1
|
Nikolaitchik OA, Islam S, Kitzrow JP, Duchon A, Cheng Z, Liu Y, Rawson JMO, Shao W, Nikolaitchik M, Kearney MF, Maldarelli F, Musier-Forsyth K, Pathak VK, Hu WS. HIV-1 usurps transcription start site heterogeneity of host RNA polymerase II to maximize replication fitness. Proc Natl Acad Sci U S A 2023; 120:e2305103120. [PMID: 37252967 PMCID: PMC10266039 DOI: 10.1073/pnas.2305103120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.
Collapse
Affiliation(s)
- Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Saiful Islam
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Jonathan P. Kitzrow
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Zetao Cheng
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Yang Liu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Maria Nikolaitchik
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Mary F. Kearney
- Translation Research Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Frank Maldarelli
- Clinical Retrovirology Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Ohio State University, Columbus, OH43210
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
2
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
3
|
Kulpa D, Topping R, Telesnitsky A. Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 1997; 16:856-65. [PMID: 9049314 PMCID: PMC1169686 DOI: 10.1093/emboj/16.4.856] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reverse transcriptase must perform two specialized template switches during retroviral DNA synthesis. Here, we used Moloney murine leukemia virus-based vectors to examine the site of one of these switches during intracellular reverse transcription. Consistent with original models for reverse transcription, but in contrast to previous experimental data, we observed that this first strand transfer nearly always occurred precisely at the 5' end of genomic RNA. This finding allowed us to use first strand transfer to study the classes of errors that reverse transcriptase can and/or does make when it switches templates at a defined position during viral DNA synthesis. We found that errors occurred at the site of first strand transfer approximately 1000-fold more frequently than reported average reverse transcriptase error rates for template-internal positions. We then analyzed replication products of specialized vectors that were designed to test possible origins for the switch-associated errors. Our results suggest that at least some errors arose via non-templated nucleotide addition followed by mismatch extension at the point of strand transfer. We discuss the significance of our findings as they relate to the possible contribution that template switch-associated errors may make to retroviral mutation rates.
Collapse
Affiliation(s)
- D Kulpa
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
4
|
DeVico AL, Sarngadharan MG. Reverse transcriptase--a general discussion. JOURNAL OF ENZYME INHIBITION 1992; 6:9-34. [PMID: 1285305 DOI: 10.3109/14756369209041353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A L DeVico
- Department of Cell Biology, Advanced BioScience Laboratories, Inc., Kensington, Maryland 20895
| | | |
Collapse
|
5
|
Tanese N, Telesnitsky A, Goff SP. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function. J Virol 1991; 65:4387-97. [PMID: 1712862 PMCID: PMC248878 DOI: 10.1128/jvi.65.8.4387-4397.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reverse transcriptase enzymes of retroviruses are multifunctional proteins containing both DNA polymerase activity and a nuclease activity, termed RNase H, specific for RNA in RNA-DNA hybrid form. To determine the role of RNase H activity in retroviral replication, we constructed a series of mutant genomes of Moloney murine leukemia virus that encoded reverse transcriptase enzymes that were specifically altered to retain polymerase function but lack RNase H activity. The mutant genomes were all replication defective. Analysis of in vitro reverse transcription reactions carried out by mutant virions showed that minus-strand strong-stop DNA was formed but did not efficiently translocate to the 3' end of the genome; rather, the DNA was stably retained in RNA-DNA hybrid form. Plus-strand strong-stop DNA was not detected. These results suggest that RNase H normally promotes strong-stop translocation, perhaps by exposing single-stranded DNA sequences for base pairing. Four new DNA species were also detected among the reaction products. Analysis of these DNAs suggested that they were minus-strand DNAs formed from VL30 RNAs encoded by the mouse genome. We suggest that reverse transcriptase can initiate DNA synthesis at any one of four alternate tRNA primer-binding sites near the 5' ends of VL30 RNAs.
Collapse
Affiliation(s)
- N Tanese
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
6
|
Abstract
Murine leukemia viruses (MuLVs) are retroviruses which induce a broad spectrum of hematopoietic malignancies. In contrast to the acutely transforming retroviruses, MuLVs do not contain transduced cellular genes, or oncogenes. Nonetheless, MuLVs can cause leukemias quickly (4 to 6 weeks) and efficiently (up to 100% incidence) in susceptible strains of mice. The molecular basis of MuLV-induced leukemia is not clear. However, the contribution of individual viral genes to leukemogenesis can be assayed by creating novel viruses in vitro using recombinant DNA techniques. These genetically engineered viruses are tested in vivo for their ability to cause leukemia. Leukemogenic MuLVs possess genetic sequences which are not found in nonleukemogenic viruses. These sequences control the histologic type, incidence, and latency of disease induced by individual MuL Vs.
Collapse
|
7
|
Lobel LI, Goff SP. Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences. J Virol 1985; 53:447-55. [PMID: 2578571 PMCID: PMC254656 DOI: 10.1128/jvi.53.2.447-455.1985] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The process of reverse transcription of retroviral genomes begins with the synthesis of a short DNA molecule near the 5' end of the RNA template. This molecule, termed minus-strand strong-stop DNA, is then translocated to the 3' end of the viral RNA by means of a repeated sequence, the R region, present at both ends of the template. The translocation should result in the transfer of genetic information from the 5' R region to the 3' R region. We have generated a series of mutants of Moloney murine leukemia virus with alterations in the R regions by in vitro mutagenesis of a cloned DNA copy of the viral genome. The altered DNAs were introduced into mouse cells by transfection, and the translocation of the mutations during viral replication was assessed. Some mutations were not transferred from the 5' R region to the 3' R region; these results were not in accord with current models for reverse transcription. The results can be explained if DNA molecules shorter than strong-stop DNA, formed by premature termination of synthesis, are sometimes translocated. A number of mutants with large deletions in the R region were tested and were able to replicate with normal strong-stop DNA translocation. Thus, short stretches of homology can be used by the virus to carry out strong-stop translocations.
Collapse
|
8
|
Abstract
Using the S1 nuclease mapping technique, we demonstrated that the majority of Moloney murine leukemia RNA molecules, isolated either from the nucleus or cytoplasm of infected mouse cells, share a uniform 3' end located at the border of the R and U-5 regions of the long terminal repeat. When the long terminal repeat sequences were inserted in the pSV plasmid downstream of the simian virus 40 late promoter, the 3' end of the viral RNA was also generated close to the R region of the long terminal repeat. These results demonstrate that the long terminal repeat signals the generation of an authentic 3' end when situated downstream of an actively transcribed region.
Collapse
|
9
|
Elder RT, Loh EY, Davis RW. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc Natl Acad Sci U S A 1983; 80:2432-6. [PMID: 6189122 PMCID: PMC393839 DOI: 10.1073/pnas.80.9.2432] [Citation(s) in RCA: 362] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RNA homologous to the yeast transposable element Ty1 is one of the more abundant poly(A)+ RNAs in many strains of the yeast Saccharomyces cerevisiae. The 5' and 3' ends of Ty1 RNA have been determined from analysis of cDNA. The 5' end is 245 bases into the left delta sequence measured from the left side of the Ty1 element. The delta sequence is a direct repeat of about 340 base pairs present at each end of the Ty1 element. The Ty1 transcription includes 93-97 bases of the left delta sequence and continues through the entire internal portion of the element and through about 295 bases of the right delta sequence before reaching the 3' end located 38-46 bases from the right side of the right delta sequence. Because the delta sequences present at each end of a single Ty1 element have identical or very similar DNA sequences, these end points for Ty1 RNA raise several questions about the expression of Ty1 elements. First, what are the initiation and termination signals, because the Ty1 transcript must read through a DNA sequence that is identical to the 3' end at about 50 bases from the 5' end? Second, why is the direction of transcription of the Ty1 element opposite to that of genes that are overexpressed after the insertion of a Ty1 element? Third, because the Ty1 RNA itself has direct repeats of about 45 bases, a structure analogous to retrovirus RNAs, is the Ty1 RNA an intermediate in the transposition of Ty1?
Collapse
|
10
|
Khan AS, Martin MA. Endogenous murine leukemia proviral long terminal repeats contain a unique 190-base-pair insert. Proc Natl Acad Sci U S A 1983; 80:2699-703. [PMID: 6302701 PMCID: PMC393895 DOI: 10.1073/pnas.80.9.2699] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have determined the nucleotide sequence in the U3-R regions of the long terminal repeat (LTR) associated with NFS-Th-1 xenotropic murine leukemia virus (MuLV) DNA and the LTR components of five endogenous proviruses cloned from BALB/c mouse chromosomal DNA. The five endogenous MuLV LTRs contained the regulatory signals thought to be important in viral transcription, such as "TATAA" and CCAAT-like boxes. A unique feature in four of the endogenous LTRs was the presence of a highly conserved 190-base-pair (bp) insert bounded by 6-bp direct repeats located 48 bp upstream from the C-C-A-A-T sequence. This segment was absent from LTRs associated with ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. All five endogenous LTR segments also contained a 14-bp duplication of a sequence located near the 5' end of the first component of the long (greater than 72-bp) direct repeat of ecotropic and MCF MuLV LTRs. An evolutionary scheme relating LTRs associated with endogenous MuLV proviral DNAs to those found in ecotropic or xenotropic proviruses is presented. Nucleotide sequence analysis also suggested that the U3 region of the MCF247 MuLV LTR is derived from an NFS xenotropic related MuLV.
Collapse
|
11
|
Van Beveren C, van Straaten F, Curran T, Müller R, Verma IM. Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral and cellular fos gene products have different carboxy termini. Cell 1983; 32:1241-55. [PMID: 6301687 DOI: 10.1016/0092-8674(83)90306-9] [Citation(s) in RCA: 461] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The complete nucleotide sequence of the FBJ-MuSV proviral DNA and the cellular homolog (c-fos) of its oncogene (v-fos) have been determined. The 4026 nucleotide long FBJ-MuSV proviral DNA contains two long terminal repeats, a substitution of 1639 nucleotides of mouse cellular DNA (v-fos) and the 3' end of the env gene derived from FBJ-MuLV. The sequences of the parental FBJ-MuLV and the cellular c-fos (mouse) gene share five of five nucleotides at the 5' end and ten of 11 nucleotides at the 3' end of the v-fos substitution. When compared with the v-fos sequences, the c-fos gene contains four discontinuous regions, three of which are flanked by sequences characteristic of introns. Direct sequence analysis of c-fos (mouse) RNA by primer extension demonstrates that the fourth discontinuity is due to a 104 bp deletion in the v-fos gene. As a consequence of the deletion, the predicted v-fos and c-fos gene products differ at their C termini.
Collapse
|
12
|
Hughes SH. Synthesis, integration, and transcription of the retroviral provirus. Curr Top Microbiol Immunol 1983; 103:23-49. [PMID: 6189672 DOI: 10.1007/978-3-642-68943-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Hoffmann JW, Steffen D, Gusella J, Tabin C, Bird S, Cowing D, Weinberg RA. DNA methylation affecting the expression of murine leukemia proviruses. J Virol 1982; 44:144-57. [PMID: 6183444 PMCID: PMC256248 DOI: 10.1128/jvi.44.1.144-157.1982] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The endogenous, vertically transmitted proviral DNAs of the ecotropic murine leukemia virus in AKR embryo fibroblasts were found to be hypermethylated relative to exogenous AKR murine leukemia virus proviral DNAs acquired by infection of the same cells. The hypermethylated state of the endogenous AKR murine leukemia virus proviruses in these cells correlated with the failure to express AKR murine leukemia virus and the lack of infectivity of cellular DNA. Induction of the endogenous AKR murine leukemia virus proviruses with the methylation antagonist 5-azacytidine suggested a causal connection between DNA methylation and provirus expression. Also found to be relatively hypermethylated and noninfectious were three of six Moloney murine leukemia virus proviral DNAs in an unusual clone of infected rat cells. Recombinant DNA clones which derived from a methylated, noninfectious Moloney provirus of this cell line were found to be highly active upon transfection, suggesting that a potentially active proviral genome can be rendered inactive by cellular DNA methylation. In contrast, in vitro methylation with the bacterial methylases MHpaII and MHhaI only slightly reduced the infectivity of the biologically active cloned proviral DNA. Recombinant DNA clones which derived from a second Moloney provirus of this cell line were noninfectious. An in vitro recombination method was utilized in mapping studies to show that this lack of infectivity was governed by mechanisms other than methylation.
Collapse
|
14
|
Devare SG, Reddy EP, Law JD, Aaronson SA. Nucleotide sequence analysis of the long terminal repeat of integrated simian sarcoma virus: evolutionary relationship with other mammalian retroviral long terminal repeats. J Virol 1982; 42:1108-13. [PMID: 6284990 PMCID: PMC256950 DOI: 10.1128/jvi.42.3.1108-1113.1982] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nucleotide sequence analysis of the long terminal repeat (LTR) of the integrated simian sarcoma virus showed that the simian sarcoma virus LTR comprised 504 nucleotides with an inverted repeat of seven bases at its 5' and 3' termini. At the site of simian sarcoma virus integration, cellular flanking sequences adjacent to the proviral LTR contained a direct repeat of four bases. A 13-base sequence after the 5' LTR was found to be complementary to prolyl tRNA, suggesting that tRNAPro may serve as the primer for reverse transcription of simian sarcoma virus RNA. The U5 and R regions, derived respectively from the 5' end and terminally redundant sequences of the viral RNA, were found to have similar organization and sequence homology close to that of Moloney murine sarcoma virus or Moloney murine leukemia virus. These results indicate that regions within LTRs with known functionally important sequences have been most well conserved during retrovirus evolution.
Collapse
|
15
|
Cole MD, Ono M, Huang RC. Intracisternal A-particle genes: structure of adjacent genes and mapping of the boundaries of the transcriptional unit. J Virol 1982; 42:123-30. [PMID: 6283134 PMCID: PMC256052 DOI: 10.1128/jvi.42.1.123-130.1982] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adjacent intracisternal A-particle (IAP) genes were identified in two different recombinant DNA clones, gamma 81 and gamma 19. In clone gamma 81, the most common form of IAP gene was separated by 5.3 kilobases from another IAP gene that had two apparent internal deletions. The two genes were in a head-to-tail configuration. In clone gamma 19, two different types of IAP genes were separated by less than 0.5 kilobase. Blot hybridization analysis of mouse DNA demonstrated that the DNA sequence found in clone gamma 81 is identical to the in vivo configuration. Using isolated DNA fragments from clone gamma 19, we mapped the boundaries of the IAP RNA by S1 digestion of RNA-DNA hybrids and by cDNA extension. With these techniques, both the 5' end and the 3' end of the IAP RNA in two different plasmacytomas (MOPC 315 and TEPC 15) were shown to fall within the long terminal direct repeat of the IAP gene. The fragment sizes generated by S1 digestion of IAP RNAs isolated from the two tumor lines were found to differ, indicating that different IAP genes may be transcribed in these two plasmacytomas.
Collapse
|
16
|
Evans LH, Duesberg PH. Isolation of a transformation-defective deletion mutant of Moloney murine sarcoma virus. J Virol 1982; 41:735-43. [PMID: 7077752 PMCID: PMC256806 DOI: 10.1128/jvi.41.2.735-743.1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A transformation-defective (td) deletion mutant of Moloney murine sarcoma virus (td Mo-MSV) and a transforming component termed Mo-MSV 3 were cloned from a stock of clone 3 Mo-MSV. To define the defect of the transforming function, the RNA of td Mo-MSV was compared with those of Mo-MSV 3 and of another transforming variant termed Mo-MSV 124 and with helper Moloney murine leukemia virus (Mo-MuLV). The RNA monomers of td Mo-MSV and Mo-MSV 3 comigrated on polyacrylamide gels and were estimated to be 4.8 kilobases (kb) in length. In agreement with previous analyses, the RNA of Mo-MSV 124 measured 5.5 kb and that of Mo-MuLV measured 8.5 kb. The interrelationships among the viral RNAs were studied by fingerprinting and mapping of RNase T(1)-resistant oligonucleotides (T(1)-oligonucleotides) and by identification of T(1)-oligonucleotides present in hybrids formed by a given viral RNA with cDNA's made from another virus. The nontransforming td Mo-MSV RNA lacked most of the Mo-MSV-specific sequence, i.e., the four 3'-proximal T(1)-oligonucleotides of the six T(1)-oligonucleotides that are shared by the Mo-MSV-specific sequences of Mo-MSV 3 and Mo-MSV 124. The remaining two Mo-MSV-specific oligonucleotides identified td Mo-MSV as a deletion mutant of MSV rather than a deletion mutant of Mo-MuLV. td Mo-MSV and Mo-MSV 124 exhibited similar deletions of gag, pol, and env sequences which were less extensive than those of Mo-MSV 3. Hence, td Mo-MSV is not simply a deletion mutant of Mo-MSV 3. In addition to their MSV-specific sequences, all three MSV variants, including td Mo-MSV, shared the terminal sequences probably encoding the proviral long terminal repeat, which differed from their counterpart in Mo-MuLV. This may indirectly contribute to the oncogenic potential of MSV. A comparison of td Mo-MSV sequences with either Mo-MSV 124 or Mo-MSV 3 indicated directly, in a fashion similar to the deletion analyses which defined the src gene of avian sarcoma viruses, that Mo-MuLV-unrelated sequences of Mo-MSV are necessary for transformation. A definition of transformation-specific sequences of Mo-MSV by deletion analysis confirmed and extended previous analyses which have identified Mo-MuLV-unrelated sequences in Mo-MSV RNA and other studies which have described transformation of mouse 3T3 fibroblasts upon transfection with DNAs containing the Mo-MSV-specific sequence.
Collapse
|
17
|
Reddy EP, Smith MJ, Aaronson SA. Complete nucleotide sequence and organization of the Moloney murine sarcoma virus genome. Science 1981; 214:445-50. [PMID: 6170110 DOI: 10.1126/science.6170110] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The complete nucleotide sequence of a mammalian transforming retrovirus. Moloney murine sarcoma virus, has been determined. MSV, recombinant virus derived of helper viral and cellular sequences, possesses termini resembling prokaryotic transposable elements. The viral genome has the coding capacity for the Moloney murine leukemia virus gag gene product and contains large deletions in pol and env genes. A large open reading frame encompassing its cell-derived sequences codes for its putative transforming protein. The nature of some of the important domains in the viral genome has been established, and their structure is discussed in relation to their function.
Collapse
|
18
|
|
19
|
Goldfarb MP, Weinberg RA. Generation of novel, biologically active Harvey sarcoma viruses via apparent illegitimate recombination. J Virol 1981; 38:136-50. [PMID: 7241647 PMCID: PMC171133 DOI: 10.1128/jvi.38.1.136-150.1981] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
NIH 3T3 cells transfected with Harvey sarcoma virus (HSV) DNA may acquire deleted proviruses (Goldfarb and Weinberg, J. Virol. 38:125-135, 1981). Such proviruses lack the right end of the wild-type HSV DNA genome corresponding to the 3'-proximal portion of the viral RNA. As expected, the RNA transcripts of these deleted HSV (delHSV) proviruses lacked sequences normally found at the 3' end of wild-type HSV RNA. Since frequently these delHSV RNA transcripts were longer than wild-type HSV RNA, we suggest that transcription proceeded through the deleted provirus and continued into flanking nonviral sequences. When delHSV-transformed cells were infected with Moloney murine leukemia virus (M-MLV), delHSV RNA was pseudotyped into new virus particles, demonstrating that the 3'-proximal sequences of wild-type HSV RNA are not essential for virion RNA encapsidation. Cells which carried a delHSV genome and were infected with M-MLV helper released very low titers of highly transmissible sarcoma virus. The inability to rescue high titers of sarcoma virus from these cells reflected the necessary presence of the deleted 3'-terminal sequences for normal efficient transmission of the sarcoma virus genome (Goldfarb and Weinberg, J. Virol. 38:125-135, 1981). The small amount of highly transmissible sarcoma virus rescuable from delHSV-transformed cells originated via genetic recombination between del HSV and the M-MLV helper used for the sarcoma virus rescue. The recombinant sarcoma virus genomes reacquired a competent 3' genomic end from the parental M-MLV genome, which restored efficient transmissibility. The locations of sites for recombination between the delHSV and M-MLV genomes appeared to be nonrandom. These sites were in genomic regions where the parental genomes bore no detectable sequence homology. Structural mapping of these recombinant sarcoma virus genomes indicated that the HSV transformation gene lies within 2.0 kilobases of the RNA 5' end. Based upon our genetic recombination studies, we suggest a model to explain how leukemia viruses can recombine with cellular sequences to generate novel defective viruses.
Collapse
|
20
|
Spector DH. Gene-specific probes for avian retroviruses. Curr Top Microbiol Immunol 1981; 91:41-80. [PMID: 6273070 DOI: 10.1007/978-3-642-68058-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Murti KG, Bondurant M, Tereba A. Secondary structural features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses as observed by electron microscopy. J Virol 1981; 37:411-19. [PMID: 6260992 PMCID: PMC171018 DOI: 10.1128/jvi.37.1.411-419.1981] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The secondary structural features in the 70S RNAs of the Prague strain of avian Rous sarcoma virus, subgroup A (PR-RSV-A), and Moloney murine leukemia virus (M-MuLV) were compared by electron microscopy. The PR-RSV-A genome contained two subunits joined by a linkage structure as in the genomes of M-MuLV and other mammalian retroviruses. In both viral genomes, a highly reproducible hairpin occurred at about 70 nucleotides from the 5' end of each subunit and contained 320 +/- 8 nucleotides. The stable point of linkage between the subunits in both viral genomes involved fewer than 50 nucleotides and occurred at 466 +/- 9 nucleotides from the 5' end. This places the linkage about 350 nucleotides further toward the 3' end of the subunit than the binding site of primer tRNA. Another structural feature common to both genomes was a loop in each subunit. In M-MuLV, the loop contained 3.9 +/- 0.10 kilobases (kb) and occurred at a distance of 2.2 +/- 0.05 kb from the 5' end. In PR-RSV-A, the loop was smaller (2.3 +/- 0.10 kb) and further (3.3 +/- 0.10 kb) from the 5' end. When M-MuLV RNA was heated to 70, 85, or 90 degrees C and cooled, the hairpin consistently reformed at the 5' end. No other structures typical of the native molecules reappeared. In RNA samples heated to 70 degrees C, a new loop reproducibly occurred near the 5' end of each subunit, but this loop was not found in samples heated to higher temperatures. Based on all of these findings, we conclude that the genome of PR-RSV-A shares several features with M-MuLV and other mammalian retroviruses and that the primer tRNA molecules are not involved in the linkage of the two subunits in either genome. We also conclude that the dimer linkage and the loops in subunits are typical of the native molecules and that their formation requires a special environment.
Collapse
|
22
|
Benz EW, Wydro RM, Nadal-Ginard B, Dina D. Moloney murine sarcoma proviral DNA is a transcriptional unit. Nature 1980; 288:665-9. [PMID: 6256637 DOI: 10.1038/288665a0] [Citation(s) in RCA: 87] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A portion of Moloney murine sarcoma virus DNA which is repeated at both ends of the provirus has been sequences. The nucleotide sequence, together with hybridization data obtained with in vitro pulse-labelled nascent viral RNA, indicate that initiation and termination of RNA synthesis occur within that region of the proviral DNA. A model for transcriptional readthrough of termination signals during RNA synthesis in this system is suggested.
Collapse
|
23
|
Nooter K, Bentvelzen P. Primate type-C oncoviruses. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 605:461-87. [PMID: 6161645 DOI: 10.1016/0304-419x(80)90010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Ellis RW, DeFeo D, Maryak JM, Young HA, Shih TY, Chang EH, Lowy DR, Scolnick EM. Dual evolutionary origin for the rat genetic sequences of Harvey murine sarcoma virus. J Virol 1980; 36:408-20. [PMID: 6253666 PMCID: PMC353657 DOI: 10.1128/jvi.36.2.408-420.1980] [Citation(s) in RCA: 329] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Detailed restriction endonuclease maps were developed for Harvey murine sarcoma virus (Ha-MuSV) DNA (clone H-1), molecularly closed at its unique EcoRI site in pBR322, for three nonoverlapping subgenomic HindIII clones which together span the entire H-1 clone and for a molecularly cloned DNA copy of a portion of rat 30S RNA (which represents the majority of the rat genetic sequences in Ha-MuSV). Molecular hybridization of the 30S clone to small restriction fragments of clone H-1 revealed a 0.9-to-1.0-kilobase pair region in the 5' half of the Ha-MuSV genome not homologous to the 30S clone, although the 30S clone did contain related sequences in Ha-MuSV on both sides of this nonhomologous region. By using cloned sequences from a segment of the Ha-MuSV nonhomology region as a probe for hybridization to Southern blots of DNA from rat, mouse, bat, and chicken cells, one to three bands were detected in DNA of each species. By contrast, the 30S clone DNA was highly related to many sequences in rat DNA, partially related to fewer mouse DNA sequences, and homologous only to one to three bands in bat and chicken DNA. Earlier work had shown that the 5' half of the Ha-MuSV genome coded for transformation and for the viral p21 protein (Chang et al., J. Virol. 35: 76--92, 1980; Wei et al., Proc. Natl. Acad. Sci. U.S.A., in press). We used two subgenomic HindIII clones whose shared HindIII site mapped within the 5' region of clone H-1 nonhomologous to the 30S clone to test whether the nonhomologous segment might encode the transforming and p21 functions. Although neither of the subgenomic HindIII fragments by themselves induced transformation, ligation of these two nontransforming DNAs to each other did restore p21-mediated transformation. A conclusion consistent with these results is that a region in the 5' half of the Ha-MuSV genome evolutionarily distinct from and not present in rat 30S RNA is essential for transformation and for p21 encoding.
Collapse
|
25
|
Reddy EP, Smith MJ, Canaani E, Robbins KC, Tronick SR, Zain S, Aaronson SA. Nucleotide sequence analysis of the transforming region and large terminal redundancies of Moloney murine sarcoma virus. Proc Natl Acad Sci U S A 1980; 77:5234-8. [PMID: 6254069 PMCID: PMC350032 DOI: 10.1073/pnas.77.9.5234] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence of the transforming region of the Moloney murine sarcoma virus genome has been determined by using molecularly cloned viral DNA. This region, 3.6 to 5.8 kilobase pairs from the left end of the molecule, contains the entire cellular insertion (src) sequence as well as helper viral sequences including the large terminal repeat (LTR). On the viral RNA strand, a long (1224 bases) open reading frame commenced to the left of the src-helper virus junction and terminated at a point 58 nucleotides into helper viral sequences to the right of src. Possible promoter and acceptor splice signals were detected in helper viral sequences upstream from this open reading frame. On the antiviral RNA strand, several promoter-like sequences, including one within the src region itself, were identified. However, no open reading frame downstream from these promoters was detected in the antiviral RNA strand. The LTR was found to contain promoter-like sequences as well as LTR was found to contain promoter-like sequences as well as mRNA capping and polyadenylylation signals. In addition, it possessed an 11-base inverted terminal repeat at each end. Thus, the structure of the Moloney murine sarcoma virus genome with an LTR at each end resembles that of prokaryotic transposable elements.
Collapse
|
26
|
Dhar R, McClements WL, Enquist LW, Vande Woude GF. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc Natl Acad Sci U S A 1980; 77:3937-41. [PMID: 6254003 PMCID: PMC349742 DOI: 10.1073/pnas.77.7.3937] [Citation(s) in RCA: 268] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Integrated Moloney murine sarcoma provirus (MSV) has direct terminal repeat sequences (TRS). We determined the nucleotide sequence of both 588-base-pair TRS elements and the adjacent host and viral junctions of an integrated MSV cloned in bacteriophage lambda. Sequences were identified corresponding to the tRNAPro primer binding site in genomic RNA and the reverse-transcribed minus strong stop DNA. Each 588-base-pair repeat contains putative sites for promoting RNA synthesis and RNA polyadenylylation. The first and last 11 nucleotides of the TRS are inverted with respect to each other, and the same four-nucleotide host sequence is found bracketing integrated MSV. Some similarities of TRS and prokaryotic insertion sequence elements are discussed.
Collapse
|
27
|
Chang EH, Maryak JM, Wei CM, Shih TY, Shober R, Cheung HL, Ellis RW, Hager GL, Scolnick EM, Lowy DR. Functional organization of the Harvey murine sarcoma virus genome. J Virol 1980; 35:76-92. [PMID: 6251279 PMCID: PMC288784 DOI: 10.1128/jvi.35.1.76-92.1980] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The comparative infectivity of Harvey murine sarcoma virus (Ha-MuSV) DNA for NIH 3T3 cells was determined for supercoiled Ha-MuSV DNA molecularly cloned in lambda phage and pBR322 at its unique EcoRI site (which is located near the middle of the 6-kilobase pair [kbp] unintegrated linear viral DNA) and for two cloned subgenomic fragments: one was 3.8 kbp and lacked about 1 kbp from each side of the EcoRI site, and the second did not contain the 3 kbp of the unintegrated linear viral DNA located on the 3' side of the EcoRI site. Each subgenomic DNA induced foci of transformed cells, but with a lower relative efficiency then genomic DNA. Transfection with intact vector Ha-MuSV DNA yielded results similar to those obtained after separation of Ha-MuSV DNA from vector DNA. Cells lines were then derived from individual foci transformed with each type of viral DNA. Focus-forming virus was recovered from transformed cells after superinfection with a helper-independent virus, but the efficiency varied by several orders of magnitude. For several transformed lines, the efficiency of recovery of focus-forming virus was correlated with the structure of the Ha-MuSV DNA in the cells before superinfection. When 32P-labeled Ha-MuSV DNA probes specific for sequences on either the 3' or 5' side of the EcoRI site were used to analyze the viral RNA in the transformed cell lines, all lines were found to hybridize with the 5' probe, but some lines did not hybridize with the 3' probe. The transformed lines contained high levels of the Ha-MuSV-coded p21 or its associated GDP-binding activity. We conclude that the transforming region and the sequences that code for the viral p21 protein are both located within the 2 kilobases closest to the 5' end of the Ha-MuSV genome.
Collapse
|
28
|
Shimotohno K, Mizutani S, Temin HM. Sequence of retrovirus provirus resembles that of bacterial transposable elements. Nature 1980; 285:550-4. [PMID: 6250038 DOI: 10.1038/285550a0] [Citation(s) in RCA: 259] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified lambda phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.
Collapse
|
29
|
Sutcliffe JG, Shinnick TM, Verma IM, Lerner RA. Nucleotide sequence of Moloney leukemia virus: 3' end reveals details of replications, analogy to bacterial transposons, and an unexpected gene. Proc Natl Acad Sci U S A 1980; 77:3302-6. [PMID: 6251454 PMCID: PMC349603 DOI: 10.1073/pnas.77.6.3302] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have determined the sequence of a cloned DNA fragment 1108 base pairs long which corresponds to the 3' end of the Moloney murine leukemia provirus. The clone was obtained as the primary product of reverse transcription and begins with the Moloney "strong stop" sequence, then extends towards the 5' end of the provirus. Our sequence: (i) proves that reverse transcriptase switches templates during minus strand synthesis; (ii) defines the limits of the 515-base-pair repeats which occupy both ends of the integrated provirus; (iii) shows that the structure of the proviral repeats has strong analogy to bacterial insertion sequences, indicating that the Moloney provirus is a transposon; (iv) identifies the putative promotor for genomic transcription within these repeats; (v) shows that the presumed origin of second strand synthesis, which lies just outside the 3' repeat, has tertiary structure analogous to single-stranded bacteriophage origins of replication; (vi) solves the amino acid sequence of most of pI5E, the carboxy-terminal product of the env gene; (vii) allows detailed mapping of the mink cell focus-forming virus substitution locus in a central location within the gp70 region of the env gene; and (viii) identifies a long open translation frame to the right of the env gene (R gene) which could be involved in leukemogenesis.
Collapse
|
30
|
Chien YH, Deng CT, Chandler P, Davidson N. A method for the isolation of segments from the 5' ends of retrovirus RNA. Anal Biochem 1980; 102:281-7. [PMID: 7425287 DOI: 10.1016/0003-2697(80)90153-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Chang HW, Garon CF, Chang EH, Lowy DR, Hager GL, Scolnick EM, Repaske R, Martin MA. Molecular cloning of the Harvey sarcoma virus circular DNA intermediates. II. Further structural analyses. J Virol 1980; 33:845-55. [PMID: 6251253 PMCID: PMC288610 DOI: 10.1128/jvi.33.2.845-855.1980] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three species of unintegrated supercoiled Harvey sarcoma virus DNA (6.6, 6.0, and 5.4 kilobase pairs) have been molecularly cloned from Harvey sarcoma virus-infected cells. On the basis of restriction enzyme analyses, the 6.6- and 6.0-kilobase pair viral DNAs contain two and one copies, respectively, of a 650-base pair DNA segment which contains sequences present at the 3' and 5' termini of the viral genome. R-loop structures formed between Moloney leukemia virus RNA and the cloned Harvey sarcoma virus DNA indicated that about 500 base pairs of the 650-base pair repeating segment was complementary to the 3' end of the viral RNA. During amplification in the Escherichia coli host, some recombinants containing the 6.6- or the 6.0-kilobase pair Harvey sarcoma virus DNA insert acquired or lost the complete 650-base pair DNA segment. These changes occurred in both recA+ and recA- E. coli.
Collapse
|
32
|
Peters GG, Glover C. Low-molecular-weight RNAs and initiation of RNA-directed DNA synthesis in avian reticuloendotheliosis virus. J Virol 1980; 33:708-16. [PMID: 6157836 PMCID: PMC288595 DOI: 10.1128/jvi.33.2.708-716.1980] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small RNAs of avian reticuloendotheliosis virus (REV) were analyzed by two-dimensional polyacrylamide gel electrophoresis and compared with those of murine leukemia virus and avian sarcoma virus. Although there were some similarities among the three virus types, the patterns of small RNAs were distinct. By characterizing the small RNA which is most tightly associated with REV genome RNA and which can be labeled in limited DNA synthesis reactions, the primer for REV reverse transcription was identified as tRNAPro. This is consistent with previous reports that REV is more closely related to retroviruses of mammalian origin than to other avian viruses. In contrast, REV strong-stop complementary DNA is longer than any previously characterized strong-stop products of avian or mammalian retroviruses. The REV group may, therefore, have been derived from an as yet unidentified mammalian type C virus.
Collapse
|
33
|
Dina D, Benz EW. Structure of murine sarcoma virus DNA replicative intermediates synthesized in vitro. J Virol 1980; 33:377-89. [PMID: 6245239 PMCID: PMC288554 DOI: 10.1128/jvi.33.1.377-389.1980] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Moloney murine sarcoma virions synthesize discrete DNA products in vitro which closely resemble those found in vivo shortly after infection. These in vitro products have been isolated by electrophoresis and mapped with restriction endonucleases. In addition to the full-genome-length 6-kilobase pair linear DNA, a 5.4-kilobase pair circular DNA molecule, an incomplete linear DNA molecule, and a 600-base pair molecule were detected. The 6-kilobase pair DNA contained a 600-base pair direct terminal repeat which was missing from the circular form and was partially represented on the incomplete linear DNA molecule. The 600-base pair DNA contained sequences which were present in the 600-base pair direct repeat on the 6-kilobase pair DNA. The order of synthesis and the structure of these molecules detected in the in vitro reaction suggest that they are crucial intermediates in the formation of the final product of in vitro reverse transcription. A model which accounts for the synthesis of all of these molecules during the initial stages of viral replication is suggested.
Collapse
|
34
|
|
35
|
|
36
|
Bosselman RA, Verma IM. Genome organization of retroviruses. V. In vitro-synthesized Moloney murine leukemia viral DNA has long terminal redundancy. J Virol 1980; 33:487-93. [PMID: 6245245 PMCID: PMC288563 DOI: 10.1128/jvi.33.1.487-493.1980] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purified virions of Moloney murine leukemia virus can synthesize genome-length double-stranded DNA in vitro. Two predominant species of long DNA transcripts, with average sizes of 9.1 and 8.5 kilobases (kb) can be identified. Both species of DNA contain the negative (complementary to viral RNA) and positive (same polarity as viral RNA) strands. However, only the negative strand of the 8.5-kb species can be identified if the synthesis of DNA is carried out in the presence of the drug actinomycin D. The 9.1-kb species appears to be slightly larger than the genomic RNA. If the linear double-stranded 9.1-kb species is treated with Escherichia coli exonuclease III and allowed to anneal, circular DNA molecules can be observed. Furthermore, polyadenylate-containing short genomic RNA fragments (0.5 to 1.0 kb) can anneal to both the 5' and the 3' termini of 9.1-kb complementary DNA. The polyadenylate moiety of the RNA fragments can be identified by tagging it with circular polyoma DNA containing polydeoxybromouridylic acid tails. Thus, the 9.1-kb complementary DNA transcript with two circular polyoma DNA molecules at its termini can be observed. However, when similar annealings are performed with 8.5-kb complementary DNA species, only one end of the resulting molecule has circular polyoma DNA. We conclude that the 9.1-kb complementary DNA species has a large terminal redundancy. The sequences involved in terminal redundancy appear to be derived from the 3' end of the genomic RNA.
Collapse
|
37
|
Gilboa E, Mitra SW, Goff S, Baltimore D. A detailed model of reverse transcription and tests of crucial aspects. Cell 1979; 18:93-100. [PMID: 509527 DOI: 10.1016/0092-8674(79)90357-x] [Citation(s) in RCA: 497] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A model of reverse transcription has been devised by which the detailed architecture of ten molecular structures is predicted. The model includes a number of novel features for which experimental evidence is presented. First, growing minus DNA strand is copied from the viral RNA only up to a position about 150 nucleotides from the 5' end of the RNA. Second, plus-strand DNA, after being copied from approximately 600 nucleotides at the 5' end of the minus-strand DNA, then transcribes the first approximately 20 nucleotides of the tRNApro primer (which is covalently attaced to the 5' end of the minus DNA strand). The 3' ends of the minus and plus DNA probably form a hybrid through the homology conferred by the primer binding site sequences. Third, the minus and plus DNA strands are elongated in a continuous fashion resulting in a linear double-stranded DNA molecule containing a 600 nucleotide direct repeat at both ends. The most of the features of the model have experimental support, and it appears to provide a credible description of reverse transcription.
Collapse
|
38
|
Gilboa E, Goff S, Shields A, Yoshimura F, Mitra S, Baltimore D. In vitro synthesis of a 9 kbp terminally redundant DNA carrying the infectivity of Moloney murine leukemia virus. Cell 1979; 16:863-74. [PMID: 88264 DOI: 10.1016/0092-8674(79)90101-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detergent-disrupted virions of Moloney murine leukemia virus synthesize a 9 kbp double-stranded infectious DNA. It contains mainly full-length, single-stranded DNA, and its infectivity and size are insensitive to digestion by the single-strand-specific S1 nuclease. Analysis of fragmentation of the DNA using restriction endonucleases has shown that it is indistinguishable from the linear double-stranded DNA synthesized in infected cells. On the basis of the positions of the cleavage sites for a number of enzymes, the 9 kbp DNA has a 575 base direct terminal repetition. It is longer than the viral RNA at both ends, evidently due to repetitive copying of segments of the RNA. Virions also synthesize an 8.4 kbp double-stranded circular DNA that lacks one copy of the terminal repetition, as well as viral DNA longer than 9 kbp. The enzymatic machinery in the virions of retroviruses therefore appears to be responsible for all the steps involved in making fully double-stranded linear and one form of circular DNA.
Collapse
|
39
|
|