1
|
Wang Z, Yuan Y, Zheng G, Sun M, Wang Q, Wu J, Li J, Sun C, Wang Y, Yang N, Lian L. Short communication: diversity of endogenous avian leukosis virus subgroup E elements in 11 chicken breeds. J Anim Sci 2023; 101:skad081. [PMID: 36932970 PMCID: PMC10103068 DOI: 10.1093/jas/skad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Avian leukosis virus subgroup E (ALVE) as a kind of endogenous retroviruses extensively exists in chicken genome. The insertion of ALVE has some effects on chicken production traits and appearance. Most of the work on ALVEs has been done with commercial breeds. We present here an investigation of ALVE elements in seven Chinese domestic breeds and four standard breeds. Firstly, we established an ALVE insertion site dataset by using the obsERVer pipeline to identify ALVEs from whole-genome sequence data of eleven chicken breeds, seven Chinese domestic breeds, including Beijing You (BY), Dongxiang (DX), Luxi Game (LX), Shouguang (SG), Silkie (SK), Tibetan (TB) and Wenchang (WC), four standard breeds, including White Leghorn (WL), White Plymouth Rock (WR), Cornish (CS), and Rhode Island Red (RIR). A total of 37 ALVE insertion sites were identified and 23 of them were novel. Most of these insertion sites were distributed in intergenic regions and introns. We then used locus-specific PCR to validate the insertion sites in an expanded population with 18~60 individuals in each breed. The results showed that all predicted integration sites in 11 breeds were verified by PCR. Some ALVE insertion sites were breeds specific, and 16 out of 23 novel ALVEs were found in only one Chinese domestic chicken breed. We randomly selected three ALVE insertions including ALVE_CAU005, ALVE_ros127, and ALVE_ros276, and obtained their insertion sequences by long-range PCR and Sanger sequencing. The insertion sequences were all 7525 bp, which were full-length ALVE insertion and all of them were highly homologous to ALVE1 with similarity of 99%. Our study identified the distribution of ALVE in 11 chicken breeds, which expands the current research on ALVE in Chinese domestic breeds.
Collapse
Affiliation(s)
- Ziyi Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiming Yuan
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Zheng
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meng Sun
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qinyuan Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junfeng Wu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Lian
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Jorritsma RN. How Well Does Evolution Explain Endogenous Retroviruses?-A Lakatosian Assessment. Viruses 2021; 14:v14010014. [PMID: 35062218 PMCID: PMC8781664 DOI: 10.3390/v14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most sophisticated philosophies of science is the methodology of scientific research programmes (MSRP), developed by Imre Lakatos. According to MSRP, scientists are working within so-called research programmes, consisting of a hard core of fixed convictions and a flexible protective belt of auxiliary hypotheses. Anomalies are accommodated by changes to the protective belt that do not affect the hard core. Under MSRP, research programmes are appraised as 'progressive' if they successfully predict novel facts but are judged as 'degenerative' if they merely offer ad hoc solutions to anomalies. This paper applies these criteria to the evolutionary research programme as it has performed during half a century of ERV research. It describes the early history of the field and the emergence of the endogenization-amplification theory on the origins of retroviral-like sequences. It then discusses various predictions and postdictions that were generated by the programme, regarding orthologous ERVs in different species, the presence of target site duplications and the divergence of long terminal repeats, and appraises how the programme has dealt with data that did not conform to initial expectations. It is concluded that the evolutionary research programme has been progressive with regard to the issues here examined.
Collapse
Affiliation(s)
- Ruben N Jorritsma
- Philosophy Group, Wageningen University & Research, 6700 EW Wageningen, The Netherlands
| |
Collapse
|
3
|
Abstract
My laboratory investigations have been driven by an abiding interest in understanding the consequences of genetic rearrangement in evolution and disease, and in using viruses to elucidate fundamental mechanisms in biology. Starting with bacteriophages and moving to the retroviruses, my use of the tools of genetics, molecular biology, biochemistry, and biophysics has spanned more than half a century-from the time when DNA structure was just discovered to the present day of big data and epigenetics. Both riding and contributing to the successive waves of technology, my laboratory has elucidated fundamental mechanisms in DNA replication, repair, and recombination. We have made substantial contributions in the area of retroviral oncogenesis, delineated mechanisms that control retroviral gene expression, and elucidated critical details of the structure and function of the retroviral enzymes-reverse transcriptase, protease, and integrase-and have had the satisfaction of knowing that the fundamental knowledge gained from these studies contributed important groundwork for the eventual development of antiviral drugs to treat AIDS. While pursuing laboratory research as a principal investigator, I have also been a science administrator-moving from laboratory head to department chair and, finally, to institute director. In addition, I have undertaken a number of community service, science-related "extracurricular" activities during this time. Filling all of these roles, while being a wife and mother, has required family love and support, creative management, and, above all, personal flexibility-with not too much long-term planning. I hope that this description of my journey, with various roles, obstacles, and successes, will be both interesting and informative, especially to young female scientists.
Collapse
Affiliation(s)
- Anna Marie Ann Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111;
| |
Collapse
|
4
|
Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 2017; 8:32-44. [PMID: 28289517 PMCID: PMC5329712 DOI: 10.4331/wjbc.v8.i1.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
Retroviral replication proceeds through the integration of a DNA copy of the viral RNA genome into the host cellular genome, a process that is mediated by the viral integrase (IN) protein. IN catalyzes two distinct chemical reactions: 3’-processing, whereby the viral DNA is recessed by a di- or trinucleotide at its 3’-ends, and strand transfer, in which the processed viral DNA ends are inserted into host chromosomal DNA. Although IN has been studied as a recombinant protein since the 1980s, detailed structural understanding of its catalytic functions awaited high resolution structures of functional IN-DNA complexes or intasomes, initially obtained in 2010 for the spumavirus prototype foamy virus (PFV). Since then, two additional retroviral intasome structures, from the α-retrovirus Rous sarcoma virus (RSV) and β-retrovirus mouse mammary tumor virus (MMTV), have emerged. Here, we briefly review the history of IN structural biology prior to the intasome era, and then compare the intasome structures of PFV, MMTV and RSV in detail. Whereas the PFV intasome is characterized by a tetrameric assembly of IN around the viral DNA ends, the newer structures harbor octameric IN assemblies. Although the higher order architectures of MMTV and RSV intasomes differ from that of the PFV intasome, they possess remarkably similar intasomal core structures. Thus, retroviral integration machineries have adapted evolutionarily to utilize disparate IN elements to construct convergent intasome core structures for catalytic function.
Collapse
|
5
|
Rutherford K, Meehan CJ, Langille MGI, Tyack SG, McKay JC, McLean NL, Benkel K, Beiko RG, Benkel B. Discovery of an expanded set of avian leukosis subgroup E proviruses in chickens using Vermillion, a novel sequence capture and analysis pipeline [corrected]. Poult Sci 2016; 95:2250-8. [PMID: 27354549 DOI: 10.3382/ps/pew194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 01/26/2023] Open
Abstract
Transposable elements (TEs), such as endogenous retroviruses (ERVs), are common in the genomes of vertebrates. ERVs result from retroviral infections of germ-line cells, and once integrated into host DNA they become part of the host's heritable genetic material. ERVs have been ascribed positive effects on host physiology such as the generation of novel, adaptive genetic variation and resistance to infection, as well as negative effects as agents of tumorigenesis and disease. The avian leukosis virus subgroup E family (ALVE) of endogenous viruses of chickens has been used as a model system for studying the effects of ERVs on host physiology, and approximately 30 distinct ALVE proviruses have been described in the Gallus gallus genome. In this report we describe the development of a software tool, which we call Vermillion, and the use of this tool in combination with targeted next-generation sequencing (NGS) to increase the number of known proviruses belonging to the ALVE family of ERVs in the chicken genome by 4-fold, including expanding the number of known ALVE elements on chromosome 1 (Gga1) from the current 9 to a total of 40. Although we focused on the discovery of ALVE elements in chickens, with appropriate selection of target sequences Vermillion can be used to develop profiles of other families of ERVs and TEs in chickens as well as in species other than the chicken.
Collapse
Affiliation(s)
- K Rutherford
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2
| | - C J Meehan
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2 Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp 2000, Belgium
| | - M G I Langille
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2 Dalhousie University, Faculty of Medicine, Department of Pharmacology, 5850 College St, Halifax, NS, Canada, B3H 4R2
| | - S G Tyack
- EW GROUP, 1 Hogenboegen, Visbek, Germany
| | - J C McKay
- EW GROUP, 1 Hogenboegen, Visbek, Germany
| | - N L McLean
- Dalhousie University, Faculty of Agriculture, Department of Plant and Animal Sciences, Box 550, Truro, NS, B2N 5E3
| | - K Benkel
- Dalhousie University, Faculty of Agriculture, Department of Plant and Animal Sciences, Box 550, Truro, NS, B2N 5E3
| | - R G Beiko
- Dalhousie University, Faculty of Computer Science, 6050 University Avenue, Halifax, NS, Canada, B3H 4R2
| | - B Benkel
- Dalhousie University, Faculty of Agriculture, Department of Plant and Animal Sciences, Box 550, Truro, NS, B2N 5E3
| |
Collapse
|
6
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
7
|
Abstract
The retroviral integrases are virally encoded, specialized recombinases that catalyze the insertion of viral DNA into the host cell's DNA, a process that is essential for virus propagation. We have learned a great deal since the existence of an integrated form of retroviral DNA (the provirus) was first proposed by Howard Temin in 1964. Initial studies focused on the genetics and biochemistry of avian and murine virus DNA integration, but the pace of discovery increased substantially with advances in technology, and an influx of investigators focused on the human immunodeficiency virus. We begin with a brief account of the scientific landscape in which some of the earliest discoveries were made, and summarize research that led to our current understanding of the biochemistry of integration. A more detailed account of recent analyses of integrase structure follows, as they have provided valuable insights into enzyme function and raised important new questions.
Collapse
Affiliation(s)
- Mark D Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| | - Anna Marie Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; ,
| |
Collapse
|
8
|
Key determinants of target DNA recognition by retroviral intasomes. Retrovirology 2015; 12:39. [PMID: 25924943 PMCID: PMC4422553 DOI: 10.1186/s12977-015-0167-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022] Open
Abstract
Background Retroviral integration favors weakly conserved palindrome sequences at the sites of viral DNA joining and generates a short (4–6 bp) duplication of host DNA flanking the provirus. We previously determined two key parameters that underlie the target DNA preference for prototype foamy virus (PFV) and human immunodeficiency virus type 1 (HIV-1) integration: flexible pyrimidine (Y)/purine (R) dinucleotide steps at the centers of the integration sites, and base contacts with specific integrase residues, such as Ala188 in PFV integrase and Ser119 in HIV-1 integrase. Here we examined the dinucleotide preference profiles of a range of retroviruses and correlated these findings with respect to length of target site duplication (TSD). Results Integration datasets covering six viral genera and the three lengths of TSD were accessed from the literature or generated in this work. All viruses exhibited significant enrichments of flexible YR and/or selection against rigid RY dinucleotide steps at the centers of integration sites, and the magnitude of this enrichment inversely correlated with TSD length. The DNA sequence environments of in vivo-generated HIV-1 and PFV sites were consistent with integration into nucleosomes, however, the local sequence preferences were largely independent of target DNA chromatinization. Integration sites derived from cells infected with the gammaretrovirus reticuloendotheliosis virus strain A (Rev-A), which yields a 5 bp TSD, revealed the targeting of global chromatin features most similar to those of Moloney murine leukemia virus, which yields a 4 bp duplication. In vitro assays revealed that Rev-A integrase interacts with and is catalytically stimulated by cellular bromodomain containing 4 protein. Conclusions Retroviral integrases have likely evolved to bend target DNA to fit scissile phosphodiester bonds into two active sites for integration, and viruses that cut target DNA with a 6 bp stagger may not need to bend DNA as sharply as viruses that cleave with 4 bp or 5 bp staggers. For PFV and HIV-1, the selection of signature bases and central flexibility at sites of integration is largely independent of chromatin structure. Furthermore, global Rev-A integration is likely directed to chromatin features by bromodomain and extraterminal domain proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0167-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Abstract
Retroviruses and LTR retrotransposons are transposable elements that encapsidate the RNAs that are intermediates in the transposition of DNA copies of their genomes (proviruses), from one cell (or one locus) to another. Mechanistic similarities in DNA transposase enzymes and retroviral/retrotransposon integrases underscore the close evolutionary relationship among these elements. The retroviruses are very ancient infectious agents, presumed to have evolved from Ty3/Gypsy LTR retrotransposons (1), and DNA copies of their sequences can be found embedded in the genomes of most, if not all, members of the tree of life. All retroviruses share a specific gene arrangement and similar replication strategies. However, given their ancestries and occupation of diverse evolutionary niches, it should not be surprising that unique sequences have been acquired in some retroviral genomes and that the details of the mechanism by which their transposition is accomplished can vary. While every step in the retrovirus lifecycle is, in some sense, relevant to transposition, this Chapter focuses mainly on the early phase of retroviral replication, during which viral DNA is synthesized and integrated into its host genome. Some of the initial studies that set the stage for current understanding are highlighted, as well as more recent findings obtained through use of an ever-expanding technological toolbox including genomics, proteomics, and siRNA screening. Persistence in the area of structural biology has provided new insight into conserved mechanisms as well as variations in detail among retroviruses, which can also be instructive.
Collapse
Affiliation(s)
- Anna Marie Skalka
- Fox Chase Cancer Center 333 Cottman Avenue Philadelphia, PA 19111 United States 2157282192 2157282778 (fax)
| |
Collapse
|
10
|
Benkel B, Rutherford K. Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly. Poult Sci 2014; 93:2988-90. [PMID: 25306461 DOI: 10.3382/ps.2014-04309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current build (galGal4) of the genome of the ancestor of the modern chicken, the Red Jungle Fowl, contains a single endogenous avian leukosis viral element (ALVE) on chromosome 1 (designated RSV-LTR; family ERVK). The assembly shows the ALVE provirus juxtaposed with a member of a second family of avian endogenous retroviruses (designated GGERV20; family ERVL); however, the status of the 3' end of the ALVE element as well as its flanking region remain unclear due to a gap in the reference genome sequence. In this study, we filled the gap in the assembly using a combination of long-range PCR (LR-PCR) and a short contig present in the unassembled portion of the reference genome database. Our results demonstrate that the ALVE element (ALVE-JFevB) is inserted into the putative envelope region of a GGERV20 element, roughly 1 kbp from its 3' end, and that ALVE-JFevB is complete, and depending on its expression status, potentially capable of directing the production of virus. Moreover, the unassembled portion of the genome database contains junction fragments for a second, previously characterized endogenous proviral element, ALVE-6.
Collapse
Affiliation(s)
- Bernhard Benkel
- Dalhousie University, Department of Plant and Animal Sciences, Box 550, Truro, Nova Scotia, Canada, B2N 5E3
| | - Katherine Rutherford
- Dalhousie University, Department of Plant and Animal Sciences, Box 550, Truro, Nova Scotia, Canada, B2N 5E3
| |
Collapse
|
11
|
Molnár J, Póti Á, Pipek O, Krzystanek M, Kanu N, Swanton C, Tusnády GE, Szallasi Z, Csabai I, Szüts D. The genome of the chicken DT40 bursal lymphoma cell line. G3 (BETHESDA, MD.) 2014; 4:2231-40. [PMID: 25227228 PMCID: PMC4232548 DOI: 10.1534/g3.114.013482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
The chicken DT40 cell line is a widely used model system in the study of multiple cellular processes due to the efficiency of homologous gene targeting. The cell line was derived from a bursal lymphoma induced by avian leukosis virus infection. In this study we characterized the genome of the cell line using whole genome shotgun sequencing and single nucleotide polymorphism array hybridization. The results indicate that wild-type DT40 has a relatively normal karyotype, except for whole chromosome copy number gains, and no karyotype variability within stocks. In a comparison to two domestic chicken genomes and the Gallus gallus reference genome, we found no unique mutational processes shaping the DT40 genome except for a mild increase in insertion and deletion events, particularly deletions at tandem repeats. We mapped coding sequence mutations that are unique to the DT40 genome; mutations inactivating the PIK3R1 and ATRX genes likely contributed to the oncogenic transformation. In addition to a known avian leukosis virus integration in the MYC gene, we detected further integration sites that are likely to de-regulate gene expression. The new findings support the hypothesis that DT40 is a typical transformed cell line with a relatively intact genome; therefore, it is well-suited to the role of a model system for DNA repair and related processes. The sequence data generated by this study, including a searchable de novo genome assembly and annotated lists of mutated genes, will support future research using this cell line.
Collapse
Affiliation(s)
- János Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Marcin Krzystanek
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nnennaya Kanu
- Cancer Research UK London Research Institute, London, WCA2 3PX, United Kingdom
| | - Charles Swanton
- Cancer Research UK London Research Institute, London, WCA2 3PX, United Kingdom
| | - Gábor E Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark Children's Hospital Informatics Program at the Harvard-Massachusetts Institutes of Technology Division of Health Sciences and Technology (CHIP@HST), Harvard Medical School, Boston, MA 02115
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
12
|
Iraqi F, Smith EJ. Determination of avian endogenous provirus ‐ cellular junction sequences using inverse polymerase chain reactions. Anim Biotechnol 2009. [DOI: 10.1080/10495399409525805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fuad Iraqi
- a U.S. Department of Agriculture, Agricultural Research Service , Avian Disease and Oncology Laboratory , East Lansing, Michigan, 48823
| | - Eugene J. Smith
- a U.S. Department of Agriculture, Agricultural Research Service , Avian Disease and Oncology Laboratory , East Lansing, Michigan, 48823
| |
Collapse
|
13
|
Smith E, Crittenden L. Endogenous viral genes in a slow‐feathering line of white leghorn chickens. Avian Pathol 2008; 15:395-406. [DOI: 10.1080/03079458608436302] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Conklin KF, Coffin JM, Robinson HL, Groudine M, Eisenman R. Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol 2003; 2:638-52. [PMID: 14582159 PMCID: PMC369840 DOI: 10.1128/mcb.2.6.638-652.1982] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous avian provirus ev-1 is widespread in white leghorn chickens. Although it has no major structural defects, ev-1 has not been associated with any phenotype and is ordinarily expressed at a very low level. In this report, we describe a chicken embryo (Number 1836) cell culture containing both ev-1 and ev-6 which spontaneously expressed the ev-1 provirus. This culture released a high level of noninfectious virions containing a full complement of virion structural (gag) proteins but devoid of reverse transcriptase activity or antigen. These virions contained 70S RNA closely related to the genome of Rous-associated virus type 0, but identifiable as the ev-1 genome by oligonucleotide mapping. A fraction of the RNA molecules in the 70S complex were unusual in that they were polyadenylated 100 to 200 nucleotides downstream of the usual polyadenylation site. Eight sibling embryo cultures did not share this unusual phenotype with 1836, indicating that it was not inherited. However, an identical phenotype was inducible in the sibling cultures by treatment with 5-azacytidine, an inhibitor of DNA methylation, and the induced expression was stable for more than 10 generations. Analysis of chromatin structure and DNA methylation of the ev-1 provirus in 1836 cells revealed the presence (in a fraction of the proviruses) of both DNase I hypersensitive sites in the long terminal repeats and in gag and a pattern of cleavage sites for methyl-sensitive restriction endonuclease not found in a nonexpressing sibling. These results lend strong support to the role of DNA methylation in the control of gene expression. Additionally, they explain the lack of phenotype associated with ev-1 as due to a combination of its low expression and defectiveness in pol and env.
Collapse
Affiliation(s)
- K F Conklin
- Department of Molecular Biology and Microbiology and Cancer Research Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
15
|
Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products. Mol Cell Biol 2003. [PMID: 14582159 DOI: 10.1128/mcb.2.6.638] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endogenous avian provirus ev-1 is widespread in white leghorn chickens. Although it has no major structural defects, ev-1 has not been associated with any phenotype and is ordinarily expressed at a very low level. In this report, we describe a chicken embryo (Number 1836) cell culture containing both ev-1 and ev-6 which spontaneously expressed the ev-1 provirus. This culture released a high level of noninfectious virions containing a full complement of virion structural (gag) proteins but devoid of reverse transcriptase activity or antigen. These virions contained 70S RNA closely related to the genome of Rous-associated virus type 0, but identifiable as the ev-1 genome by oligonucleotide mapping. A fraction of the RNA molecules in the 70S complex were unusual in that they were polyadenylated 100 to 200 nucleotides downstream of the usual polyadenylation site. Eight sibling embryo cultures did not share this unusual phenotype with 1836, indicating that it was not inherited. However, an identical phenotype was inducible in the sibling cultures by treatment with 5-azacytidine, an inhibitor of DNA methylation, and the induced expression was stable for more than 10 generations. Analysis of chromatin structure and DNA methylation of the ev-1 provirus in 1836 cells revealed the presence (in a fraction of the proviruses) of both DNase I hypersensitive sites in the long terminal repeats and in gag and a pattern of cleavage sites for methyl-sensitive restriction endonuclease not found in a nonexpressing sibling. These results lend strong support to the role of DNA methylation in the control of gene expression. Additionally, they explain the lack of phenotype associated with ev-1 as due to a combination of its low expression and defectiveness in pol and env.
Collapse
|
16
|
Bao KK, Skalka AM, Wong I. Presteady-state analysis of avian sarcoma virus integrase. II. Reverse-polarity substrates identify preferential processing of the U3-U5 pair. J Biol Chem 2002; 277:12099-108. [PMID: 11821408 DOI: 10.1074/jbc.m111314200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrase-catalyzed insertion of the retroviral genome into the host chromosome involves two reactions in vivo: 1) the binding and endonucleolytic removal of the terminal dinucleotides of the viral DNA termini and 2) the recombination of the ends with the host DNA. Kukolj and Skalka (Kukolj, G., and Skalka, A. M. (1995) Genes Dev. 9, 2556-2567) have previously shown that tethering of the termini enhances the endonucleolytic activities of integrase. We have used 5'-5' phosphoramidites to design reverse-polarity tethers that allowed us to examine the reactivity of two viral long terminal repeat-derived sequences when concurrently bound to integrase and, additionally, developed presteady-state assays to analyze the initial exponential phase of the reaction, which is a measure of the amount of productive nucleoprotein complexes formed during preincubation of integrase and DNA. Furthermore, the reverse-polarity tether circumvents the integrase-catalyzed splicing reaction (Bao, K., Skalka, A. M., and Wong, I. (2002) J. Biol. Chem. 277, 12089-12098) that obscures accurate analysis of the reactivities of synapsed DNA substrates. Consequently, we were able to establish a lower limit of 0.2 s(-1) for the rate constant of the processing reaction. The analysis showed the physiologically relevant U3/U5 pair of viral ends to be the preferred substrate for integrase with the U3/U3 combination favored over the U5/U5 pair.
Collapse
Affiliation(s)
- Kogan K Bao
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
17
|
Sacco MA, Flannery DM, Howes K, Venugopal K. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J Virol 2000; 74:1296-306. [PMID: 10627540 PMCID: PMC111464 DOI: 10.1128/jvi.74.3.1296-1306.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of novel endogenous retrovirus elements in the chicken genome, designated EAV-HP, with close sequence identity to the env gene of avian leukosis virus (ALV) subgroup J has been reported (L. M. Smith, A. A. Toye, K. Howes, N. Bumstead, L. N. Payne, and K. Venugopal, J. Gen. Virol. 80:261-268, 1999). To resolve the genome structure of these retroviral elements, we have determined the complete sequence of two proviral clones of EAV-HP from a line N chicken genomic DNA yeast artificial chromosome library and from a meat-type chicken line 21 lambda library. The EAV-HP sequences from the two lines were 98% identical and had a typical provirus structure. The two EAV-HP clones showed identical large deletions spanning part of the gag, the entire pol, and part of the env genes. The env region of the EAV-HP clones was 97% identical to the env sequence of HPRS-103, the prototype subgroup J ALV. The 5' region of EAV-HP comprising the R and U5 regions of the long terminal repeat (LTR), the untranslated leader, and the 5' end of the putative gag region were 97% identical to the avian retrotransposon sequence, ART-CH. The remaining gag sequence shared less than 60% identity with other ALV sequences. The U3 region of the LTR was distinct from those of other retroviruses but contained some of the conserved motifs required for functioning as a promoter. To examine the ability of this endogenous retroviral LTR to function as a transcriptional promoter, the EAV-HP and HPRS-103 LTR U3 regions were compared in a luciferase reporter gene assay. The low luciferase activity detected with the EAV-HP LTR U3 constructs, at levels close to those observed for a control vector lacking the promoter or enhancer elements, suggested that these elements function as a weak promoter, possibly accounting for their low expression levels in chicken embryos.
Collapse
Affiliation(s)
- M A Sacco
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
18
|
Kobayashi S, Yoshida K, Ohshima T, Esumi N, Paralkar VM, Wistow GJ, Kulkarni AB. DNA sequence motifs are associated with aberrant homologous recombination in the mouse macrophage migration inhibitory factor (Mif) locus. Gene 1998; 215:85-92. [PMID: 9666087 DOI: 10.1016/s0378-1119(98)00271-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Homologous recombination is a precise genetic event that can introduce specific alteration in the genome. A planned targeted disruption by homologous recombination of the macrophage migration inhibitory factor (Mif) locus in mouse embryonic stem (ES) cells yielded the targeted clones, some of which had genomic rearrangements inconsistent with the expected homologous recombination event. A detailed characterization of the recombination breakpoints in two of these clones revealed several sequence motifs with possible roles in recombination. These motifs included short regions of sequence identity that may promote DNA alignment, multiple 5'-AAGG/TTCC-3' tetrameres, topoisomerase I consensus sites, and AT-rich sequences that can promote DNA cleavage and recombination. A retrovirus-like intracisternal-A particle (IAP) family sequence was also identified upstream of the Mif gene, and the LTR of this IAP was involved in one of the recombinations. Identification and characterization of such sequence motifs will be valuable for the gene targeting experiments.
Collapse
Affiliation(s)
- S Kobayashi
- Gene Targeting Research, Core Facility, National Institute of Dental Research, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Benkel BF. Locus-specific diagnostic tests for endogenous avian leukosis-type viral loci in chickens. Poult Sci 1998; 77:1027-35. [PMID: 9657616 DOI: 10.1093/ps/77.7.1027] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genome of the chicken, Gallus gallus, contains endogenous proviral elements (ALVE elements or ev genes) that display a high degree of similarity to the Avian Leukosis class of retroviruses. The ALVE proviruses are known to modulate physiological processes of the host birds. Different ALVE elements retain variable portions of the complete, prototype viral genome, and each provirus resides in its own specific location within the host genome. Thus, each ALVE element has its own particular potential to modulate host physiology depending on the nature of its integration site, the completeness of the proviral genome, and the level of expression of the locus. It is important, therefore, to be able to establish the ALVE element profiles of chickens quickly and accurately, both in the laboratory and in a commercial setting. The current method of choice for simple, quick, and accurate typing is the polymerase chain reaction (PCR). This paper reviews the present status of PCR typing of ALVE proviruses and lists the assay protocols for 19 different elements. In addition, it compares the insertion sites of these elements in an effort to identify common motifs at ALVE integration sites.
Collapse
Affiliation(s)
- B F Benkel
- Agriculture and Agri-Food Canada, Centre for Food and Animal Research, Ottawa, Ontario.
| |
Collapse
|
20
|
Kukolj G, Skalka AM. Enhanced and coordinated processing of synapsed viral DNA ends by retroviral integrases in vitro. Genes Dev 1995; 9:2556-67. [PMID: 7590235 DOI: 10.1101/gad.9.20.2556] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have designed novel substrates to investigate the first step in retroviral integration: the site-specific processing of two nucleotides from the 3' ends of viral DNA. The substrates consist of short duplex oligodeoxynucleotides whose sequences match those of the U3 and U5 ends of viral DNA but are covalently synapsed across the termini by short, single-strand nucleotide linkers. We show here that the optimal separation between termini in a synapsed-end substrate for avian sarcoma/leukosis virus (ASV) IN is 2 nucleotides. This places the two conserved 5'-CA-3' processing sites 6 nucleotides apart, a separation equal to the staggered cut in target DNA produced by this enzyme during the subsequent joining reaction. Based on estimates of initial reaction rates, this synapsed-end substrate is processed by IN at > 10-fold higher efficiency than observed with an equivalent mixture of U3 and U5 single-end (uncoupled) substrates. Enhanced processing is maintained at low IN concentrations, suggesting that the synapsed-end substrate may facilitate enzyme multimerization. Enhanced processing by HIV-1 IN, which produces a 5-bp stagger during integration, was observed with a synapsed-end substrate in which the separation between processing sites was 5 nucleotides. These observations provide estimates of the distances between active sites in the multimeric IN-DNA complexes of ASV and HIV-1. Our results also show that processing of paired U3 and U5 ends need not be coupled temporally. Finally, we observed that substrates that paired a wild-type with a mutated terminus were cleaved poorly at both ends. Thus, in vitro processing of the synapsed-end substrates requires specific recognition of the sequences at both ends. These findings provide new insights into the mechanism of integrative recombination by retroviral integrases and, by extension, other prokaryotic and eukaryotic transposases that are related to the viral enzymes.
Collapse
Affiliation(s)
- G Kukolj
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
21
|
Ronfort C, Chebloune Y, Cosset FL, Faure C, Nigon VM, Verdier G. Structure and expression of endogenous retroviral sequences in the permanent LMH chicken cell line. Poult Sci 1995; 74:127-35. [PMID: 7899200 DOI: 10.3382/ps.0740127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
From DNA mapping data, four endogenous proviral loci have been observed in the chicken permanent cell line LMH. The locus corresponding to endogenous virus (ev) ev1 is present in duplicate whereas the locus corresponding to ev3 is present in one copy. The other loci are probably ev6 and a solitary long terminal repeat. A RNA Northern blot analysis revealed both ev3 and ev6 transcripts but no ev1 transcript was detected. Using avian leukosis virus (ALV)-based vectors, transcomplementing assays were performed. They demonstrate the correct expression and maturation of endogenous env proteins and the absence of production of functional gag and pol components, indicating that these cells are not competent for viral production.
Collapse
Affiliation(s)
- C Ronfort
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR106, Université Claude Bernard, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
22
|
Benkel BF, Smith EJ. Research note: a rapid method for the detection of the Rous-associated endogenous solitary long terminal repeat, ev15. Poult Sci 1993; 72:1601-5. [PMID: 8397393 DOI: 10.3382/ps.0721601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A rapid method has been developed for the detection of the solitary long terminal repeat ev15, a member of the avian leukosis virus (ALV) family of endogenous viral elements (ev genes) in chickens. Detection is accomplished by a polymerase chain reaction (PCR) assay that can be performed on purified genomic DNA samples or crude preparations of partially purified whole blood lysates. The test discriminates unambiguously between birds that are homozygous ev15-, homozygous ev15+, or heterozygous ev15-/ev15+. The incorporation of a modified touchdown amplification profile significantly improved the specificity of the PCR assay. Small-scale screening of birds from a variety of chicken breeds has revealed that ev15 is present in populations of both egg-strain birds and broilers.
Collapse
Affiliation(s)
- B F Benkel
- Agriculture Canada, Centre for Food and Animal Research, Ottawa, Ontario
| | | |
Collapse
|
23
|
Panganiban AT, Talbot KJ. Efficient insertion from an internal long terminal repeat (LTR)-LTR sequence on a reticuloendotheliosis virus vector is imprecise and cell specific. J Virol 1993; 67:1564-71. [PMID: 8382311 PMCID: PMC237527 DOI: 10.1128/jvi.67.3.1564-1571.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To examine the fidelity and efficiency of integration from a covalently closed long terminal repeat (LTR)-LTR sequence in vivo, we isolated individual spleen necrosis virus proviruses that arose following infection of chicken embryo fibroblasts (CEFs) and sequenced the provirus-cell DNA junctions. Some but not all CEF preparations allowed efficient insertion from the internal sequence. Moreover, in contrast to integration from the normal ends of the viral DNA, which occurs with precision with respect to the viral DNA, insertion from the internal sequence was not precise. In particular, there were short deletions of variable size from the viral DNA and these proviruses were not flanked by short direct repeats. Although this imprecise insertion can be efficient in CEFs, such integration is very inefficient in two other cell types (D17 and QT47) that support the replication of reticuloendotheliosis viruses. Thus, it is possible that there is a cell-specific factor(s) in CEFs required for efficient but imprecise insertion or, alternatively, D17 and QT47 cells contain a factor that abrogates integration from an internal LTR-LTR junction. Virus particles released from CEFs do not efficiently use the LTR-LTR junction following infection of D17 cells. Therefore, if there is a CEF-specific factor required for insertion, it does not appear to be transferred through particles.
Collapse
Affiliation(s)
- A T Panganiban
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | |
Collapse
|
24
|
Habel DE, Dohrer KL, Conklin KF. Functional and defective components of avian endogenous virus long terminal repeat enhancer sequences. J Virol 1993; 67:1545-54. [PMID: 8382309 PMCID: PMC237525 DOI: 10.1128/jvi.67.3.1545-1554.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oncogenic avian retroviruses, such as Rous sarcoma virus (RSV) and the avian leukosis viruses, contain a strong enhancer in the U3 portion of the proviral long terminal repeat (LTR). The LTRs of a second class of avian retroviruses, the endogenous viruses (ev) lack detectable enhancer activity. By creating ev-RSV hybrid LTRs, we previously demonstrated that, despite the lack of independent enhancer activity in the ev U3 region, ev LTRs contain sequences that are able to functionally replace essential enhancer domains from the RSV enhancer. A hypothesis proposed to explain these data was that ev LTRs contain a partial enhancer that includes sequences necessary but not sufficient for enhancer activity and that these sequences were complemented by RSV enhancer domains present in the original hybrid constructs to generate a functional enhancer. Studies described in this report were designed to define sequences from both the ev and RSV LTRs required to generate this composite enhancer. This was approached by generating additional ev-RSV hybrid LTRs that exchanged defined regions between ev and RSV and by directly testing the requirement for specific motifs by site-directed mutagenesis. Results obtained demonstrate that ev enhancer sequences are present in the same relative location as upstream enhancer sequences from RSV, with which they share limited sequence similarity. In addition, a 67-bp region from the internal portion of the RSV LTR that is required to complement ev enhancer sequences was identified. Finally, data showing that CArG motifs are essential for high-level activity, a finding that has not been previously demonstrated for retroviral LTRs, are presented.
Collapse
Affiliation(s)
- D E Habel
- Department of Cell and Developmental Biology, University of Minnesota, Minneapolis 55455
| | | | | |
Collapse
|
25
|
CRITTENDEN LYMANB, PROVENCHER LEONARD, SANTANGELO LISA, LEVIN ILAN, ABPLANALP HANS, BRILES RUTHW, BRILES WELWOOD, DODGSON JERRYB. Characterization of a Red Jungle Fowl by White Leghorn Backcross Reference Population for Molecular Mapping of the Chicken Genome. Poult Sci 1993. [DOI: 10.3382/ps.0720334] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Benkel BF, Mucha J, Gavora JS. A new diagnostic method for the detection of endogenous Rous-associated virus-type provirus in chickens. Poult Sci 1992; 71:1520-6. [PMID: 1329060 DOI: 10.3382/ps.0711520] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A quick and simple method has been developed to detect the presence or absence of the endogenous Rous-associated virus (RAV) element ev1 in chickens. The procedure consists of a one-tube multiplex polymerase chain reaction (PCR) involving three oligonucleotide primers that are specific for the upstream flanking region, the long terminal repeat (LTR), and the downstream flanking region of the proviral insert, respectively. The multiplex reaction allows for the unambiguous discrimination between ev1+/ev1+ homozygote, ev1-/ev1- homozygote, and ev1+/ev1- heterozygote birds. The method works best with purified genomic DNA as substrate, but can also be used with rapidly prepared, "crude" DNA samples. The combination of speed with the safety of a nonradioactive procedure, and the ability to perform large numbers of assays by a semi-automated procedure, make this method attractive for large-scale screening projects. The ev1 locus has been used as a model system to demonstrate the feasibility of the PCR diagnostic approach. However the same principle should be applicable to the analysis of other RAV-type ev loci, as well as endogenous elements belonging to other families of viruses as sequence information for the flanking regions of these inserts becomes available.
Collapse
Affiliation(s)
- B F Benkel
- Agriculture Canada, Centre for Food and Animal Research, Ottawa, Ontario
| | | | | |
Collapse
|
27
|
Zachow KR, Conklin KF. CArG, CCAAT, and CCAAT-like protein binding sites in avian retrovirus long terminal repeat enhancers. J Virol 1992; 66:1959-70. [PMID: 1312613 PMCID: PMC288984 DOI: 10.1128/jvi.66.4.1959-1970.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A strong enhancer element is located within the long terminal repeats (LTRs) of exogenous, oncogenic avian retroviruses, such as Rous sarcoma virus (RSV) and the avian leukosis viruses. The LTRs of a second class of avian retroviruses, the endogenous viruses (evs), lack detectable enhancer function, a property that correlates with major sequence differences between the LTRs of these two virus groups. Despite this lack of independent enhancer activity, we previously identified sequences in ev LTRs that were able to functionally replace essential enhancer domains from the RSV enhancer with which they share limited sequence similarity. To identify candidate enhancer domains in ev LTRs that are functionally equivalent to those in RSV LTRs, we analyzed and compared ev and RSV LTR-specific DNA-protein interactions. Using this approach, we identified two candidate enhancer domains and one deficiency in ev LTRs. One of the proposed ev enhancer domains was identified as a CArG box, a motif also found upstream of several muscle-specific genes, and as the core sequence of the c-fos serum response element. The RSV LTR contains two CArG motifs, one at a previously identified site and one identified in this report at the same relative location as the ev CArG motif. A second factor binding site that interacts with a heat-stable protein was also identified in ev LTRs and, contrary to previous suggestions, appears to be different from previously described exogenous virus enhancer binding proteins. Finally, a deficiency in factor binding was found within the one inverted CCAAT box in ev LTRs, affirming the importance of sequences that flank CCAAT motifs in factor binding and providing a candidate defect in the ev enhancer.
Collapse
Affiliation(s)
- K R Zachow
- Institute of Human Genetics, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|
28
|
Lamont SJ, Chen Y, Aarts HJ, van der Hulst-van Arkel MC, Beuving G, Leenstra FR. Endogenous viral genes in thirteen highly inbred chicken lines and in lines selected for immune response traits. Poult Sci 1992; 71:530-8. [PMID: 1561219 DOI: 10.3382/ps.0710530] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thirteen highly inbred lines of chickens of Leghorn, Spanish, and Egyptian Fayoumi origin, four partly inbred Leghorn lines selected for MHC alleles and immune response to GAT (Ir-GAT), and two replicated, noninbred Leghorn lines divergently selected for multiple immune response traits were subjected to molecular genotyping for endogenous viral (ev) gene sequences. In all highly inbred lines of Leghorn origin, ev1 alone or both ev1 and ev2 were observed. The Spanish and Fayoumi lines had three and five ev genes, respectively, most of which were not readily identifiable with standard Leghorn ev gene loci. The Leghorn lines selected for MHC and Ir-GAT had ev1 fixed in the population. Differences in ev3 and ev5 gene frequency were associated with Ir-GAT in the B1 haplotype, but not in the B19 haplotype. In the noninbred lines, which were divergently selected for multiple traits of immune responsiveness, ev6 and ev9 differed in frequency between lines, and both were in lower frequency in the lines selected for high immunoresponsiveness. These two ev genes are the only ones known in White Leghorns that have the gs-chf+ phenotype [expressing chicken helper factor (chf) but not expressing group-specific antigen (gs)].
Collapse
Affiliation(s)
- S J Lamont
- Department of Animal Science, Iowa State University, Ames 50011
| | | | | | | | | | | |
Collapse
|
29
|
Aromatase mRNA in the extragonadal tissues of chickens with the henny-feathering trait is derived from a distinctive promoter structure that contains a segment of a retroviral long terminal repeat. Functional organization of the Sebright, Leghorn, and Campine aromatase genes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54868-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Levin I, Smith EJ. Association of a chicken repetitive element with the endogenous virus-21 slow-feathering locus. Poult Sci 1991; 70:1948-56. [PMID: 1685775 DOI: 10.3382/ps.0701948] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The DNA sequences of an endogenous virus ev21-cell junction fragment (JFIL-1), and the pristine ev21 unoccupied region were analyzed. Comparisons of 3' proviral sequences of JFIL-1 with comparable regions of ev2, the prototype Rous-associated provirus (RAV-0), revealed minor single-base substitutions in the transmembrane domain of proviral envelope glycoprotein and the long terminal repeat of ev21. In the cell component of the JFIL-1, insertion of a 9-bp direct repeat and deletion of a guanine deoxynucleotide abolished HaeIII and BalI recognition sites that were present in the pristine region. Upstream from the insertion site, a large region was 71 and 75% homologous with dispersed chicken repetitive (CR1) elements associated with vitellogenin and very low density apolipoprotein II genes, respectively. Southern blot hybridizations and comparisons of CR1 motifs such as polypurine tracts, a tandem imperfect octamer, and 6-bp duplications indicated that this sex-linked, CR1 element (CR1ev21) may be the longest member of this family reported thus far.
Collapse
Affiliation(s)
- I Levin
- U.S. Department of Agriculture, Avian Disease and Oncology Laboratory, East Lansing, Michigan 48823
| | | |
Collapse
|
31
|
Aarts HJ, Van Der Hulst-Van Arkel MC, Beuving G, Leenstra FR. Variations in endogenous viral gene patterns in White Leghorn, medium heavy, White Plymouth Rock, and Cornish Chickens. Poult Sci 1991; 70:1281-6. [PMID: 1886838 DOI: 10.3382/ps.0701281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The endogenous viral (ev) gene patterns of White Leghorn (WL; 6 lines), medium heavy (MH; 4 lines), White Plymouth Rock (WPR; 8 lines), and Cornish types (2 lines) of commercial chickens were compared. Southern blot analysis of SstI-digested genomic DNA of 151 chickens revealed that the number of ev gene-containing fragments in a chicken from the MH, WPR, or Cornish type is about twice twice the number of that in WL chickens. Also, the number of hybridizing fragments of different size found within one line was twice as high in the broiler (on average 16.0 bands per line) and MH lines (20.5 bands per line) than in the WL lines (10.0 bands per line). In studies with subregion-specific probes, all ev fragments detected contained the env (3') part of the viral genome. Only eight ev fragments, found in 7 animals of 2 lines, lacked the gag (5') part of the viral genome. Studies with the ev-1-specific flanking probe, pGd111, revealed that ev-1 is commonly present in the DNA of the WL chickens, but not within the DNA of the WPR chickens. The results suggest that use of the standard nomenclature for the ev genes based on restriction fragment length is not feasible within the WPR, MH, and Cornish lines because of the complexity of the ev gene patterns found within these lines.
Collapse
Affiliation(s)
- H J Aarts
- Spelderholt Center for Poultry Research and Information Services, Beekbergen, The Netherlands
| | | | | | | |
Collapse
|
32
|
Abstract
An enhancer element is located in the U3 portion of exogenous avian retrovirus long terminal repeats (LTRs). A similar element has not been detected in the LTRs of ev-1 and ev-2, two avian endogenous viruses (evs) that normally are not expressed in vivo. Experiments were initiated to determine whether minor nucleotide differences in the U3 region of a previously untested ev that is ubiquitously expressed in vivo (ev-3) might confer enhancer function on the LTR of this provirus. This question was addressed by inserting U3 regions from ev-3 and from ev-1 and/or ev-2 both upstream of the herpesvirus thymidine kinase gene promoter and in place of the major enhancer domains of the Rous sarcoma virus LTR and determining their relative effects on transcription. U3 regions from all evs tested were unable to enhance transcription from the thymidine kinase gene promoter, indicating that nucleotide differences in the ev U3 regions do not affect their relative enhancer function and therefore are unlikely to play a role in their differential expression in vivo. Unexpectedly, however, all ev U3 regions were able to augment transcription in an orientation-independent manner in the ev-Rous sarcoma virus hybrid LTRs. Further experiments conducted to determine why this enhancer activity is not detectable in intact ev LTRs demonstrated that it was not due to removal of repressor sequences in the ev fragments used that might normally be present in intact ev LTRs. The lack of detectable enhancer activity in intact ev LTRs also was not explained by a defect in ev promoters that makes them unresponsive to enhancers in cis. These experiments therefore identify sequences that, although unable to function detectably as enhancers in their natural context, can function efficiently in a heterologous context. Data are discussed in terms of the modularity of enhancer elements and possible interactions between enhancers and promoter-specific sequences.
Collapse
Affiliation(s)
- K F Conklin
- Institute of Human Genetics, University of Minnesota, Minneapolis 55455
| |
Collapse
|
33
|
Katzman M, Katz RA, Skalka AM, Leis J. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 1989; 63:5319-27. [PMID: 2555556 PMCID: PMC251198 DOI: 10.1128/jvi.63.12.5319-5327.1989] [Citation(s) in RCA: 280] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The purified integration protein (IN) of avian myeloblastosis virus is shown to nick double-stranded oligodeoxynucleotide substrates that mimic the ends of the linear form of viral DNA. In the presence of Mg2+, nicks are created 2 nucleotides from the 3' OH ends of both the U5 plus strand and the U3 minus strand. Similar cleavage is observed in the presence of Mn2+ but only when the extent of the reaction is limited. Neither the complementary strands nor sequences representing the termini of human immunodeficiency virus type 1 DNA were cleaved at analogous positions. Analysis of a series of substrates containing U5 base substitutions has defined the sequence requirements for site-selective nicking; nucleotides near the cleavage site are most critical for activity. The minimum substrate size required to demonstrate significant activity corresponds to the nearly perfect 15-base terminal inverted repeat. This in vitro activity of IN thus produces viral DNA ends that are joined to host DNA in vivo and corresponds to an expected early step in the integrative recombination reaction. These results provide the first enzymatic support using purified retroviral proteins for a linear DNA precursor to the integrated provirus.
Collapse
Affiliation(s)
- M Katzman
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
34
|
Bodor J, Svoboda J. The LTR, v-src, LTR provirus generated in the mammalian genome by src mRNA reverse transcription and integration. J Virol 1989; 63:1015-8. [PMID: 2463374 PMCID: PMC247787 DOI: 10.1128/jvi.63.2.1015-1018.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Different types of altered proviruses of Rous sarcoma virus (RSV) have been detected in mammalian tumor cell lines. We cloned and sequenced one of these altered proviruses with the structure LTR, v-src, LTR. The presence of an intact viral splice junction, as well as duplications of the chromosomal sequence GCGGGG flanking the two 2-base-pair-deleted LTRs, demonstrated reverse transcription and normal retroviral integration of src mRNA in mammalian cells. In addition, a 1-nucleotide deletion 2 bases upstream from the AAUAAA polyadenylation signal is suspected to be responsible for the absence of a poly(A) track in the src mRNA present in virions of rescued viruses.
Collapse
Affiliation(s)
- J Bodor
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
35
|
Terry R, Soltis DA, Katzman M, Cobrinik D, Leis J, Skalka AM. Properties of avian sarcoma-leukosis virus pp32-related pol-endonucleases produced in Escherichia coli. J Virol 1988; 62:2358-65. [PMID: 2836618 PMCID: PMC253392 DOI: 10.1128/jvi.62.7.2358-2365.1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gag-pol precursor protein of the avian sarcoma-leukosis virus is processed into three known pol-encoded mature polypeptides; the 95- and 63-kilodalton (kDa) beta and alpha subunits, respectively, of reverse transcriptase and the 32-kDa pp32 protein. The pp32 protein possesses DNA endonuclease activity and is produced from the precursor by two proteolytic cleavage events, one of which removes 4.1 kDa of protein from the C terminus. A 36-kDa protein (p36pol) which retains this C-terminal segment is detectable in small quantities in virions. We have constructed Escherichia coli plasmid clones that express the C-terminal domains of pol corresponding to pp32 and p36. These proteins have been purified by column chromatographic methods to near homogeneity. No significant differences could be detected in the enzymatic properties of the bacterially produced p32pol and p36pol proteins. Both possess DNA endonuclease activity and, like the pp32 protein isolated from virions, can cleave near the junction of two tandem avian sarcoma-leukosis virus long terminal repeats in double-stranded supercoiled DNA substrates. In the presence of Mg2+, both p32pol and viral pp32 cleave either strand of DNA 2 nucleotides 5' to the junction.
Collapse
Affiliation(s)
- R Terry
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey 07110
| | | | | | | | | | | |
Collapse
|
36
|
Shillitoe EJ. Examination of herpes virus DNA sequences for patterns that resemble transposable elements. JOURNAL OF ORAL PATHOLOGY 1988; 17:21-5. [PMID: 2836576 DOI: 10.1111/j.1600-0714.1988.tb01499.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herpes viruses are associated with many types of oral tumors and can be tumorigenic in vitro. The mechanisms by which they transform cells remain unknown, but it has been suggested that they contain insertion sequences. Two algorithms were developed to search DNA sequences for the presence of patterns that characterize such elements using either selection or scoring techniques. When randomly shuffled herpes virus sequences were examined each algorithm detected many such patterns but the scoring algorithm found fewer than the selection algorithm. In the herpes virus sequences that are known to contain such patterns the computer techniques found many more than previously reported, indicating that visual inspection alone is not adequate. The frequency of these patterns suggest that although the transforming regions of herpes virus DNA could contain transposable elements experimental confirmation is necessary.
Collapse
Affiliation(s)
- E J Shillitoe
- Department of Microbiology, University of Texas Health Science Center at Houston, Dental Branch 77225
| |
Collapse
|
37
|
Cobrinik D, Katz R, Terry R, Skalka AM, Leis J. Avian sarcoma and leukosis virus pol-endonuclease recognition of the tandem long terminal repeat junction: minimum site required for cleavage is also required for viral growth. J Virol 1987; 61:1999-2008. [PMID: 3033327 PMCID: PMC254209 DOI: 10.1128/jvi.61.6.1999-2008.1987] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Integration of retroviral DNA is a site-specific reaction involving an endonuclease encoded by the viral pol gene (pol-endo). In vitro the pol-endo from avian sarcoma and leukosis viruses (ASLVs) cleaves both DNA strands near the U5-U3 junction of tandem long terminal repeats (LTR-LTR junction) in single-stranded and replicative form (RF)-I substrates. We have reported previously that the sequences that are required for cleavage of single-stranded substrates by the alpha beta form of the pol-endo differ for the plus and minus strands (G. Duyk, M. Longiaru, D. Cobrinik, R. Kowal, P. deHaseth, A. M. Skalka, and J. Leis, J. Virol. 56:589-599, 1985). This is not the case with RF-I substrates, in which a maximum of 22 base pairs of U5 and 8 base pairs of U3 were required for alpha beta pol-endo cleavage in each strand. Insertion of a palindromic octanucleotide (CATCGATG) at the LTR-LTR junction abolished cleavage in RF-I but not in single-stranded DNA substrates. Deletion of the four nucleotides (TTAA) at the junction prevented cleavage in the plus strand of RF-I DNA, but did not affect cleavage of single-stranded DNA. Furthermore, the alpha beta form of ASLV pol-endo did not recognize heterologous LTR-LTR junction sequences from the reticuloendotheliosis virus or Moloney murine leukemia virus in either substrate form, despite their sequence and structural similarities to the ASLV junction. These results support a role for a sequence-specific interaction between the ASLV pol-endo and the LTR-LTR junction domains that are required for cleavage. By using the infectious Rous sarcoma virus clone pATV8-K, we introduced a set of deletions into the U5 region that would be incorporated into the LTR-LTR junction on viral replication. In the unintegrated provirus, the deletions started 43 base pairs from the LTR-LTR junction and extended various lengths toward the junction. Results of transfection studies with these clones indicated that the U5 sequences that are required for virus production in vivo correspond to those that are required for cleavage of RF-I DNA in vitro.
Collapse
|
38
|
King SR, Horowitz JM, Risser R. Nucleotide conservation of endogenous ecotropic murine leukemia proviruses in inbred mice: implications for viral origin and dispersal. Virology 1987; 157:543-7. [PMID: 3029987 DOI: 10.1016/0042-6822(87)90298-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nucleotide sequence analysis of the ecotropic murine leukemia proviruses of AKR, BALB/c, and C57BL/6 mice indicated that these viral genomes differ from each other in less than 0.5% of their sequenced nucleotides, whereas they differ from the laboratory Moloney, Friend, or RadLV viruses or a partial ecotropic provirus found in wild mice by 8-22% of their sequenced nucleotides. The limited variation of endogenous ecotropic proviruses found in these common mouse strains indicates that few cycles of virus replication separated the introduction of the ecotropic endogenous retroviruses into the germlines of the progenitors of these now divergent mouse strains, and is consistent with the hypothesis that these common inbred strains were derived from a pool of very few mice, at least one of which was infected with an ecotropic murine leukemia virus. Ecotropic germline proviruses now found in common inbred mice most likely derive from germline reintegrations of the viral progeny of that initial single infection.
Collapse
MESH Headings
- Animals
- Base Sequence
- Genes, Viral
- Genetic Variation
- Leukemia Virus, Murine/genetics
- Mice
- Mice, Inbred AKR/genetics
- Mice, Inbred AKR/microbiology
- Mice, Inbred BALB C/genetics
- Mice, Inbred BALB C/microbiology
- Mice, Inbred C57BL/genetics
- Mice, Inbred C57BL/microbiology
- Mice, Inbred Strains/genetics
- Mice, Inbred Strains/microbiology
- Recombination, Genetic
Collapse
|
39
|
Abstract
Retroviruses integrated at unique locations in the host genome can be expressed at different levels. We have analyzed the preintegration sites of three transcriptionally competent avian endogenous proviruses (evs) to determine whether the various levels of provirus expression correlate with their location in active or inactive regions of chromatin. Our results show that in three of four cell types, the chromatin conformation (as defined by relative nuclease sensitivity) of virus preintegration sites correlates with the level of expression of the resident provirus in ev+ cells: two inactive proviruses (ev-1 and ev-2) reside in nuclease-resistant chromatin domains and one active provirus (ev-3) resides in a nuclease-sensitive domain. Nuclear runoff transcription assays reveal that the preintegration sites of the active and inactive viruses are not transcribed. However, in erythrocytes of 15-day-old chicken embryos (15d RBCs), the structure and activity of the ev-3 provirus is independent of the conformation of its preintegration site. In this cell type, the ev-3 preintegration site is organized in a nuclease-resistant conformation, while the ev-3 provirus is in a nuclease-sensitive conformation and is transcribed. In addition, the nuclease sensitivity of host sequences adjacent to ev-3 is altered in ev-3+ 15d RBCs relative to that found in 15d RBCs that lack ev-3. These data suggest that the relationship between preintegration site structure and retrovirus expression is more complex than previously described.
Collapse
|
40
|
Role of the avian retrovirus mRNA leader in expression: evidence for novel translational control. Mol Cell Biol 1987. [PMID: 3023842 DOI: 10.1128/mcb.6.2.372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Avian retroviral mRNAs contain a long 5' untranslated leader of approximately 380 nucleotides. The leader includes sequences required for viral replication and three AUG codons which precede the AUG codon used for translational initiation of the gag and env genes. We have used sensitive, quantitative assays of viral gene transcription and translation to analyze the role of this mRNA leader in viral gene expression. By substituting segments from related viruses, we had previously shown that the endogenous avian provirus ev-1 contained a defective leader segment (B. R. Cullen, A. M. Skalka, and G. Ju, Proc. Natl. Acad. Sci. USA 80:2946-2950, 1983). The sequence analysis presented here, followed by comparison with the nondefective ev-2 endogenous provirus segment, identified the critical changes at nucleotides 4 and 7 upstream of the initiator AUG. These differences do not alter the most conserved nucleotides within the consensus sequence which precedes eucaryotic initiation codons, but lie within a nine-nucleotide region that is otherwise highly conserved among avian retrovirus strains. Analysis of a series of deletion mutants indicated that other sequences within the leader are also required for efficient expression. Characterization of the altered transcripts demonstrated that the presence of the defective ev-1 segment or the deletion of a ca. 200-nucleotide leader segment did not affect the steady-state level or splicing efficiency of these mRNAs. Thus, we conclude that the reduced expression of these mRNAs is due to a translational deficiency. These results indicate that specific leader sequences, other than the previously identified consensus nucleotides which precede eucaryotic AUG initiator codons, can influence eucaryotic gene translation.
Collapse
|
41
|
Viral Sequences. Viruses 1987. [DOI: 10.1016/b978-0-12-512516-1.50005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
42
|
Vijaya S, Steffen DL, Robinson HL. Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol 1986; 60:683-92. [PMID: 3490582 PMCID: PMC288942 DOI: 10.1128/jvi.60.2.683-692.1986] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Seven cellular loci with acceptor sites for retroviral integrations have been mapped for the presence of DNase I-hypersensitive sites in chromatin. Integrations in three of these loci, chicken c-erbB, rat c-myc, and a rat locus, dsi-1, had been selected for in retrovirus-induced tumors. Of the remaining four, two, designated dsi-3 and dsi-4, harbored acceptor sites for apparently unselected integrations of Moloney murine leukemia virus in a Moloney murine leukemia virus-induced thymoma, and two, designated C and F, harbored unselected acceptor sites for Moloney murine leukemia virus integrations in a rat fibroblast cell line. Each acceptor site mapped to within 500 base pairs of a DNase I-hypersensitive site. In the analyses of the unselected integrations, six hypersensitive sites were observed in 39 kilobases of DNA. The four acceptor sites in this DNA were localized between 0.05 and 0.43 kilobases of a hypersensitive site. The probability of this close association occurring by chance was calculated to be extremely low. Hypersensitive sites were mapped in cells representing the lineage in which integration had occurred as well as in an unrelated lineage. In six of the seven acceptor loci hypersensitive sites could not be detected in the unrelated lineage. Our results indicate that retroviruses preferentially integrate close to DNase I-hypersensitive sites and that many of these sites are expressed in some but not all cells.
Collapse
|
43
|
Abstract
Retroviruses integrated at unique locations in the host genome can be expressed at different levels. We have analyzed the preintegration sites of three transcriptionally competent avian endogenous proviruses (evs) to determine whether the various levels of provirus expression correlate with their location in active or inactive regions of chromatin. Our results show that in three of four cell types, the chromatin conformation (as defined by relative nuclease sensitivity) of virus preintegration sites correlates with the level of expression of the resident provirus in ev+ cells: two inactive proviruses (ev-1 and ev-2) reside in nuclease-resistant chromatin domains and one active provirus (ev-3) resides in a nuclease-sensitive domain. Nuclear runoff transcription assays reveal that the preintegration sites of the active and inactive viruses are not transcribed. However, in erythrocytes of 15-day-old chicken embryos (15d RBCs), the structure and activity of the ev-3 provirus is independent of the conformation of its preintegration site. In this cell type, the ev-3 preintegration site is organized in a nuclease-resistant conformation, while the ev-3 provirus is in a nuclease-sensitive conformation and is transcribed. In addition, the nuclease sensitivity of host sequences adjacent to ev-3 is altered in ev-3+ 15d RBCs relative to that found in 15d RBCs that lack ev-3. These data suggest that the relationship between preintegration site structure and retrovirus expression is more complex than previously described.
Collapse
|
44
|
Hackett PB, Petersen RB, Hensel CH, Albericio F, Gunderson SI, Palmenberg AC, Barany G. Synthesis in vitro of a seven amino acid peptide encoded in the leader RNA of Rous sarcoma virus. J Mol Biol 1986; 190:45-57. [PMID: 3023636 DOI: 10.1016/0022-2836(86)90074-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sequences of avian retroviral RNAs suggest that short open reading frames in the putatively untranslated leader sequences might direct the synthesis of small peptides. Previous analyses indicate that translation of Rous sarcoma virus (RSV) RNA in vitro faithfully reflects translation of the viral RNA in the chick cell. Accordingly, we sought to determine if the heptapeptide LP1, encoded in the open reading frame closest to the 5' end of RSV RNA, could be synthesized in vitro since this would strongly suggest that it might also be synthesized in vivo. Here we confirm that RSV RNA directs the synthesis of LP1 in rabbit reticulocyte lysates. LP1 is rapidly degraded in the lysate by an aminopeptidase activity. On the basis of the following observations, we propose that the open reading frame encoding LP1 plays a role in the life cycle of avian retroviruses. The LP1 open reading frame is ubiquitous with respect to position and length in 12 strains of avian retrovirus. In the amino acid sequences of the 12 strains, only three of the seven residues are invariant. On the basis of the conservation of the -3 and +4 nucleotides flanking the AUG codon, the strengths of initiation for translation of LP1 are approximately the same in the different viruses. The LP1 open reading frame is positioned in front of sites on retrovirus RNA that are required for initiation of cDNA synthesis and for packaging of the RNA into mature virus.
Collapse
|
45
|
Jankowski JM, States JC, Dixon GH. Evidence of sequences resembling avian retrovirus long terminal repeats flanking the trout protamine gene. J Mol Evol 1986; 23:1-10. [PMID: 3009833 DOI: 10.1007/bf02100993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Additional TATA boxes are present in the flanking regions of trout protamine genes. Their activity as promoters was assayed using an in vitro transcription system. These additional TATA boxes, together with polyadenylation signals that include the consensus AATAAA and CACTG sequences very close to the promoters, suggest that these sequences may be closely related to retroviral long terminal repeat (LTR) sequences. Other features of retroviral LTRs that are also present are short inverted repeats. The LTR-like sequences flanking the trout protamine gene show significant homology to the avian sarcoma virus LTR over a 40-bp region. The trout protamine gene falls into the relatively rare intronless class of eukaryotic genes. This suggests that the gene could have been derived from a processed gene introduced into the genome by reverse transcription of a mature mRNA. The protamine-mRNA-coding region is flanked by AACA... TGTT sequences, which might represent vestigial traces of past recombination events and whose presence supports the notion that the protamine gene sequence was of foreign origin. Recent attempts in this laboratory to transfer the protamine gene into mouse cells have resulted in a high frequency of deletions similar to those observed with constructs in which a retrovirus was used as a vector to transfect foreign DNA with promoters. The distribution of protamine genes in the animal kingdom is very sporadic, which suggests that protamine genes appeared relatively late in evolution. The nonuniform occurrence of the gene among lower vertebrates may have been the result of its horizontal transmission only to certain species, possibly by infection with retroviruses that acquired it from a different species.
Collapse
|
46
|
Katz RA, Cullen BR, Malavarca R, Skalka AM. Role of the avian retrovirus mRNA leader in expression: evidence for novel translational control. Mol Cell Biol 1986; 6:372-9. [PMID: 3023842 PMCID: PMC367526 DOI: 10.1128/mcb.6.2.372-379.1986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Avian retroviral mRNAs contain a long 5' untranslated leader of approximately 380 nucleotides. The leader includes sequences required for viral replication and three AUG codons which precede the AUG codon used for translational initiation of the gag and env genes. We have used sensitive, quantitative assays of viral gene transcription and translation to analyze the role of this mRNA leader in viral gene expression. By substituting segments from related viruses, we had previously shown that the endogenous avian provirus ev-1 contained a defective leader segment (B. R. Cullen, A. M. Skalka, and G. Ju, Proc. Natl. Acad. Sci. USA 80:2946-2950, 1983). The sequence analysis presented here, followed by comparison with the nondefective ev-2 endogenous provirus segment, identified the critical changes at nucleotides 4 and 7 upstream of the initiator AUG. These differences do not alter the most conserved nucleotides within the consensus sequence which precedes eucaryotic initiation codons, but lie within a nine-nucleotide region that is otherwise highly conserved among avian retrovirus strains. Analysis of a series of deletion mutants indicated that other sequences within the leader are also required for efficient expression. Characterization of the altered transcripts demonstrated that the presence of the defective ev-1 segment or the deletion of a ca. 200-nucleotide leader segment did not affect the steady-state level or splicing efficiency of these mRNAs. Thus, we conclude that the reduced expression of these mRNAs is due to a translational deficiency. These results indicate that specific leader sequences, other than the previously identified consensus nucleotides which precede eucaryotic AUG initiator codons, can influence eucaryotic gene translation.
Collapse
|
47
|
Abstract
We have previously described the construction of a mutant of Moloney murine leukemia virus bearing a deletion at the normal site of integration of the viral DNA. We have now recovered a revertant of the virus after abortive infection of mouse cells and have determined the structure of the new virus. The revertant is a recombinant virus containing a 500-base-pair patch of new sequences derived from the mouse genome. The integration site was perfectly restored to the wild-type sequence, although the patch of DNA was overall only 80% homologous to Moloney murine leukemia virus. Surprisingly, the tRNA primer binding site was no longer homologous to the usual proline tRNAs, but was a perfect match for glutamine tRNA. This result suggests that the Moloney murine leukemia virus reverse transcriptase is not specific to one tRNA, but can utilize different tRNAs to prime the synthesis of viral DNA. Comparisons with published reports allowed the identification of sequences that are 94% homologous to the patch sequence, present in one of the endogenous retroviral sequences of the mouse. No replication-competent members of this family, utilizing the glutamine tRNA primer, have been previously isolated.
Collapse
|
48
|
Groudine M, Linial M. Chromatin structure and gene expression in germ line and somatic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 205:205-43. [PMID: 3538815 DOI: 10.1007/978-1-4684-5209-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
|
50
|
Abstract
Murine leukemia viruses (MuLVs) are retroviruses which induce a broad spectrum of hematopoietic malignancies. In contrast to the acutely transforming retroviruses, MuLVs do not contain transduced cellular genes, or oncogenes. Nonetheless, MuLVs can cause leukemias quickly (4 to 6 weeks) and efficiently (up to 100% incidence) in susceptible strains of mice. The molecular basis of MuLV-induced leukemia is not clear. However, the contribution of individual viral genes to leukemogenesis can be assayed by creating novel viruses in vitro using recombinant DNA techniques. These genetically engineered viruses are tested in vivo for their ability to cause leukemia. Leukemogenic MuLVs possess genetic sequences which are not found in nonleukemogenic viruses. These sequences control the histologic type, incidence, and latency of disease induced by individual MuL Vs.
Collapse
|