1
|
Russo R, Cattaneo F, Lippiello P, Cristiano C, Zurlo F, Castaldo M, Irace C, Borsello T, Santamaria R, Ammendola R, Calignano A, Miniaci MC. Motor coordination and synaptic plasticity deficits are associated with increased cerebellar activity of NADPH oxidase, CAMKII, and PKC at preplaque stage in the TgCRND8 mouse model of Alzheimer's disease. Neurobiol Aging 2018; 68:123-133. [DOI: 10.1016/j.neurobiolaging.2018.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
|
2
|
Differential regulations of vestibulo-ocular reflex and optokinetic response by β- and α2-adrenergic receptors in the cerebellar flocculus. Sci Rep 2017. [PMID: 28638085 PMCID: PMC5479797 DOI: 10.1038/s41598-017-04273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norepinephrine modulates synaptic plasticity in various brain regions and is implicated in memory formation, consolidation and retrieval. The cerebellum is involved in motor learning, and adaptations of the vestibulo-ocular reflex (VOR) and optokinetic response (OKR) have been studied as models of cerebellum-dependent motor learning. Previous studies showed the involvement of adrenergic systems in the regulation of VOR, OKR and cerebellar synaptic functions. Here, we show differential contributions of β- and α2-adrenergic receptors in the mouse cerebellar flocculus to VOR and OKR control. Effects of application of β- or α2-adrenergic agonist or antagonist into the flocculus suggest that the β-adrenergic receptor activity maintains the VOR gain at high levels and contributes to adaptation of OKR, and that α2-adrenergic receptor counteracts the β-receptor activity in VOR and OKR control. We also examined effects of norepinephrine application, and the results suggest that norepinephrine regulates VOR and OKR through β-adrenergic receptor at low concentrations and through α2-receptor at high concentrations.
Collapse
|
3
|
Guo A, Feng JY, Li J, Ding N, Li YJ, Qiu DL, Piao RL, Chu CP. Effects of norepinephrine on spontaneous firing activity of cerebellar Purkinje cells in vivo in mice. Neurosci Lett 2016; 629:262-266. [PMID: 27369323 DOI: 10.1016/j.neulet.2016.06.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Norepinephrine (NE), from the locus coeruleus (LC), has been supported to affect GABAergic system and parallel fiber (PF)-Purkinje cell (PC) synaptic transmission via adrenoceptor in cerebellum cortex. However, the effects of NE on the spontaneous spike activity of cerebellar PCs in living mouse have not yet been fully understood. We here examined the effects of NE on the spontaneous activity of PC in urethane-anesthetized mice by electrophysiological and pharmacological methods. Cerebellar surface application of NE (2.5-25μM) reduced the PC simple spike (SS) firing rate in a dose-dependent manner. The half-inhibitory concentration (IC50) was 5.97μM. In contrast, NE significantly increased the spontaneous firing rate of molecular layer interneuron (MLI). Application of GABAA receptor antagonist, gabazine (SR95531, 20μM) not only blocked the NE-induced inhibition of PC SS firing but also revealed NE-induced excitation of cerebellar PC. Blocking AMPA receptors activity enhanced NE-induced inhibition of PC spontaneous activity. Moreover, the effects of NE on PC spontaneous activity were abolished by simultaneously blocking GABAA and AMPA receptors activity. These results indicated that NE bidirectional modulated the spontaneous activity of PCs via enhancing both inhibitory inputs from MLIs and excitatory inputs of parallel fibers, but NE-induced enhance of inhibitory inputs overwhelmed the excitatory inputs under in vivo conditions.
Collapse
Affiliation(s)
- Ao Guo
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Jun-Yang Feng
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Jia Li
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Nan Ding
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Ying-Jun Li
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China
| | - Ri-Long Piao
- College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China.
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; College of Medicine, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
4
|
Lippiello P, Hoxha E, Volpicelli F, Lo Duca G, Tempia F, Miniaci MC. Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum. Neuropharmacology 2014; 89:33-42. [PMID: 25218865 DOI: 10.1016/j.neuropharm.2014.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/05/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
The signals arriving to Purkinje cells via parallel fibers are essential for all tasks in which the cerebellum is involved, including motor control, learning new motor skills and calibration of reflexes. Since learning also requires the activation of adrenergic receptors, we investigated the effects of adrenergic receptor agonists on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that noradrenaline serves as an endogenous ligand for both α1-and α2-adrenergic receptors to produce synaptic depression between parallel fibers and Purkinje cells. On the contrary, PF-EPSCs were potentiated by the β-adrenergic receptor agonist isoproterenol. This short-term potentiation was postsynaptically expressed, required protein kinase A, and was mimicked by the β2-adrenoceptor agonist clenbuterol, suggesting that the β2-adrenoceptors mediate the noradrenergic facilitation of synaptic transmission between parallel fibers and Purkinje cells. Moreover, β-adrenoceptor activation lowered the threshold for cerebellar long-term potentiation induced by 1 Hz parallel fiber stimulation. The presence of both α and β adrenergic receptors on Purkinje cells suggests the existence of bidirectional mechanisms of regulation allowing the noradrenergic afferents to refine the signals arriving to Purkinje cells at particular arousal states or during learning.
Collapse
Affiliation(s)
| | - Eriola Hoxha
- Dept. of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Italy
| | - Floriana Volpicelli
- Dept. of Pharmacy, University of Naples Federico II, Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| | | | - Filippo Tempia
- Dept. of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Italy.
| | | |
Collapse
|
5
|
Di Mauro M, Li Volsi G, Licata F. Noradrenergic control of neuronal firing in cerebellar nuclei: modulation of GABA responses. THE CEREBELLUM 2013; 12:350-61. [PMID: 23096094 DOI: 10.1007/s12311-012-0422-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of noradrenaline (NA) on inhibitory responses to gamma aminobutyric acid (GABA) in neurones of the deep cerebellar nuclei were studied in vivo in rats, using extracellular single-unit recordings and microiontophoretic drug application. NA application altered GABA-evoked responses in 95 % of the neurones tested, but the effects differed between nuclei. Application of NA depressed GABA responses in the medial (MN) and posterior interpositus (PIN) nuclei, but enhanced GABA responses in the anterior interpositus nucleus (AIN). Comparable proportions of enhancing (57 %) and depressive (43 %) effects were found in the lateral nucleus (LN). The alpha2 noradrenergic receptor agonist clonidine mimicked the depressive effect of NA on GABA responses in MN and PIN and its enhancing effects in AIN and LN, while the alpha2 antagonist yohimbine partially blocked these effects. The beta-adrenergic agonist isoproterenol and antagonist timolol respectively induced and partially blocked enhancements of GABA responses in all nuclei except for LN, where isoproterenol had a weak depressive effect. It is concluded that NA modulates GABA responses by acting on both alpha2 and beta receptors. Activation of these receptors appears to be synergistic in the AIN and opposite in the remaining deep nuclei. These results support the hypothesis that the noradrenergic system participates in all the regulatory functions involving the cerebellum in a specific and differential manner, and suggest that any change in NA content, as commonly observed in ageing or stress, could influence cerebellar activity.
Collapse
Affiliation(s)
- Michela Di Mauro
- Department of Biomedical Sciences, University of Catania, Viale Andrea Doria 6, Catania, Italy
| | | | | |
Collapse
|
6
|
Kessler M, Kiliman B, Humes C, Arai AC. Spontaneous activity in Purkinje cells: multi-electrode recording from organotypic cerebellar slice cultures. Brain Res 2008; 1218:54-69. [PMID: 18533133 DOI: 10.1016/j.brainres.2008.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 11/20/2022]
Abstract
Organotypic cerebellar cultures were maintained on multi-electrode dishes (MED) with an 8x8 array of electrodes and examined for physiological activity. The cultures remained viable for up to seven months and exhibited spontaneous discharges most likely originating from Purkinje cells. Spike frequencies varied but were mostly around 10-30 Hz and were often stable over weeks with average drifts of <20% per week. Spontaneous firing was significantly reduced by blockers of sodium channels (riluzole) and several potassium channels (iberiotoxin, TEA, 4-amino-pyridine), but blockers of calcium channels, GIRK channels, and SK-type potassium channels were ineffective. Inhibitors of excitatory and inhibitory synaptic transmission made spike discharges more regular. Particularly robust changes in spike frequency were produced by agents that increase cGMP. Bromo-cGMP, the NO donor SNAP, the guanylate cyclase activator YC-1, and the phosphodiesterase inhibitor zaprinast greatly reduced spike frequency. Activation of the metabotropic receptor mGluR1 and inhibition of I(h) channels caused a majority of cells to switch from tonic firing to a cyclic activity mode in which intense firing alternated with silence. Agonists for cholinergic, serotonergic, histamine, opiate, and CRF receptors had no effect, but those for adrenergic and adenosine A1 receptors reduced firing. Moreover, brief application of bromocriptine caused a delayed decrease in firing that reached a minimum after 24 to 48 h and recovered after 1-2 weeks. Taken together, our results demonstrate that long-term cultures maintained on multi-electrode arrays retain many essential features of cerebellar physiology and that they provide a test system that is well suited for broad screening of pharmacological agents as well as for studying long-term effects of drugs, tissue factors, and pathogens.
Collapse
Affiliation(s)
- Markus Kessler
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | | | | | | |
Collapse
|
7
|
SCHAMBRA UB, MACKENSEN GB, STAFFORD-SMITH M, HAINES DE, SCHWINN DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience 2006; 135:507-23. [PMID: 16112482 PMCID: PMC2277099 DOI: 10.1016/j.neuroscience.2005.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 06/06/2005] [Accepted: 06/15/2005] [Indexed: 12/13/2022]
Abstract
Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of alpha1 adrenergic receptor subtype mRNA (alpha 1a, alpha 1b, alpha 1d), and alpha2 adrenergic receptor subtype mRNA (alpha 2a, alpha 2b, alpha 2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific alpha1 adrenergic receptor and alpha2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six alpha adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except alpha 2a adrenergic receptor mRNA. All Purkinje cells label strongly for alpha 2a and alpha 2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express alpha 1a and alpha 2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express alpha 1b and alpha 2c adrenergic receptor subtypes. Basket cells show a strong signal for alpha 1a, moderate signal for alpha 2a and light label for alpha 2b adrenergic receptor mRNA. In stellate cells, besides a strong label of alpha 2a adrenergic receptor mRNA in all and moderate label of alpha 2b message in select stellate cells, the inner stellate cells are also moderately positive for alpha 1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of alpha 2a and alpha 2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic receptor subtypes in cerebellar neurons responding to sensory and autonomic input signals, and review species differences in cerebellar adrenergic receptor expression.
Collapse
Affiliation(s)
- U. B. SCHAMBRA
- Department of Anatomy and Cell Biology, Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, TN 37614-0582, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| | - G. B. MACKENSEN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - M. STAFFORD-SMITH
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - D. E. HAINES
- Department of Anatomy, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - D. A. SCHWINN
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology/Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- *Corresponding author. Tel: +1-423-439-2014; fax: +1-423-439-2017. E-mail address: (U. B. Schambra)
| |
Collapse
|
8
|
Liu RH, Fung SJ, Reddy VK, Barnes CD. Localization of glutamatergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat with a proposed role of glutamate on lumbar motoneuron activity. Neuroscience 1995; 64:193-208. [PMID: 7708205 DOI: 10.1016/0306-4522(94)00354-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamate is considered to be a major excitatory neurotransmitter in the central nervous system. The presence of glutamate-like immunoreactive neurons in the rodent locus coeruleus has been reported previously. In this study we used both immunohistochemical and electrophysiological techniques to answer two major questions: (1) Is there any glutamate-like immunoreactivity in the catecholaminergic coeruleospinal system of the cat? (2) What is the physiological role, if any, of glutamate in descending locus coeruleus control of spinal motoneurons? Following injections of rhodamine-labeled latex microspheres or Fast Blue into the seventh lumbar segment of the spinal cord of the cat, retrogradely labeled cells were found throughout the rostrocaudal extent of the dorsolateral pontine tegmentum. They were primarily observed in the nucleus locus coeruleus and the Kolliker-Fuse nucleus. Some labeled cells were also present in the nucleus subcoeruleus and, to a lesser extent, in the parabrachial nuclei. Data from immunohistochemical studies indicate that 86% of all dorsolateral pontine tegmentum neurons that project to the spinal cord contain glutamate-like immunoreactivity, and 77% co-contain both glutamate- and tyrosine hydroxylase-like immunoreactivity. Electrical stimulation (four pulses of 500 microseconds duration at 500 Hz; intensity = 50-200 microA) of the locus coeruleus, in decerebrate cats, consistently induced lumbar motoneuron discharges recordable ipsilaterally as ventral root responses. These motoneuronal responses were reversibly antagonized following chemical inactivation of noradrenergic locus coeruleus neurons by local infusion of the alpha 2-adrenergic agonist clonidine, suggesting the locus coeruleus neurons to be the main source of evoked ventral root responses. Additionally, the evoked ventral root responses were reversibly reduced by 34.20 +/- 4.45% (mean +/- S.E.M.) upon intraspinal injections of the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, into the ventral horn of seventh lumbar spinal cord segment (three to four injections, 20 nmol in 0.2 microliter of 0.1 M Tris-buffered saline for each injection). Similar volumes of vehicle injections had no significant effect on the locus coeruleus-evoked ventral root responses. These ventral root responses were also partially blocked (62.30 +/- 11.76%) by intravenous administration of the alpha 1-adrenergic receptor antagonist prazosin (20 micrograms/kg). In the light of several anatomical reports of noradrenergic and glutamatergic terminals in close contact with spinal motoneurons, our present findings suggest that the locus coeruleus-evoked ventral root response probably involves the synaptic release of both norepinephrine and glutamate onto lumbar motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R H Liu
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
9
|
Radisavljevic Z, Cepeda C, Peacock W, Buchwald NA, Levine MS. Norepinephrine modulates excitatory amino acid-induced responses in developing human and adult rat cerebral cortex. Int J Dev Neurosci 1994; 12:353-61. [PMID: 7526607 DOI: 10.1016/0736-5748(94)90085-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
These experiments were designed to assess the ability of norepinephrine and its beta-receptor agonist, isoproterenol, to modulate responses induced by activation of excitatory amino acid receptors in brain slices obtained from developing human cortex or adult rat cortex. Human cortical slices were obtained from children undergoing surgery for intractable epilepsy (9 months to 10 yr of age). For comparison, slices were also obtained from rats (2-3 months of age). Iontophoretic application of glutamate, N-methyl-D-aspartate or alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) produced excitatory responses consisting of membrane depolarizations accompanied by action potentials. Iontophoretic or bath application of norepinephrine or isoproterenol enhanced responses evoked by glutamate or N-methyl-D-aspartate. Depolarizations occurred with shorter latencies and their amplitudes increased. Action potential frequency was also increased and responses were of longer duration. In contrast, norepinephrine or isoproterenol had no effect on responses induced by AMPA. The enhancement of responses induced by N-methyl-D-aspartate or glutamate was antagonized by the beta-adrenergic receptor antagonist propranolol. Similar findings were obtained from neurons in humans or rats. These results suggest that norepinephrine, possibly via beta-receptors, potentiates responses mediated by glutamate and N-methyl-D-aspartate receptors without affecting those mediated by AMPA receptors. These effects were observed at all ages studied, indicating that the ability of norepinephrine to modulate excitatory neuronal transmission is well developed in human cortex by 9 months of age.
Collapse
Affiliation(s)
- Z Radisavljevic
- Mental Retardation Research Center, University of California at Los Angeles 90024
| | | | | | | | | |
Collapse
|
10
|
Licata F, Li Volsi G, Maugeri G, Ciranna L, Santangelo F. Effects of noradrenaline on the firing rate of vestibular neurons. Neuroscience 1993; 53:149-58. [PMID: 8469304 DOI: 10.1016/0306-4522(93)90293-o] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of microiontophoretic noradrenaline on the firing rate of neurons located in the vestibular complex have been studied in anaesthetized rats. Eighty-five per cent of the neurons tested in all the vestibular nuclei modified their background firing rate upon noradrenaline application, generally by reducing it (86% of them). In few cases inhibitions were followed by a rebound. Responses were dose-dependent. No significant difference was found between vestibular neurons projecting to the spinal cord and those delivering their fibres to the oculomotor complex. Phentolamine, an alpha-adrenergic antagonist, blocked the noradrenaline-evoked inhibitions, whereas beta-adrenergic antagonist timolol was ineffective or enhanced them. Furthermore, responses were blocked by yohimbine, an alpha 2-adrenergic antagonist, and mimicked by clonidine, an alpha 2-adrenergic agonist, in the majority of neurons. In few cases prazosin, an alpha 1-adrenergic antagonist, was able to antagonize weak inhibitions and phenylephrine, an alpha 1-adrenergic agonist, to evoke an inhibitory effect blocked by prazosin. Isoproterenol, a beta-adrenergic agonist was totally ineffective on the neuronal firing rate. It is concluded that noradrenaline can modify the level of neuronal activity in the vestibular complex by acting mostly, but not exclusively, through alpha 2-adrenergic receptors. An influence of noradrenergic systems on the vestibular function by a direct action of noradrenaline inside the vestibular nuclei is proposed.
Collapse
Affiliation(s)
- F Licata
- Istituto di Fisiologia umana, Catania, Italy
| | | | | | | | | |
Collapse
|
11
|
Khludova GG, Myasnikov AA. Ultrastructural changes in synapses of cortical neurons following combined applications of glutamate and noradrenaline. NEUROPHYSIOLOGY+ 1993. [DOI: 10.1007/bf01053625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Mori-Okamoto J, Namii Y, Tatsuno J. Subtypes of adrenergic receptors and intracellular mechanisms involved in modulatory effects of noradrenaline on glutamate. Brain Res 1991; 539:67-75. [PMID: 1673079 DOI: 10.1016/0006-8993(91)90687-q] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously reported that the response of cultured chick cerebellar neurons to glutamate is enhanced by noradrenaline (NA) or isoproterenol and suppressed by clonidine. The present study was carried out to further specify the adrenergic receptor subtypes involved in the facilitatory effect of NA or isoproterenol and the suppressive effect of clonidine, and to examine the intracellular mechanisms underlying these modulatory effects of NA. The clonidine effect, which was mimicked by NA iontophoresed with large ejecting currents, was blocked by yohimbine and tolazoline (alpha 2 antagonists) and also by dibutyryl cyclic AMP or forskolin which augmented the glutamate response by itself. Prazosin, an alpha 1 receptor antagonist did not block the clonidine effect. NA- or isoproterenol-induced facilitation, which was mimicked by denopamine (beta 1 agonist), was antagonized by acebutolol (beta 1 antagonist) and not by ICI 118,551 (beta 2 antagonist). Pretreatment of neurons with pertussis toxin for more than 24 h blocked the suppressive action of clonidine without affecting the facilitatory action of isoproterenol. Furthermore, intracellular injection of GDP beta S inhibited the modulatory effects of either clonidine or isoproterenol. These results indicate that the facilitatory and inhibitory modulatory effects of NA may be mediated by beta 1 and alpha 2 receptors linked to cAMP systems, respectively, and the former is coupled with the stimulatory G protein (Gs) and the latter is with the inhibitory G protein (Gi).
Collapse
Affiliation(s)
- J Mori-Okamoto
- Department of Physiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | |
Collapse
|
13
|
Abstract
Glutamate receptor subtypes mediating excitatory synaptic neurotransmission in the cerebellar cortex are briefly reviewed from molecular biological, electrophysiological and pharmacological points of view. In particular, molecular biological findings of a novel family of AMPA-selective glutamate receptors are introduced, and the pharmacological and electrophysiological properties and the identity of cerebellar N-methyl-D-aspartate-sensitive receptors probably existing on Purkinje cells are discussed in comparison with well-established cerebral NMDA receptors. As possible intracellular mechanisms of the long-term depression of parallel fiber-Purkinje cell neurotransmission, the perspective of the roles of novel messengers, nitric oxide and arachidonic acid, is particularly commented based on recent information about cerebral long-term events. The specificity and possible independence of cerebellar excitatory amino acid receptors and linked intracellular second messengers are also suggested, taking the highly active guanylate cyclase system in Purkinje cells and other cerebellum-specific proteins into consideration.
Collapse
Affiliation(s)
- K Okamoto
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | | |
Collapse
|
14
|
Mori-Okamoto J, Tasuno J. Participation of cyclic adenosine monophosphate and beta-adrenergic receptors in the facilitatory effect of noradrenaline on the response of cultured cerebellar neurons to glutamate. Brain Res 1989; 490:64-72. [PMID: 2569354 DOI: 10.1016/0006-8993(89)90431-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For the purpose of examining possible involvement of the cyclic adenosine monophosphate (cAMP) system and adrenergic receptors in the modulatory effect of noradrenaline (NA) on the glutamate-induced depolarizing response, the effects of dibutyryl cAMP (DBcAMP), forskolin, theophylline, clonidine, isoproterenol and propranolol were intracellularly investigated in the cerebellar neurons cultured from chick embryos. Not only NA-induced hyperpolarization and increase in input resistance but also the facilitatory effect of NA on the glutamate response were mimicked by DBcAMP and isoproterenol. This facilitatory effect of DBcAMP was enhanced by theophylline or forskolin, while that of isoproterenol was antagonized by propranolol. Clonidine suppressed glutamate-induced depolarization. These results that the enhancing action of NA on the responsiveness of cultured cerebellar neurons to excitatory amino acids is mediated by beta-adrenergic receptors and the intracellular cAMP system.
Collapse
Affiliation(s)
- J Mori-Okamoto
- Department of Physiology, National Defense Medical College, Saitama, Japan
| | | |
Collapse
|