by histochemical monitoring of mast cells in rat, guinea pig and mouse livers, respectively. During anaphylaxis in vivo, these species all generated large amounts of leukotrienes. Immunohistochemistry with rat liver demonstrated resident mast cells as the predominant cell type in liver containing 5-lipoxygenase. Rat and guinea pig livers contained numerous mast cells and produced substantial amounts of leukotrienes on antigen challenge; in contrast, mouse livers neither showed detectable mast cells nor generated leukotrienes when stimulated analogously. Infusion of histamine or serotonin (1 mmol/L each) or of the degranulating substance P (8 mumol/L) did not elicit leukotriene generation in rat livers. Furthermore, substantial degranulation of liver mast cells by compound 48/80 (0.5 mg/kg body mass) was paralleled by only modest leukotriene formation (63 +/- 10 pmol in bile/kg body mass/30 min). These results indicate that during anaphylaxis mast cells are the main intrahepatic cells initiating leukotriene production and that such leukotriene generation is likely to be independent of mast cell degranulation or the release of histamine or serotonin.
Collapse
Affiliation(s)
- W Hagmann
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
9
|
Kimura K, Shiota M, Mochizuki K, Ohta M, Sugano T. Different preparations of zymosan induce glycogenolysis independently in the perfused rat liver. Involvement of mannose receptors, peptide-leukotrienes and prostaglandins. Biochem J 1992; 283 ( Pt 3):773-9. [PMID: 1317164 PMCID: PMC1130953 DOI: 10.1042/bj2830773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zymosan (non-boiled) induced glycogenolysis biphasically, with no lag time, in the perfused rat liver. After the zymosan was boiled, it could be separated into two fractions, both of which stimulated glycogenolysis independently. The soluble fraction of boiled zymosan (zymosan sup) showed homologous desensitization, indicating that zymosan sup-induced glycogenolysis is a receptor-mediated event. Mannan (polymannose), which is known to be a biologically active component of zymosan, induced a glycogenolytic response similar to that produced by zymosan sup, and desensitized the response to the latter. Preinfusion of platelet-activating factor (PAF, 20 nM) or isoprenaline (10 microM) did not extinguish the glycogenolytic response to zymosan sup, while the response to a secondary infusion of PAF was blocked. The glycogenolytic response to zymosan sup was completely inhibited by nordihydroguaiaretic acid (NDGA, 10 microM), a lipoxygenase inhibitor, and by ONO-1078 (100 ng/ml), a leukotriene (LT) D4 receptor antagonist. On the other hand, the glycogenolytic effect of zymosan pellet (the particulate fraction of boiled zymosan) was not affected by preinfusion of zymosan sup, and was inhibited by ibuprofen (20 microM), a cyclo-oxygenase inhibitor. Prostaglandins (PGs) detected in the perfusate were augmented with infusion of zymosan pellet. Opsonization of the zymosan pellet by serum (complement) enhanced the glycogenolytic response without a lag period, and with a concomitant enhancement of PG output. Correlations between glucose production and PGs were r = 0.832 (PGD2), r = 0.872 (PGF2 alpha), r = 0.752 (PGE2) and r = 0.349 (6-oxo-PGF1 alpha). The glycogenolytic response to non-boiled zymosan was delayed and the biphasic glycogenolytic response was not observed when mannan was infused first. NDGA mimicked the effects of the preinfusion of mannan, while ibuprofen had no effect on the non-boiled-zymosan-induced glycogenolysis. These results suggest: (1) that non-boiled zymosan stimulates glycogenolysis through a mannose receptor-dependent, but unidentified, pathway, (2) that zymosan sup induces glycogenolysis via mannose receptor activation through the production of peptide-LTs but not PAF, and (3) that zymosan pellet causes glycogenolysis through the production of prostanoids, which is enhanced in the presence of complement.
Collapse
Affiliation(s)
- K Kimura
- Department of Veterinary Science, College of Agriculture, University of Osaka Prefecture, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
Liver parenchyma shows a remarkable heterogeneity of the hepatocytes along the porto-central axis with respect to ultrastructure and enzyme activities resulting in different cellular functions within different zones of the liver lobuli. According to the concept of metabolic zonation, the spatial organization of the various metabolic pathways and functions forms the basis for the efficient adaptation of liver metabolism to the different nutritional requirements of the whole organism in different metabolic states. The present review summarizes current knowledge about this heterogeneity, its development and determination, as well as about its significance for the understanding of all aspects of liver function and pathology, especially of intermediary metabolism, biotransformation of drugs and zonal toxicity of hepatotoxins.
Collapse
Affiliation(s)
- R Gebhardt
- Physiologisch-Chemisches Institut, University of Tübingen, Germany
| |
Collapse
|
11
|
Abstract
Platelet activating factor (PAF) was found to stimulate the metabolism of inositol phospholipids via deacylation and phospholipase C in Kupffer cells, the resident macrophages in liver. PAF-induced phosphoinositide metabolism occurred in two phases. Within seconds after stimulation, in the absence of extracellular Ca++, platelet activating factor caused the phosphodiester hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate with the release of inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate. This was followed by an extracellular Ca(++)-dependent release of glycerophosphoinositol, inositol monophosphates and inositol bisphosphates. Various Ca(++)-mobilizing agonists failed to evoke hydrolysis of phosphoinositides. Platelet activating factor also stimulated the synthesis and release of prostaglandins from these cells. Platelet activating factor-stimulated phosphodiester metabolism of phosphoinositides and prostaglandin synthesis was inhibited by treatment with pertussis toxin and cholera toxin. Pertussis toxin also inhibited platelet activating factor-induced glycerophosphoinositol release. Cholera toxin, in contrast, stimulated platelet activating factor-induced glycerophosphoinositol release and prostaglandin synthesis and synergistically stimulated the effect of platelet activating factor on these processes. The results suggest that platelet activating factor-induced metabolism in the Kupffer cells occurs via specific receptors and may be mediated through the activation of different G-proteins.
Collapse
Affiliation(s)
- C R Gandhi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
12
|
Evans RD, Lund P, Williamson DH. Platelet-activating factor and its metabolic effects. Prostaglandins Leukot Essent Fatty Acids 1991; 44:1-10. [PMID: 1946557 DOI: 10.1016/0952-3278(91)90137-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R D Evans
- Nuffield Department of Anaesthetics, Radcliffe Infirmary, Oxford, UK
| | | | | |
Collapse
|
13
|
Püschel GP, Oppermann M, Neuschäfer-Rube F, Götze O, Jungermann K. Differential effects of human anaphylatoxin C3a on glucose output and flow in rat liver during orthograde and retrograde perfusion: the periportal scavenger cell hypothesis. Biochem Biophys Res Commun 1991; 176:1218-26. [PMID: 2039507 DOI: 10.1016/0006-291x(91)90415-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1) During orthograde perfusion of rat liver human anaphylatoxin C3a caused an increase in glucose and lactate output and reduction of flow. These effects could be enhanced nearly twofold by co-infusion of the carboxypeptidase inhibitor MERGETPA, which reduced inactivation of C3a to C3adesArg. 2) During retrograde perfusion C3a caused a two- to threefold larger increase in glucose and lactate output and reduction of flow than in orthograde perfusions. These actions tended to be slightly enhanced by MERGETPA. 3) The elimination of C3a plus C3adesArg immunoreactivity during a single liver passage was around 67%, irrespective of the perfusion direction and the presence of the carboxypeptidase inhibitor MERGETPA; however, less C3adesArg and more intact C3a appeared in the perfusate in the presence of MERGETPA in orthograde and retrogade perfusions. It is concluded that rat liver inactivated human anaphylatoxin C3a by conversion to C3adesArg and moreover eliminated it by an additional process. The inactivation to C3adesArg seemed to be located predominantly in the proximal periportal region of the liver sinusoid, since C3a was less effective in orthograde perfusions, when C3a first passed the proximal periportal region before reaching the predominant mass of parenchyma as its site of action, than in retrograde perfusions, when it first passed the perivenous area. These data may be evidence for a periportal scavenger mechanism, by which the liver protects itself from systemically released mediators of inflammation that interfere with the local regulation of liver metabolism and hemodynamics.
Collapse
Affiliation(s)
- G P Püschel
- Institut für Biochemie, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | |
Collapse
|
14
|
Muschol W, Püschel GP, Hülsmann M, Jungermann K. Eicosanoid-mediated increase in glucose and lactate output as well as decrease and redistribution of flow by complement-activated rat serum in perfused rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:525-30. [PMID: 2007411 DOI: 10.1111/j.1432-1033.1991.tb15845.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rat serum, in which the complement system had been activated by incubation with zymosan, increased the glucose and lactate output, and reduced and redistributed the flow in isolated perfused rat liver clearly more than the control serum. Heat inactivation of the rat serum prior to zymosan incubation abolished this difference. Metabolic and hemodynamic alterations caused by the activated serum were dose dependent. They were almost completely inhibited by the cyclooxygenase inhibitor indomethacin and by the thromboxane antagonist 4-[2-(4-chlorobenzesulfonamide)-ethyl]-benzene-acetic acid (BM 13505), but clearly less efficiently by the 5'-lipoxygenase inhibitor nordihydroguaiaretic acid and the leukotriene antagonist N-(3-[3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-propoxy]-4-chlorine-6-meth yl- phenyl)-1H-tetrazole-5-carboxamide sodium salt (CGP 35949 B). Control serum and to a much larger extent complement-activated serum, caused an overflow of thromboxane B2 and prostaglandin F2 alpha into the hepatic vein. It is concluded that the activated complement system of rat serum can influence liver metabolism and hemodynamics via release from nonparenchymal liver cells of thromboxane and prostaglandins, the latter of which can in turn act on the parenchymal cells.
Collapse
Affiliation(s)
- W Muschol
- Institut für Biochemie, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
15
|
Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30655-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Shimazawa T, Nagai H, Koda A, Kasahara M. The effects of thromboxane A2 inhibitors (OKY-046 and ONO-3708) and leukotriene inhibitors (AA-861 and LY-171883) on CCl4-induced chronic liver injury in mice. Prostaglandins Leukot Essent Fatty Acids 1990; 40:67-71. [PMID: 2119043 DOI: 10.1016/0952-3278(90)90119-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of OKY-046, a selective thromboxane A2 (TxA2) synthetase inhibitor, ONO-3708, a novel TxA2 receptor antagonist, AA-861, a selective 5-lipoxygenase inhibitor and LY-171883, a peptide leukotrienes (p-LTs) receptor antagonist on the chronic liver injury were investigated in mice. The chronic liver injury was induced by the injection of carbon tetrachloride (CCl4) two times a week for twelve weeks in mice. In chronic liver injury models, significant histopathological changes in the liver and extensive elevation of glutamate transaminase (GOT and GPT) activity were observed. Administration of OKY-046, ONO-3708, AA-861 and LY-171883 for 12 weeks suppressed the elevation of serum GOT and GPT levels and histopathological changes in CCl4-induced chronic liver injury. These results suggest that TxA2 and LTs inhibitors are effective for the onset and development of chronic liver injury in mice.
Collapse
Affiliation(s)
- T Shimazawa
- Department of Pharmacology, Gifu Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
1. In isolated perfused rat liver and in vivo, up to 25% of [3H]leukotriene B4 was eliminated from the circulation via hepatic uptake and biliary excretion within 1 h. Total body recovery of 3H amounted to about 60% of infused [3H]leukotriene B4. 2. Hepatobiliary excretion of leukotriene B4 and its metabolites exceeded renal elimination by about 4-fold and depended, in contrast with excretion of cysteinyl leukotriene E4, upon continuous taurocholate supply. 3. Analyses of bile, liver and recirculated perfusate using h.p.l.c. indicated that the liver metabolized leukotriene B4 extensively to omega-carboxyleukotriene B4 and its beta-oxidized derivatives, and no unmetabolized leukotriene B4 appeared in bile. These results substantiate the important contribution of the hepatobiliary system with respect to the metabolic fate of leukotriene B4.
Collapse
Affiliation(s)
- W Hagmann
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
18
|
Parthé S, Hagmann W. Inhibition of leukotriene omega-oxidation by isonicotinic acid hydrazide (isoniazid). EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:119-24. [PMID: 2298201 DOI: 10.1111/j.1432-1033.1990.tb15284.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolism of leukotrienes via omega-oxidation represents a major degradative and inactivating pathway of these biologically active icosanoids. Isonicotinic acid hydrazide (isoniazid) inhibited this process in rats in vivo, in the isolated perfused rat liver, and in hepatic microsomes. The in vivo catabolism of leukotriene E4 via N-acetyl-leukotriene E4 to its omega-oxidized metabolites was inhibited by 50% or 71% using single intravenous isoniazid doses of 0.6 mmol or 1.0 mmol/kg body mass, respectively. Isoniazid interfered with leukotriene catabolism at the initial omega-oxidation step, resulting in an accumulation of N-acetyl-leukotriene E4. Analogous although weaker inhibition of leukotriene omega-oxidation in vivo was observed by pretreatment with isonicotinic acid 2-isopropylhydrazide and monoacetyl hydrazine. In the isolated perfused liver, isoniazid at concentrations varying over 0.2-10 mM decreased the omega-oxidation of cysteinyl leukotrienes dose-dependently by up to 94%. omega-Oxidation of both leukotriene E4 and leukotriene B4 by rat liver microsomes was inhibited by isoniazid, isonicotinic acid 2-isopropylhydrazide, and monoacetyl hydrazine with half-maximal concentrations in the range of 5-15 mM. Our measurements indicate that the impairment of leukotriene omega-oxidation by isoniazid involves both cytochrome-P450-dependent enzyme systems responsible for omega-oxidation of leukotriene E4 and leukotriene B4. In effect, under isoniazid treatment one can expect a prolongation of the proinflammatory actions of endogenously produced leukotrienes.
Collapse
Affiliation(s)
- S Parthé
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
19
|
Abstract
In recent years, knowledge of the physiology and pharmacology of hepatic circulation has grown rapidly. Liver microcirculation has a unique design that allows very efficient exchange processes between plasma and liver cells, even when severe constraints are imposed upon the system, i.e. in stressful situations. Furthermore, it has been recognized recently that sinusoids and their associated cells can no longer be considered only as passive structures ensuring the dispersion of molecules in the liver, but represent a very sophisticated network that protects and regulates parenchymal cells through a variety of mediators. Finally, vascular abnormalities are a prominent feature of a number of liver pathological processes, including cirrhosis and liver cell necrosis whether induced by alcohol, ischemia, endotoxins, virus or chemicals. Although it is not clear whether vascular lesions can be the primary events that lead to hepatocyte injury, the main interest of these findings is that liver microcirculation could represent a potential target for drug action in these conditions.
Collapse
Affiliation(s)
- F Ballet
- INSERM U. 181, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
20
|
Nagai H, Shimazawa T, Yakuo I, Aoki M, Koda A, Kasahara M. Role of peptide-leukotrienes in liver injury in mice. Inflammation 1989; 13:673-80. [PMID: 2575600 DOI: 10.1007/bf00914311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of peptide leukotrienes (p-LTs), especially LTC4 and LTD4 in liver disease, was investigated in mice experimental liver injury models. The liver injury was induced by the injection of bacterial lipopolysaccharide (LPS) into Corynebacterium parvum pretreated mice. Carbon tetrachloride (CCl4)-induced liver injury in mice was used as a standard model. In both injury models, extensive liver parenchymal cell damage was observed by the elevation of glutamate transaminase (GOT and GPT) activity and confirmed by significant histopathological changes in the liver. Moreover, significant elevation of LTC4 in the liver was observed in both models 1 and 6 h after the onset of disease. Administration of AA-861, a selective 5-lipoxygenase inhibitor (0.5, 1, and 2 mg/kg) and LY-171883, a p-LT receptor antagonist (50 and 200 mg/kg) suppressed the elevation of serum GOT and GPT levels and histopathological changes in both experimental liver injury models. In addition, when authentic LTC4 or LTD4 was injected into the mouse, clear elevation of serum GOT and GPT and histopathological changes of the liver were observed. These results suggest that p-LTs play a role in the onset of liver diseases in mice.
Collapse
Affiliation(s)
- H Nagai
- Department of Pharmacology, Gifu Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Jungermann K. [Regulation of liver functions by autonomic hepatic nerves]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1989; 76:547-59. [PMID: 2695845 DOI: 10.1007/bf00462861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The liver is the glucose reservoir of the organism and moreover an important blood reservoir, which takes up or releases glucose and blood depending on demand. Activation of the sympathetic nerves increases glucose release, shifts lactate uptake to output and reduces a.o. oxygen uptake. Moreover, it elicits a reduction of blood flow, and, by closing of sinusoids, an intrahepatic redistribution as well as a mobilization of blood. Activation of parasympathetic nerves enhances glucose utilization and causes a re-opening of closed sinusoids. The actions of sympathetic nerves can be modulated by hormones. Extracellular calcium as well as the mediators noradrenaline and probably also prostaglandins are involved in the signal chain. Intracellularly the signal chain is propagated by an increase of cytosolic calcium.
Collapse
Affiliation(s)
- K Jungermann
- Institut für Biochemie, Fachbereich Medizin der Universität, Göttingen
| |
Collapse
|
22
|
Abstract
Responses of isolated perfused rat liver to leukotriene C4 were studied in order to assess the mechanisms involved in leukotriene-mediated liver injury. Infusion of leukotriene C4 (11 and 44 pmoles per min per gm liver weight) into the portal vein resulted in a rise in portal pressure, a decrease in oxygen consumption, an increase in hepatic glucose and lactate efflux and lactate/pyruvate ratio in the perfusate and a small decrease in bile flow. Isoproterenol (1 microM) counteracted the effects of leukotriene C4 on respiration and portal pressure, whereas bile flow and glucose efflux were reversibly stimulated. The same changes were observed upon withdrawal of leukotriene C4. The release of glucose was correlated with the increase in oxygen consumption upon both isoproterenol addition and withdrawal of leukotriene C4. These results are indicative of leukotriene C4-induced microcirculatory redistribution of perfusate flow. Since, in the presence of nitroprusside (50 microM), both the effects of leukotriene C4 and their reversal by isoproterenol were diminished, a vascular site of action can be assumed. Accordingly, the accompanying metabolic responses can be explained by gradual changes in oxygen supply to parts of the liver. Reversibility of the leukotriene C4 effects and lack of short-term impairment of viability of the isolated liver suggest that leukotriene-mediated liver injury is a long-term effect related to events subsequent to microcirculatory changes.
Collapse
Affiliation(s)
- H Krell
- Pharmakologisches Institut der Universität Tübingen, Federal Republic of Germany
| | | |
Collapse
|
23
|
Hagmann W, Parthé S, Kaiser I. Uptake, production and metabolism of cysteinyl leukotrienes in the isolated perfused rat liver. Inhibition of leukotriene uptake by cyclosporine. Biochem J 1989; 261:611-6. [PMID: 2549977 PMCID: PMC1138868 DOI: 10.1042/bj2610611] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The isolated perfused rat liver efficiently takes up cysteinyl leukotrienes (LTs) C4, D4, E4 and N-acetyl-LTE4 from circulation. More than 70% of these cysteinyl LTs are excreted from liver into bile within 1 h of onset of a 5 min infusion, while about 5% remain in the liver. About 20% of infused N-acetyl-LTE4 escapes hepatic first-pass extraction under our conditions. 2. Metabolites of LTC4 appearing in bile within 20 min of the onset of infusion include mainly LTD4 and N-acetyl-LTE4, but also omega-hydroxy-N-acetyl-LTE4 and omega-carboxy-N-acetyl-LTE4. Metabolites generated from omega-carboxy-N-acetyl-LTE4 by beta-oxidation from the omega-end represent the major biliary LTs secreted at later times. 3. Stimulation of the isolated perfused liver by the combined infusion of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 results in a transient increase of endogenous cysteinyl LT production, which is independent of extrahepatic cells. 4. The immunosuppressive drug cyclosporine causes a dose-dependent inhibition of hepatobiliary cysteinyl LT excretion, probably by interference with the sinusoidal uptake system for cysteinyl LTs.
Collapse
Affiliation(s)
- W Hagmann
- Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
24
|
Wettstein M, Gerok W, Häussinger D. Metabolism of cysteinyl leukotrienes in non-recirculating rat liver perfusion. Hepatocyte heterogeneity in uptake and biliary excretion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:115-24. [PMID: 2565811 DOI: 10.1111/j.1432-1033.1989.tb14701.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Wettstein
- Medizinische Universitätsklinik Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Iwai M, Jungermann K. Mechanism of action of cysteinyl leukotrienes on glucose and lactate balance and on flow in perfused rat liver. Comparison with the effects of sympathetic nerve stimulation and noradrenaline. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:273-81. [PMID: 2564341 DOI: 10.1111/j.1432-1033.1989.tb14644.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rat livers were perfused at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1. Leukotrienes C4 and D4 enhanced glucose and lactate output and reduced perfusion flow to the same extent and with essentially identical kinetics. They both caused half-maximal alterations (area under the curve) of carbohydrate metabolism at a concentration of about 1 nM and of flow at about 5 nM. The leukotriene-C4/D4 antagonist CGP 35949 B inhibited the metabolic and hemodynamic effects of 5 nM leukotrienes C4 and D4 with the same efficiency, causing 50% inhibition at about 0.1 microM. 2. Leukotriene C4 elicited the same metabolic and hemodynamic alterations with the same kinetics as leukotriene D4 in livers from rats pretreated with the gamma-glutamyltransferase inhibitor, acivicin. 3. The calcium antagonist, nifedipine, at a concentration of 50 microM did not affect the metabolic and hemodynamic changes caused by 5 nM leukotriene D4. The smooth-muscle relaxant, nitroprussiate, at a concentration of 10 microM reduced flow changes, without significantly affecting the metabolic alterations. 4. Leukotriene D4 not only reduced flow; it also caused an intrahepatic redistribution of flow, restricting some areas from perfusion. Thus, leukotrienes increased glucose and lactate output directly in the accessible parenchyma and, in addition, indirectly by washout from restricted areas during their reopening upon termination of application. 5. The phospholipase A2 inhibitor, bromophenacyl bromide, but not the cyclooxygenase inhibitor, indomethacin, at a concentration of 20 microM reduced the metabolic and hemodynamic effects of 5 mM leukotriene D4. 6. Stimulation of the sympathetic hepatic nerves with 2-ms rectangular pulses at 20 Hz and infusion of 1 microM noradrenaline increased glucose and lactate output and decreased flow, similar to 10 nM leukotrienes C4 and D4. The kinetics of the metabolic and hemodynamic changes caused by the leukotrienes differed, however, from those due to nerve stimulation and noradrenaline. 7. The leukotriene-C4/D4 antagonist, CGP 35949 B, even at very high concentrations (20 microM) inhibited the metabolic and hemodynamic alterations caused by nerve stimulation or noradrenaline infusion only slightly and unspecifically.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Iwai
- Institut für Biochemie, Fachbereich Medizin, Georg-August-Universität, Göttingen
| | | |
Collapse
|
26
|
Häussinger D. Regulation of hepatic metabolism by extracellular nucleotides and eicosanoids. The role of cell heterogeneity. J Hepatol 1989; 8:259-66. [PMID: 2654286 DOI: 10.1016/0168-8278(89)90017-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Püschel GP, Oppermann M, Muschol W, Götze O, Jungermann K. Increase of glucose and lactate output and decrease of flow by human anaphylatoxin C3a but not C5a in perfused rat liver. FEBS Lett 1989; 243:83-7. [PMID: 2784112 DOI: 10.1016/0014-5793(89)81222-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The complement fragments C3a and C5a were purified from zymosan-activated human serum by column chromatographic procedures after the bulk of the proteins had been removed by acidic polyethylene glycol precipitation. In the isolated in situ perfused rat liver C3a increased glucose and lactate output and reduced flow. Its effects were enhanced in the presence of the carboxypeptidase inhibitor DL-mercaptomethyl-3-guanidinoethylthio-propanoic acid (MERGETPA) and abolished by preincubation of the anaphylatoxin with carboxypeptidase B or with Fab fragments of an anti-C3a monoclonal antibody. The C3a effects were partially inhibited by the thromboxane antagonist BM13505. C5a had no effect. It is concluded that locally but not systemically produced C3a may play an important role in the regulation of local metabolism and hemodynamics during inflammatory processes in the liver.
Collapse
Affiliation(s)
- G P Püschel
- Institut für Biochemie, Georg-August-Universität, Göttingen, FRG
| | | | | | | | | |
Collapse
|
28
|
Kuiper J, De Rijke YB, Zijlstra FJ, Van Waas MP, Van Berkel TJ. The induction of glycogenolysis in the perfused liver by platelet activating factor is mediated by prostaglandin D2 from Kupffer cells. Biochem Biophys Res Commun 1988; 157:1288-95. [PMID: 3144970 DOI: 10.1016/s0006-291x(88)81014-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Induction of glycogenolysis in the perfused liver by platelet activating factor (PAF) was blocked by the cyclooxygenase inhibitor indomethacin. 3H-labeled PAF was shown to interact in the perfused liver primarily with Kupffer cells. The addition of PAF to Kupffer cells resulted in a dose-dependent stimulation of prostaglandin D2 (PGD2) production, which was identified as the main eicosanoid formed after PAF stimulation of the Kupffer cells. PGD2 was able to induce a dose-dependent stimulation of glycogenolysis both in the perfused liver and in isolated parenchymal cells. The time-dependency of the PGD2 production and the glucose output by the perfused liver is consistent with a primary interaction of PAF with the Kupffer cells, followed by PGD2 formation, which subsequently stimulates glucose production in parenchymal cells.
Collapse
Affiliation(s)
- J Kuiper
- Division of Biopharmaceutics, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Iwai M, Hagmann W, Keppler D, Jungermann K. Leukotriene C4 metabolism during its action on glucose and lactate balance and flow in perfused rat liver. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1988; 369:1131-6. [PMID: 3242543 DOI: 10.1515/bchm3.1988.369.2.1131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rat livers were perfused in a non-recirculating mode at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate, and 0.2 mM pyruvate. [3H]LTC4 was infused for a period of 5 min to a final concentration of 20 nM; it increased glucose and lactate output and reduced perfusion flow. 1) Leukotriene radioactivity was recovered 10 min after the onset of [3H]LTC4 infusion to about 40% in the effluent, to 20% in the bile, and to 40% in the liver. 2) Radioactivity in the effluent increased to a maximum 4-5 min after the onset and decreased again to essentially zero 3 min after completion of [3H]LTC4 infusion. [3H]LTC4 and [3H]LTD4 were the major labeled components in the effluent accounting for 45% and 38%, respectively, of the effluent radioactivity. 3) [3H]LTC4 and [3H]LTD4 were also the major components in bile; they accounted for 50% and 30%, respectively, of the radioactivity excreted, while more polar [3H]leukotriene metabolites accounted for the remainder. 4) In the liver, [3H]LTC4 and [3H]LTD4 were the major and [3H]LTE4, N-acetyl-[3H]LTE4 as well as omega-hydroxy-N-acetyl-[3H]LTE4 and omega-carboxy-N-acetyl-[3H]LTE4 were minor components detected 5 min after completion of [3H]LTC4 infusion. It is concluded from the present findings that during a 5 min infusion period about one third each of the infused LTC4 remained unchanged, was converted to LTD4, and was further degraded to LTE4 and polar metabolites including omega-oxidation products of N-acetyl-LTE4.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Iwai
- Institut für Biochemie, Fachbereich Medizin, Universität Göttingen
| | | | | | | |
Collapse
|