1
|
Fenster JA, Azzinaro PA, Dinhobl M, Borca MV, Spinard E, Gladue DP. African Swine Fever Virus Protein-Protein Interaction Prediction. Viruses 2024; 16:1170. [PMID: 39066332 PMCID: PMC11281715 DOI: 10.3390/v16071170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The African swine fever virus (ASFV) is an often deadly disease in swine and poses a threat to swine livestock and swine producers. With its complex genome containing more than 150 coding regions, developing effective vaccines for this virus remains a challenge due to a lack of basic knowledge about viral protein function and protein-protein interactions between viral proteins and between viral and host proteins. In this work, we identified ASFV-ASFV protein-protein interactions (PPIs) using artificial intelligence-powered protein structure prediction tools. We benchmarked our PPI identification workflow on the Vaccinia virus, a widely studied nucleocytoplasmic large DNA virus, and found that it could identify gold-standard PPIs that have been validated in vitro in a genome-wide computational screening. We applied this workflow to more than 18,000 pairwise combinations of ASFV proteins and were able to identify seventeen novel PPIs, many of which have corroborating experimental or bioinformatic evidence for their protein-protein interactions, further validating their relevance. Two protein-protein interactions, I267L and I8L, I267L__I8L, and B175L and DP79L, B175L__DP79L, are novel PPIs involving viral proteins known to modulate host immune response.
Collapse
Affiliation(s)
- Jacob A. Fenster
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA;
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Paul A. Azzinaro
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Mark Dinhobl
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Edward Spinard
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (P.A.A.); (M.D.); (E.S.)
- National Bio and Agro-Defense Facility, Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
2
|
Li T, Zheng J, Huang T, Wang X, Li J, Jin F, Wei W, Chen X, Liu C, Bao M, Zhao G, Huang L, Zhao D, Chen J, Bu Z, Weng C. Identification of several African swine fever virus replication inhibitors by screening of a library of FDA-approved drugs. Virology 2024; 593:110014. [PMID: 38401340 DOI: 10.1016/j.virol.2024.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly infectious and lethal swine disease. Currently, there is only one novel approved vaccine and no antiviral drugs for ASFV. In the study, a high-throughput screening of an FDA-approved drug library was performed to identify several drugs against ASFV infection in primary porcine alveolar macrophages. Triapine and cytarabine hydrochloride were identified as ASFV infection inhibitors in a dose-dependent manner. The two drugs executed their antiviral activity during the replication stage of ASFV. Furthermore, molecular docking studies showed that triapine might interact with the active center Fe2+ in the small subunit of ASFV ribonucleotide reductase while cytarabine hydrochloride metabolite might interact with three residues (Arg589, Lys593, and Lys631) of ASFV DNA polymerase to block new DNA chain extension. Taken together, our results suggest that triapine and cytarabine hydrochloride displayed significant antiviral activity against ASFV in vitro.
Collapse
Affiliation(s)
- Tingting Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Jun Zheng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Tao Huang
- Shenzhen Zhiyao Information Technology Co. Ltd., C1119, Innovation Plaza, Shenzhen, 518118, China
| | - Xiao Wang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Jiangnan Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Feng Jin
- Shenzhen Zhiyao Information Technology Co. Ltd., C1119, Innovation Plaza, Shenzhen, 518118, China
| | - Wenjuan Wei
- Shenzhen Zhiyao Information Technology Co. Ltd., C1119, Innovation Plaza, Shenzhen, 518118, China
| | - Xin Chen
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Chuanxia Liu
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Miaofei Bao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Gaihong Zhao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Li Huang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China
| | - Dongming Zhao
- National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigao Bu
- National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China.
| | - Changjiang Weng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China; National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, 150069, China.
| |
Collapse
|
3
|
African Swine Fever Virus Manipulates the Cell Cycle of G0-Infected Cells to Access Cellular Nucleotides. Viruses 2022; 14:v14081593. [PMID: 35893659 PMCID: PMC9331790 DOI: 10.3390/v14081593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
African swine fever virus manipulates the cell cycle of infected G0 cells by inducing its progression via unblocking cells from the G0 to S phase and then arresting them in the G2 phase. DNA synthesis in infected alveolar macrophages starts at 10–12 h post infection. DNA synthesis in the nuclei of G0 cells is preceded by the activation of the viral genes K196R, A240L, E165R, F334L, F778R, and R298L involved in the synthesis of nucleotides and the regulation of the cell cycle. The activation of these genes in actively replicating cells begins later and is less pronounced. The subsequent cell cycle arrest at the G2 phase is also due to the cessation of the synthesis of cellular factors that control the progression of the cell cycle–cyclins. This data describes the manipulation of the cell cycle by the virus to gain access to the nucleotides synthesized by the cell. The genes affecting the cell cycle simply remain disabled until the beginning of cellular DNA synthesis (8–9 hpi). The genes responsible for the synthesis of nucleotides are turned on later in the presence of nucleotides and their transcriptional activity is lower than that during virus replication in an environment without nucleotides.
Collapse
|
4
|
Duan X, Ru Y, Yang W, Ren J, Hao R, Qin X, Li D, Zheng H. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol 2022; 13:947180. [PMID: 35935977 PMCID: PMC9353306 DOI: 10.3389/fimmu.2022.947180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), which infects domestic pigs or wild boars. It is characterized by short course of disease, high fever and hemorrhagic lesions, with mortality of up to 100% from acute infection. Up to now, the lack of commercial vaccines and effective drugs has seriously threatened the healthy economic development of the global pig industry. ASFV is a double-stranded DNA virus and genome varies between about 170-194 kb, which encodes 150-200 viral proteins, including 68 structural proteins and more than 100 non-structural proteins. In recent years, although the research on structure and function of ASFV-encoded proteins has been deepened, the structure and infection process of ASFV are still not clear. This review summarizes the main process of ASFV infection, replication and functions of related viral proteins to provide scientific basis and theoretical basis for ASFV research and vaccine development.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Haixue Zheng,
| |
Collapse
|
5
|
Wöhnke E, Fuchs W, Hartmann L, Blohm U, Blome S, Mettenleiter TC, Karger A. Comparison of the Proteomes of Porcine Macrophages and a Stable Porcine Cell Line after Infection with African Swine Fever Virus. Viruses 2021; 13:v13112198. [PMID: 34835004 PMCID: PMC8620826 DOI: 10.3390/v13112198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023] Open
Abstract
African swine fever virus (ASFV), causing an OIE-notifiable viral disease of swine, is spreading over the Eurasian continent and threatening the global pig industry. Here, we conducted the first proteome analysis of ASFV-infected primary porcine monocyte-derived macrophages (moMΦ). In parallel to moMΦ isolated from different pigs, the stable porcine cell line WSL-R was infected with a recombinant of ASFV genotype IX strain “Kenya1033”. The outcome of the infections was compared via quantitative mass spectrometry (MS)-based proteome analysis. Major differences with respect to the expression of viral proteins or the host cell response were not observed. However, cell-specific expression of some individual viral proteins did occur. The observed modulations of the host proteome were mainly related to cell characteristics and function. Overall, we conclude that both infection models are suitable for use in the study of ASFV infection in vitro.
Collapse
Affiliation(s)
- Elisabeth Wöhnke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
| | - Luise Hartmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (L.H.); (U.B.)
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (L.H.); (U.B.)
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany;
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany;
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (E.W.); (W.F.)
- Correspondence: ; Tel.: +49-38351-7-1247
| |
Collapse
|
6
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
7
|
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2012; 173:3-14. [PMID: 23142553 DOI: 10.1016/j.virusres.2012.10.020] [Citation(s) in RCA: 471] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 01/03/2023]
Abstract
African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | | | | | |
Collapse
|
8
|
Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog 2010; 6:e1000984. [PMID: 20628573 PMCID: PMC2900304 DOI: 10.1371/journal.ppat.1000984] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/03/2010] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the R12R22 heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g. vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins. Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1 subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of these pathogens. Efficient genome replication is central to the virulence of all DNA viruses, including poxviruses. To ensure replication efficiency, many of the more virulent poxviruses encode their own nucleotide metabolism machinery, including ribonucleotide reductase (RR) enzymes, which act to provide ample DNA precursors for replication. RR enzymes require both large (R1) and small (R2) subunit proteins for activity. Curiously, some poxviruses only encode R2 subunits. Other poxviruses, such as the smallpox vaccine strain, vaccinia virus (VACV), encode both R1 and R2 subunits. We report here that the R2, but not the R1, subunit of VACV RR is required for efficient replication and virulence. We also provide evidence that several poxvirus R2 proteins form novel complexes with host R1 subunits and this interaction is required for efficient VACV replication in primate cells. Our study explains why some poxviruses only encode R2 subunits and identifies a role for these proteins in poxvirus pathogenesis. Furthermore, we provide evidence that mutant poxviruses unable to generate R2 proteins may become entirely dependent upon host RR activity. This may restrict their replication to cells that over-express RR proteins such as cancer cells, making them potential therapeutics for human malignancies.
Collapse
Affiliation(s)
- Don B. Gammon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Branawan Gowrishankar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Duraffour
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Abstract
African swine fever virus (ASFV) is a large, intracytoplasmically-replicating DNA arbovirus and the sole member of the family Asfarviridae. It is the etiologic agent of a highly lethal hemorrhagic disease of domestic swine and therefore extensively studied to elucidate the structures, genes, and mechanisms affecting viral replication in the host, virus-host interactions, and viral virulence. Increasingly apparent is the complexity with which ASFV replicates and interacts with the host cell during infection. ASFV encodes novel genes involved in host immune response modulation, viral virulence for domestic swine, and in the ability of ASFV to replicate and spread in its tick vector. The unique nature of ASFV has contributed to a broader understanding of DNA virus/host interactions.
Collapse
Affiliation(s)
- E R Tulman
- Department of Pathobiology and Veterinary Science, Center of Excellence for Vaccine Research, University of Connecticut, Storrs 06269, USA.
| | | | | | | |
Collapse
|
10
|
He JG, Lü L, Deng M, He HH, Weng SP, Wang XH, Zhou SY, Long QX, Wang XZ, Chan SM. Sequence analysis of the complete genome of an iridovirus isolated from the tiger frog. Virology 2002; 292:185-97. [PMID: 11878922 DOI: 10.1006/viro.2001.1245] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a tiger frog virus (TFV) from diseased tiger frogs, Rana tigrina rugulosa. The genome was a linear double-stranded DNA of 105,057 basepairs in length with a base composition of 55.01% G+C. About 105 open reading frames were identified with coding capacities for polypeptides ranging from 40 to 1294 amino acids. Computer-assisted analyses of the deduced amino acid sequences revealed that 39 of 105 putative gene products showed significant homology to functionally characterized proteins of other species in the GenBank/EMBL/DDBJ databases. These proteins included enzymes and structural proteins involved in virus replication, transcription, modification, and virus--host interaction. The deduced amino acid sequences of TFV gene products showed more than 90% identity to FV3, but a low degree of similarity among TFV, ISKNV, and LCDV-1. The results from this study indicated that TFV may belong to the genus Ranavirus of the family Iridoviridae.
Collapse
Affiliation(s)
- Jian G He
- State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou 510275, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tsai MF, Lo CF, van Hulten MC, Tzeng HF, Chou CM, Huang CJ, Wang CH, Lin JY, Vlak JM, Kou GH. Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology 2000; 277:92-9. [PMID: 11062039 DOI: 10.1006/viro.2000.0596] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The causative agent of white spot syndrome (WSS) is a large double-stranded DNA virus, WSSV, which is probably a representative of a new genus, provisionally called Whispovirus. From previously constructed WSSV genomic libraries of a Taiwan WSSV isolate, clones with open reading frames (ORFs) that encode proteins with significant homology to the class I ribonucleotide reductase large (RR1) and small (RR2) subunits were identified. WSSV rr1 and rr2 potentially encode 848 and 413 amino acids, respectively. RNA was isolated from WSSV-infected shrimp at different times after infection and Northern blot analysis with rr1- and rr2-specific riboprobes found major transcripts of 2.8 and 1.4 kb, respectively. 5' RACE showed that the major rr1 transcript started at a position of -84 (C) relative to the ATG translational start, while transcription of the rr2 gene started at nucleotide residue -68 (T). A consensus motif containing the transcriptional start sites for rr1 and rr2 was observed (TCAc/tTC). Northern blotting and RT-PCR showed that the transcription of rr1 and rr2 started 4-6 h after infection and continued for at least 60 h. The rr1 and rr2 genes thus appear to be WSSV "early genes."
Collapse
Affiliation(s)
- M F Tsai
- Department of Zoology, Institute of Biochemistry, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van Hulten MC, Tsai MF, Schipper CA, Lo CF, Kou GH, Vlak JM. Analysis of a genomic segment of white spot syndrome virus of shrimp containing ribonucleotide reductase genes and repeat regions. J Gen Virol 2000; 81:307-16. [PMID: 10644828 DOI: 10.1099/0022-1317-81-2-307] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White spot syndrome is a worldwide disease of penaeid shrimp. The disease agent is a bacilliform, enveloped virus, white spot syndrome virus (WSSV), with a double-stranded DNA genome that probably contains well over 200 kb. Analysis of a 12.3 kb segment of WSSV DNA revealed eight open reading frames (ORFs), including the genes for the large (RR1) and small (RR2) subunits of ribonucleotide reductase. The rr1 and rr2 genes were separated by 5760 bp, containing several putative ORFs and two domains with multiple sequence repeats. The first domain contained six direct repeats of 54 bp and is part of a coding region. The second domain had one partial and two complete direct repeats of 253 bp at an intergenic location. This repeat, located immediately upstream of rr1, has homologues at several other locations on the WSSV genome. Phylogenetic analysis of RR1 and RR2 indicated that WSSV belongs to the eukaryotic branch of an unrooted parsimonious tree and, further, seems to suggest that WSSV and baculoviruses probably do not share an immediate common ancestor. The present analysis of WSSV favours the view that this virus is either a member of a new genus (Whispovirus) within the Baculoviridae or a member of an entirely new virus family.
Collapse
Affiliation(s)
- M C van Hulten
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Oliveros M, García-Escudero R, Alejo A, Viñuela E, Salas ML, Salas J. African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. J Virol 1999; 73:8934-43. [PMID: 10515998 PMCID: PMC112924 DOI: 10.1128/jvi.73.11.8934-8943.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The African swine fever virus (ASFV) gene E165R, which is homologous to dUTPases, has been characterized. A multiple alignment of dUTPases showed the conservation in ASFV dUTPase of the motifs that define this protein family. A biochemical analysis of the purified recombinant enzyme showed that the virus dUTPase is a trimeric, highly specific enzyme that requires a divalent cation for activity. The enzyme is most probably complexed with Mg(2+), the preferred cation, and has an apparent K(m) for dUTP of 1 microM. Northern and Western blotting, as well as immunofluorescence analyses, indicated that the enzyme is expressed at early and late times of infection and is localized in the cytoplasm of the infected cells. On the other hand, an ASFV dUTPase-deletion mutant (vDeltaE165R) has been obtained. Growth kinetics showed that vDeltaE165R replicates as efficiently as parental virus in Vero cells but only to 10% or less of parental virus in swine macrophages. Our results suggest that the dUTPase activity is dispensable for virus replication in dividing cells but is required for productive infection in nondividing swine macrophages, the natural host cell for the virus. The viral dUTPase may play a role in lowering the dUTP concentration in natural infections to minimize misincorporation of deoxyuridine into the viral DNA and ensure the fidelity of genome replication.
Collapse
Affiliation(s)
- M Oliveros
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Moore DM, Zsak L, Neilan JG, Lu Z, Rock DL. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. J Virol 1998; 72:10310-5. [PMID: 9811782 PMCID: PMC110620 DOI: 10.1128/jvi.72.12.10310-10315.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1998] [Accepted: 09/02/1998] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) replicates in the cytoplasm of infected cells and contains genes encoding a number of enzymes needed for DNA synthesis, including a thymidine kinase (TK) gene. Recombinant TK gene deletion viruses were produced by using two highly pathogenic isolates of ASFV through homologous recombination with an ASFV p72 promoter-beta-glucuronidase indicator cassette (p72GUS) flanked by ASFV sequences targeting the TK region. Attempts to isolate double-crossover TK gene deletion mutants on swine macrophages failed, suggesting a growth deficiency of TK- ASFV on macrophages. Two pathogenic ASFV isolates, ASFV Malawi and ASFV Haiti, partially adapted to Vero cells, were used successfully to construct TK deletion viruses on Vero cells. The selected viruses grew well on Vero cells, but both mutants exhibited a growth defect on swine macrophages at low multiplicities of infection (MOI), yielding 0.1 to 1.0% of wild-type levels. At high MOI, the macrophage growth defect was not apparent. The Malawi TK deletion mutant showed reduced virulence for swine, producing transient fevers, lower viremia titers, and reduced mortality. In contrast, 100% mortality was observed for swine inoculated with the TK+ revertant virus. Swine surviving TK- ASFV infection remained free of clinical signs of African swine fever following subsequent challenge with the parental pathogenic ASFV. The data indicate that the TK gene of ASFV is important for growth in swine macrophages in vitro and is a virus virulence factor in swine.
Collapse
Affiliation(s)
- D M Moore
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944-0848, USA.
| | | | | | | | | |
Collapse
|
15
|
Li Y, Lu Z, Sun L, Ropp S, Kutish GF, Rock DL, Van Etten JL. Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella virus PBCV-1 genome. Virology 1997; 237:360-77. [PMID: 9356347 DOI: 10.1006/viro.1997.8805] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report completes a preliminary analysis of the sequence of the 330,740-bp chlorella virus PBCV-1 genome, the largest virus genome to be sequenced to date. The PBCV-1 genome is 57% the size of the genome from the smallest self-replicating organism, Mycoplasma genitalium. Analysis of 74 kb of newly sequenced DNA, from the right terminus of the PBCV-1 genome, revealed 153 open reading frames (ORFs) of 65 codons or longer. Eighty-five of these ORFs, which are evenly distributed on both strands of the DNA, were considered major ORFs. Fifty-nine of the major ORFs were separated by less than 100 bp. The largest intergenic distance was 729 bp, which occurred between two ORFs located in the 2.2-kb inverted terminal repeat region of the PBCV-1 genome. Twenty-seven of the 85 major ORFs resemble proteins in databases, including the large subunit of ribonucleotide diphosphate reductase, ATP-dependent DNA ligase, type II DNA topoisomerase, a helicase, histidine decarboxylase, dCMP deaminase, dUTP pyrophosphatase, proliferating cell nuclear antigen, a transposase, fungal translation elongation factor 3 (EF-3), UDP glucose dehydrogenase, a protein kinase, and an adenine DNA methyltransferase and its corresponding DNA site-specific endonuclease. Seventeen of the 153 ORFs resembled other PBCV-1 ORFs, suggesting that they represent either gene duplications or gene families.
Collapse
Affiliation(s)
- Y Li
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
The conserved serine 211 is essential for reduction of the dinuclear iron center in protein R2 of Escherichia coli ribonucleotide reductase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37379-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Rodríguez JM, Yáñez RJ, Rodríguez JF, Viñuela E, Salas ML. The DNA polymerase-encoding gene of African swine fever virus: sequence and transcriptional analysis. Gene 1993; 136:103-10. [PMID: 8293992 DOI: 10.1016/0378-1119(93)90453-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The putative DNA polymerase-encoding gene of African swine fever virus has been sequenced. The gene, designated G1207R, is located in the central region of the viral genome, and encodes a protein of 1207 amino acids (aa) with a predicted M(r) of 139,835. The gene is transcribed at both early and late stages of infection into a 4.1-kb RNA. Transcription is initiated at tsp, 8 nucleotides (nt) upstream from the start codon. Open reading frame (ORF) G1207R contains four direct repeats in tandem close to the 3'-end. Each repeat consists of 12 nt, coding for the reiterated sequence, K/NPAG. The deduced aa sequence of G1207R shows significant similarity with DNA polymerases from cellular and viral origin, belonging to the alpha-like family of DNA polymerases. In particular, the G1207R protein presents a colinear arrangement of all the 3'-->5' exonuclease and polymerization highly conserved aa regions characteristic of this group of DNA-dependent DNA polymerases.
Collapse
Affiliation(s)
- J M Rodríguez
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Yáñez RJ, Rodríguez JM, Boursnell M, Rodríguez JF, Viñuela E. Two putative African swine fever virus helicases similar to yeast 'DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R. Gene 1993; 134:161-74. [PMID: 8262374 DOI: 10.1016/0378-1119(93)90090-p] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two open reading frames (ORFs) of African swine fever virus (ASFV) encoding putative helicases have been sequenced. The two genes, termed D1133L and B962L, are located in the central region of the viral genome, but are separated by about 40 kb of DNA. Both genes are expressed late during ASFV infection of Vero cells, after replication of viral DNA has begun. Contiguous to D1133L, three other ORFs (D129L, D79L and D339L), encoding putative proteins of unknown function, have been sequenced. Proteins D1133L and B962L contain the amino acid motifs that characterize helicases of superfamily II. D1133L is most similar to a group of putative helicases which includes two proteins of vaccinia virus (D11L and D6R) involved in transcription of the viral genome, their homologues in other poxviruses, the protein encoded by ORF 4 of the yeast plasmids, pGKL2 and pSKL, and the previously identified ASFV protein, Q706L. B962L resembles a group of RNA-helicase-like proteins which includes three proteins of Saccharomyces cerevisiae involved in pre-mRNA splicing (PRP2, PRP16 and PRP22), Drosophila melanogaster KURZ and MLE, and vaccinia virus 18R.
Collapse
Affiliation(s)
- R J Yáñez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Shchelkunov SN, Blinov VM, Resenchuk SM, Totmenin AV, Sandakhchiev LS. Analysis of the nucleotide sequence of a 43 kbp segment of the genome of variola virus India-1967 strain. Virus Res 1993; 30:239-58. [PMID: 8109158 DOI: 10.1016/0168-1702(93)90093-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequencing and computer analysis of the nucleotide sequence of the variola virus strain India-1967 (VAR) genome segment (43069 bp) from the region of HindIII C, E, R, Q, K, H DNA fragments has been carried out. Forty-three potential open reading frames (ORFs) have been identified, and the polypeptides encoded by them have been compared with the analogous proteins of vaccinia virus strain Copenhagen (COP). ORF E7R of VAR is much shorter than the COP analog. The other polypeptides coded by the potential ORFs of VAR are highly conserved in comparison with COP. Possible functions of the predicted viral polypeptides are discussed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, NPO Vector, Koltsovo, Novosibirsk Region, Russia
| | | | | | | | | |
Collapse
|
20
|
Freije JM, Laín S, Viñuela E, López-Otín C. Nucleotide sequence of a nucleoside triphosphate phosphohydrolase gene from African swine fever virus. Virus Res 1993; 30:63-72. [PMID: 8266720 DOI: 10.1016/0168-1702(93)90016-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A putative nucleoside triphosphate phosphohydrolase (NTPase) gene of African swine fever virus was identified by using a degenerate oligonucleotide probe derived from the nucleoside triphosphate binding motif, which is highly conserved among viral and cellular NTPases. The probe hybridized with fragments SalI E and EcoRI Q, which is entirely contained in the former one. Sequencing of this region revealed an open reading frame, designated Q706L, coding for a protein of 706 amino acids, with a calculated molecular weight of 80,283. The deduced amino acid sequence of this open reading frame has significant similarity with the putative helicase encoded by the killer plasmid pGKL2 of Kluyveromyces lactis as well as with the NTPase I of vaccinia virus and entomopoxvirus and a subunit of the early transcription factor of vaccinia and fowlpox virus. The protein encoded by this open reading frame contains the sequence features characteristic of helicases of the superfamily II. According to this, we propose the inclusion of the product of this ASF virus gene in this superfamily.
Collapse
Affiliation(s)
- J M Freije
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
21
|
Roberts PC, Lu Z, Kutish GF, Rock DL. Three adjacent genes of African swine fever virus with similarity to essential poxvirus genes. Arch Virol 1993; 132:331-42. [PMID: 8397501 DOI: 10.1007/bf01309543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleotide sequencing of the right end of the SalIj fragment of the highly virulent Malawi Lil20/1 strain of African swine fever virus (ASFV) has revealed three adjacent genes with similarity to: serine-threonine protein kinases; members of the putative helicase superfamily SF2; and the vaccinia virus 56 kDa abortive late protein. All three genes are transcribed to the left with respect to the orientation of the ASFV genome. Gene L19IL predicts a protein similar to serine-threonine protein kinases including vaccinia virus gene B1R. Gene L19KL predicts a protein that is likely to be a nucleic acid-dependent ATPase, as it has similarity to both the poxvirus 70 kDa early transcription factor subunit and the poxvirus nucleoside triphosphatase I gene. Gene L19LL has extensive similarity to the vaccinia virus 56 kDa abortive late protein.
Collapse
Affiliation(s)
- P C Roberts
- Plum Island Animal Disease Center, USDA, ARS, NAA, Greenport, New York
| | | | | | | |
Collapse
|
22
|
Baylis SA, Banham AH, Vydelingum S, Dixon LK, Smith GL. African swine fever virus encodes a serine protein kinase which is packaged into virions. J Virol 1993; 67:4549-56. [PMID: 8331722 PMCID: PMC237839 DOI: 10.1128/jvi.67.8.4549-4556.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nucleotide sequencing of the SalI j region of the virulent Malawi (LIL20/1) strain of African swine fever virus (ASFV) identified an open reading frame (ORF), designated j9L, with extensive similarity to the family of protein kinases. This ORF encodes a 35.1-kDa protein of 299 amino acids which shares 24.6% amino acid identity with the human pim-1 proto-oncogene and 21.0% identity with the vaccinia virus B1R-encoded protein kinase. The ASFV ORF contains the motifs characteristic of serine-threonine protein kinases, with the exception of the presumed ATP-binding site, which is poorly conserved. The ORF was expressed to high levels in Escherichia coli, and the recombinant enzyme phosphorylated a calf thymus histone protein on serine residues in vitro. An antibody raised to an amino-terminal peptide of the ASFV protein kinase was reactive with the recombinant protein in Western immunoblot analyses and was used to demonstrate the presence of the protein kinase in ASF virions.
Collapse
Affiliation(s)
- S A Baylis
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Yáñez RJ, Boursnell M, Nogal ML, Yuste L, Viñuela E. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases. Nucleic Acids Res 1993; 21:2423-7. [PMID: 8506138 PMCID: PMC309542 DOI: 10.1093/nar/21.10.2423] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication.
Collapse
Affiliation(s)
- R J Yáñez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Upton C, Stuart DT, McFadden G. Identification of a poxvirus gene encoding a uracil DNA glycosylase. Proc Natl Acad Sci U S A 1993; 90:4518-22. [PMID: 8389453 PMCID: PMC46543 DOI: 10.1073/pnas.90.10.4518] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An open reading frame, BamHI D6R, from the central highly conserved region of the Shope fibroma virus (SFV) genome was sequenced and found to have significant homology to that of uracil DNA glycosylases from a number of organisms. Uracil DNA glycosylase catalyzes the initial step in the repair pathway that removes potentially mutagenic uracil from duplex DNA. The D6R polypeptide was expressed in reticulocyte lysates programmed with RNA transcribed from an expression vector containing the T7 RNA polymerase promoter. A highly specific ethidium bromide fluorescence assay of the in vitro translation product determined that the encoded protein does indeed possess uracil DNA glycosylase activity. Open reading frames from other poxviruses, including vaccinia virus (HindIII D4R) and fowlpox (D4), are highly homologous to D6R of SFV and are predicted to encode uracil DNA glycosylases. Identification of the SFV uracil DNA glycosylase provides evidence that this poxviral protein is involved in the repair of the viral DNA genome. Since this enzyme performs only the initial step required for the removal of uracil from DNA, creating an apyrimidinic site, we suggest that other, possibly virus-encoded, repair activities must be present in the cytoplasm of infected cells to complete the uracil excision repair pathway.
Collapse
Affiliation(s)
- C Upton
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
25
|
Dixon LK, Baylis SA, Vydelingum S, Twigg SR, Hammond JM, Hingamp PM, Bristow C, Wilkinson PJ, Smith GL. African swine fever virus genome content and variability. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1993; 7:185-99. [PMID: 8219803 DOI: 10.1007/978-3-7091-9300-6_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 55 kilobase pair (kb) region from the right end of the virulent African swine fever virus isolate, Malawi LIL20/1, has been sequenced. The 68 major open reading frames (ORFs) encoded are generally closely spaced and read from both DNA strands across the complete sequence. Comparison of the amino acid sequences of predicted ORFs with sequence databases identified 15 ORFs which encode proteins that are similar to proteins of known function. Two ORFs are homologous to copies of multigene family 360 (MGF360) and one ORF is homologous to copies of multigene family 110 (MGF110). Both of these multigene families have been described previously.
Collapse
Affiliation(s)
- L K Dixon
- AFRC Institute for Animal Health, Pirbright, Woking, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Simard C, Bastien N, Trudel M. Sequencing and 5'- and 3'-end transcript mapping of the gene encoding the small subunit of ribonucleotide reductase from bovine herpesvirus type-1. Virology 1992; 190:689-701. [PMID: 1325701 DOI: 10.1016/0042-6822(92)90907-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complete nucleotide sequence of the gene encoding the small subunit of ribonucleotide reductase (RNR) from bovine herpesvirus type-1 (BHV-1) was determined. The genomic DNA fragment sequenced also represented regions corresponding to the carboxy termini of RNR large subunit and of a virion protein causing host shut-off. The small subunit polypeptide was constituted of 314 amino acid residues totalling 35.25 kDa. The major transcription initiation and termination sites of the small subunit mRNA were located 95 bases upstream and 88 nucleotides downstream from the coding region, respectively. These findings indicate that the mRNA was 1128 bases long which correlated well with the size of the polyadenylated transcript detected in Northern blot analysis (1.3 kb). Within the RNR large subunit coding region, a TATA box and two CAAT box motifs were found 26, 104, and 190 nucleotides, respectively, upstream from the transcription initiation site of the small subunit mRNA. In contrast to previous studies (Slabaugh et al., J. Virol. 1988, 62, 519-527; Boursnell et al., Virology 1991, 184, 411-416), our comparative analysis of five herpesviruses, one iridovirus, and one poxvirus small subunit protein sequences suggested that the seven viruses arose from a common lineage.
Collapse
Affiliation(s)
- C Simard
- Centre de recherche en virologie, Université du Québec, Ville de Laval, Canada
| | | | | |
Collapse
|
27
|
Binns MM, Boursnell ME, Skinner MA. Gene translocations in poxviruses: the fowlpox virus thymidine kinase gene is flanked by 15 bp direct repeats and occupies the locus which in vaccinia virus is occupied by the ribonucleotide reductase large subunit gene. Virus Res 1992; 24:161-72. [PMID: 1326827 DOI: 10.1016/0168-1702(92)90004-s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By sequencing a fragment of 7351 bp the fowlpox virus thymidine kinase gene has been found to map to a position within the equivalent of the vaccinia HindIII I fragment. The deduced gene arrangement in fowlpox virus is I3, X, TK, I5, I6, I7, I8, G1, indicating that the homologue of the vaccinia I4 gene has been replaced by two genes X and TK. The non-essential TK gene has therefore replaced another non-essential gene, I4 (the ribonucleotide reductase large subunit) in this region. The X/TK insertion in fowlpox virus is precisely flanked by direct repeats of 15 bp suggesting that the translocation event may have involved transposition. The % identities between the fowlpox virus and vaccinia virus proteins ranged between 58.5% and 31.3%.
Collapse
Affiliation(s)
- M M Binns
- Institute for Animal Health, Houghton Laboratory, Huntingdon, UK
| | | | | |
Collapse
|
28
|
Hammond JM, Kerr SM, Smith GL, Dixon LK. An African swine fever virus gene with homology to DNA ligases. Nucleic Acids Res 1992; 20:2667-71. [PMID: 1614852 PMCID: PMC336905 DOI: 10.1093/nar/20.11.2667] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sequence analysis of the SalI g region of the genome of a virulent isolate of ASFV (Malawi Lil 20/1) has revealed an open reading frame with the potential to encode a 48 kilodalton (kD) polypeptide which has significant homology with eukaryotic and prokaryotic DNA ligases. This ASFV encoded gene also contains the putative active site region of DNA ligases including the lysine residue which is necessary for enzyme-adenylate adduct formation, but lacks the C-terminal basic region conserved in other eukaryotic DNA ligases. A novel [32P]-labelled potential DNA ligase-adenylate adduct of M(r) 45 kD was observed upon incubation of ASFV infected cell cytoplasmic extracts with alpha-[32P]-ATP and subsequent analysis of products by SDS/PAGE. These data together suggest that ASFV encodes its own DNA ligase.
Collapse
Affiliation(s)
- J M Hammond
- AFRC Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, UK
| | | | | | | |
Collapse
|
29
|
García-Beato R, Salas ML, Viñuela E, Salas J. Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 1992; 188:637-49. [PMID: 1585638 DOI: 10.1016/0042-6822(92)90518-t] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An examination by autoradiography of African swine fever virus-infected alveolar macrophages pulse labeled with [3H]thymidine showed that, at early times of viral DNA replication, the grains were localized exclusively in the nucleus in 20% of the cells, while in 45% the label was found in the cytoplasm. In the remaining 35%, newly synthesized DNA was detected in both the nucleus and the cytoplasm. At later times, the percentage of cells with grains in the nucleus decreased considerably. Pulse-chase experiments indicated that the DNA synthesized in the nucleus is then transported to the cytoplasm. The presence of virus-specific DNA sequences in the nucleus was confirmed by in situ hybridization of infected macrophages. Similar hybridization experiments with African swine fever virus-infected VERO cells followed by confocal microscopy also indicated the existence of a nuclear stage in the localization of the viral DNA. These results suggest a mechanism for African swine fever virus DNA replication with an initial stage in the nucleus followed by a cytoplasmic phase. Specific nuclear forms associated with the hybridization signal have been observed in African swine fever virus-infected macrophages and VERO cells. The nuclear forms seen in macrophages are consistent with a mechanism for the egress of the viral DNA from the nucleus that involves initial budding at the nuclear membrane.
Collapse
Affiliation(s)
- R García-Beato
- Centro de Biología Molecular, (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|