1
|
Abuladze M, Sokhadze V, Namchevadze E, Asatiani N, Kartvelishvili T, Sapojnikova N. Assessment of Arthrobacter oxydans Subcellular Structural Stability in Response to Metal Action using Differential Scanning Calorimetry. Cell Biochem Biophys 2025:10.1007/s12013-025-01688-4. [PMID: 39987545 DOI: 10.1007/s12013-025-01688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Despite significant efforts in recent years to clean up the environment, pollution remains a major issue. Bioremediation is the most effective and ecologically friendly way to clean and regenerate chemically polluted environments. Microorganisms' biostabilization of soluble and insoluble forms of hazardous contaminants can be employed to remediate areas contaminated with heavy metals. Understanding how contaminants affect and disrupt intracellular structures and functions is a prerequisite to using microorganisms. The study focuses on the exposure of soil bacteria A. oxydans to Cu (II) and Cs (I). The stability of subcellular structures and intracellular processes leading to cell death or adaptation were assessed using the Differential Scanning Calorimetry (DSC) method. The DSC could lay out in sequence the complex series of denaturation events that take place when cells are heated. The DSC analysis provided the possibility to verify the character of the studied metal action at the whole bacteria cell level at the early stage of metal action.
Collapse
Affiliation(s)
- Marina Abuladze
- Ivane Javakhishvili Tbilisi State University, Elevter Andronikashvili Institute of Physics, 6 Tamarashvili Str., 0162, Tbilisi, Georgia
| | - Victor Sokhadze
- Ivane Javakhishvili Tbilisi State University, Elevter Andronikashvili Institute of Physics, 6 Tamarashvili Str., 0162, Tbilisi, Georgia
| | - Emma Namchevadze
- Ivane Javakhishvili Tbilisi State University, Elevter Andronikashvili Institute of Physics, 6 Tamarashvili Str., 0162, Tbilisi, Georgia
| | - Nino Asatiani
- Ivane Javakhishvili Tbilisi State University, Elevter Andronikashvili Institute of Physics, 6 Tamarashvili Str., 0162, Tbilisi, Georgia
| | - Tamar Kartvelishvili
- Ivane Javakhishvili Tbilisi State University, Elevter Andronikashvili Institute of Physics, 6 Tamarashvili Str., 0162, Tbilisi, Georgia
| | - Nelly Sapojnikova
- Ivane Javakhishvili Tbilisi State University, Elevter Andronikashvili Institute of Physics, 6 Tamarashvili Str., 0162, Tbilisi, Georgia.
| |
Collapse
|
2
|
Peña A, Sánchez NS, Ramiro-Cortés Y, Calahorra M. Effects of medium pH on the yeast plasma membrane potential. Arch Biochem Biophys 2024; 760:110131. [PMID: 39173699 DOI: 10.1016/j.abb.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The effects of different pH incubation values and K+ on yeast plasma membrane potential (PMP) were studied both by the fluorescence changes and the accumulation of thioflavin T (ThT), a method that has been shown most adequate for both procedures. By the changes in fluorescence of ThT, the qualitative observation of PMP at the 3 evaluated pHs indicated that cells at pH 4.0 maintain a PMP lower, but close to the observed at pH 6.0 and 7.0. By measuring the accumulation of ThT and applying the Nernst equation on the different concentrations in and out, the values of PMP could also be estimated at the different pHs, resulting in values in mV, in agreement with our observations by following the fluorescence. Yeast cells at their native niches, or during fermentations must cope with low pHs, so the importance to maintain a robust PMP to survive. The contribution of bicarbonate, derived from the fermentation to the establishment of the PMP is also described. The experiments showed once more the efficacy of the methods used with this dye.
Collapse
Affiliation(s)
- Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, Mexico.
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, Mexico.
| | - Yazmín Ramiro-Cortés
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, 04510, México City, Mexico
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City, Mexico
| |
Collapse
|
3
|
Feng J, Tian L, Wang W, Yang Y, Li Q, Liu L, Bo H, He C. Effect of RSN1 gene knockout on the adsorption of strontium ions by irradiated Saccharomyces cerevisiae. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 273:107396. [PMID: 38325251 DOI: 10.1016/j.jenvrad.2024.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The irradiated Saccharomyces cerevisiae (Y-7) has good biosorption ability for strontium ions. To investigate the mechanism of strontium ion bioaccumulation in Y-7, we employed CRISPR/Cas9 gene editing technology to engineer Saccharomyces cerevisiae Y-7 and knock out the RSN1 gene, successfully constructing a RSN1 gene knockout strain (Y-7-rsn1Δ). When tested for strontium ion adsorption, the Y-7-rsn1Δ strain exhibited decreased capacity for adsorbing strontium ions and increased resistance to strontium ions. The results showed that RSN1 is involved in the transport of Sr2+, and observed significant decreases in intracellular Ca2+ of Y-7-rsn1Δ, indicating a strong correlation between bioaccumulation of Sr2+ and Ca2+. This demonstrated that the adsorption of strontium ions by Y-7 is regulated by the RSN1 gene. The knockout of the RSN1 gene resulted in the shift of the peak positions of carboxyl, amino, amide, hydroxyl, and phosphate groups on the cell surface.
Collapse
Affiliation(s)
- Jundong Feng
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China.
| | - Liuxin Tian
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| | - Weitai Wang
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| | - Yingqing Yang
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| | - Qian Li
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| | - Liang Liu
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| | - Hongyu Bo
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| | - Chengyu He
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, PR China
| |
Collapse
|
4
|
Pagnucco G, Overfield D, Chamlee Y, Shuler C, Kassem A, Opara S, Najaf H, Abbas L, Coutinho O, Fortuna A, Sulaiman F, Farinas J, Schittenhelm R, Catalfano B, Li X, Tiquia-Arashiro SM. Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed. Front Microbiol 2023; 14:1278886. [PMID: 37942073 PMCID: PMC10630031 DOI: 10.3389/fmicb.2023.1278886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Rapid industrialization and urbanization have led to widespread metal contamination in aquatic ecosystems. This study explores the metal tolerance and biosorption characteristics of four bacterial strains (Serratia sp. L2, Raoultella sp. L30, Klebsiella sp. R3, and Klebsiella sp. R19) isolated from Saint Clair River sediments. These strains effectively removed various metal cations (As3+, Pb2+, Cu2+, Mn2+, Zn2+, Cd2+, Cr6+, and Ni2+) in single and multi-metal solutions. Minimum inhibitory concentration (MIC) assays revealed strain-specific variations in metal tolerance, with L2 and L30 exhibiting higher tolerance. Surprisingly, R3 and R19, despite lower tolerance, demonstrated superior metal removal efficiency, challenging the notion that tolerance dictates removal efficacy. In single-metal solutions, R3 and R19 excelled at extracting various metal ions, while competitive binding in multi-metal solutions hindered removal. However, R3 and R19 retained higher removal efficiencies, possibly due to enhanced flocculation activities facilitating metal-ion contact. Comprehensive Fourier-transform infrared (FTIR) analysis highlighted the strains' metal-binding capabilities, with novel peaks emerging after metal exposure, indicative of extracellular polymeric substance (EPS) production. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed metal accumulation on bacterial surfaces and within cytoplasmic regions and revealed morphological changes and metal adsorption patterns, emphasizing the strains' ability to adapt to metal stress. Scanning transmission microscopy (STEM) and EDX analysis uncovered metal accumulation within bacterial cells, underscoring the complexity of microbial-metal interactions. This study also confirms that the simultaneous presence of an aqueous solution may cause a mutual inhibition in the adsorption of each metal to the EPS resulting in reduced metal uptake, which emphasizes the need to select specific bacterial strains for a given metal-containing effluent. The differences in metal distribution patterns between Klebsiella sp. R19 and Raoultella sp. L30 suggest species-specific metal accumulation strategies driven by environmental conditions and metal availability. The heavy metal-removing capabilities and the ability to grow over a wide range of metal concentrations of the strains used in this study may offer an advantage to employ these organisms for metal remediation in bioreactors or in situ.
Collapse
|
5
|
Peña A, Sánchez NS, Padilla-Garfias F, Ramiro-Cortés Y, Araiza-Villanueva M, Calahorra M. The Use of Thioflavin T for the Estimation and Measurement of the Plasma Membrane Electric Potential Difference in Different Yeast Strains. J Fungi (Basel) 2023; 9:948. [PMID: 37755056 PMCID: PMC10532974 DOI: 10.3390/jof9090948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
The use of the cationic, dye thioflavin T (ThT), to estimate the electric plasma membrane potential difference (PMP) via the fluorescence changes and to obtain its actual values from the accumulation of the dye, considering important correction factors by its binding to the internal components of the cell, was described previously for baker's yeast. However, it was considered important to explore whether the method developed could be applied to other yeast strains. Alternative ways to estimate the PMP by using flow cytometry and a multi-well plate reader are also presented here. The methods were tested with other strains of Saccharomyces cerevisiae (W303-1A and FY833), as well as with non-conventional yeasts: Debaryomyces hansenii, Candida albicans, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa. Results of the estimation of the PMP via the fluorescence changes under different conditions were adequate with all strains. Consistent results were also obtained with several mutants of the main monovalent transporters, validating ThT as a monitor for PMP estimation.
Collapse
Affiliation(s)
- Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Francisco Padilla-Garfias
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Yazmín Ramiro-Cortés
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Minerva Araiza-Villanueva
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| |
Collapse
|
6
|
Banerjee J, Bar N, Basu RK, Das SK. Biosorption of Ni(II) by Ni(II) resistant S. cerevisiae AJ208: potential study with nutritive elements and GA modeling. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2175692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
| | - Nirjhar Bar
- Department of Chemical Engineering, Kolkata, West Bengal, India
- St. James’ School, Kolkata, West Bengal, India
| | | | - Sudip Kumar Das
- Department of Chemical Engineering, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Chemical Methods for Microbiological Control of Winemaking: An Overview of Current and Future Applications. BEVERAGES 2022. [DOI: 10.3390/beverages8030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preservation technologies for winemaking have relied mainly on the addition of sulfur dioxide (SO2), in consequence of the large spectrum of action of this compound, linked to the control of undesirable microorganisms and the prevention of oxidative phenomena. However, its potential negative effects on consumer health have addressed the interest of the international research on alternative treatments to substitute or minimize the SO2 content in grape must and wine. This review is aimed at analyzing chemical methods, both traditional and innovative, useful for the microbiological stabilization of wine. After a preliminary description of the antimicrobial and technological properties of SO2, the additive traditionally used during wine production, the effects of the addition (in must and wine) of other compounds officially permitted in winemaking, such as sorbic acid, dimethyl dicarbonate (DMDC), lysozyme and chitosan, are discussed and evaluated. Furthermore, other substances showing antimicrobial properties, for which the use for wine microbiological stabilization is not yet permitted in EU, are investigated. Even if these treatments exhibit a good efficacy, a single compound able to completely replace SO2 is not currently available, but a combination of different procedures might be useful to reduce the sulfite content in wine. Among the strategies proposed, particular interest is directed towards the use of insect-based chitosan as a reliable alternative to SO2, mainly due to its low environmental impact. The production of wines containing low sulfite levels by using pro-environmental practices can meet both the consumers’ expectations, who are even more interested in the healthy traits of foods, and wine-producers’ needs, who are interested in the use of sustainable practices to promote the profile of their brand.
Collapse
|
8
|
Wagner M, Blum D, Raschka SL, Nentwig LM, Gertzen CGW, Chen M, Gatsogiannis C, Harris A, Smits SHJ, Wagner R, Schmitt L. A New Twist in ABC Transporter Mediated Multidrug Resistance - Pdr5 is a Drug/proton Co-transporter. J Mol Biol 2022; 434:167669. [PMID: 35671830 DOI: 10.1016/j.jmb.2022.167669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
The two major efflux pump systems that are involved in multidrug resistance (MDR) are (i) ATP binding cassette (ABC) transporters and (ii) secondary transporters. While the former use binding and hydrolysis of ATP to facilitate export of cytotoxic compounds, the latter utilize electrochemical gradients to expel their substrates. Pdr5 from Saccharomyces cerevisiae is a prominent member of eukaryotic ATP binding cassette (ABC) transporters that are involved in multidrug resistance (MDR) and used as a frequently studied model system. Although investigated for decades, the underlying molecular mechanisms of drug transport and substrate specificity remain elusive. Here, we provide electrophysiological data on the reconstituted Pdr5 demonstrating that this MDR efflux pump does not only actively translocate its substrates across the lipid bilayer, but at the same time generates a proton motif force in the presence of Mg2+-ATP and substrates by acting as a proton/drug co-transporter. Importantly, a strictly substrate dependent co-transport of protons was also observed in in vitro transport studies using Pdr5-enriched plasma membranes. We conclude from these results that the mechanism of MDR conferred by Pdr5 and likely other transporters is more complex than the sole extrusion of cytotoxic compounds and involves secondary coupled processes suitable to increase the effectiveness.
Collapse
Affiliation(s)
- Manuel Wagner
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Daniel Blum
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Stefanie L Raschka
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lea-Marie Nentwig
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christoph G W Gertzen
- Center for Structural Studies Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Minghao Chen
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany; Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany; Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrzej Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Center for Structural Studies Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany.
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Camenzind T, Lehmberg J, Weimershaus P, Álvarez-Garrido L, Andrade Linares DR, Súarez JP, Rillig MC. Do fungi need salt licks? No evidence for fungal contribution to the Sodium Ecosystem Respiration Hypothesis based on lab and field experiments in Southern Ecuador. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Mochaba F, O'Connor-Cox ESC, Axcell BC. Metal Ion Concentration and Release by a Brewing Yeast: Characterization and Implications. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-54-0155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- F. Mochaba
- Brewing Research Department, The South African Breweries Beer Division, P. O. Box 782178, Sandton 2146, South Africa;
| | - E. S. C. O'Connor-Cox
- Brewing Research Department, The South African Breweries Beer Division, P. O. Box 782178, Sandton 2146, South Africa;
| | - B. C. Axcell
- Brewing Research Department, The South African Breweries Beer Division, P. O. Box 782178, Sandton 2146, South Africa;
| |
Collapse
|
11
|
A novel method for assessment of local pH in periplasmic space and of cell surface potential in yeast. J Bioenerg Biomembr 2017; 49:273-279. [DOI: 10.1007/s10863-017-9710-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
12
|
Swer PB, Joshi SR, Acharya C. Cesium and strontium tolerant Arthrobacter sp. strain KMSZP6 isolated from a pristine uranium ore deposit. AMB Express 2016; 6:69. [PMID: 27620733 PMCID: PMC5020004 DOI: 10.1186/s13568-016-0247-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
Arthrobacter sp. KMSZP6 isolated from a pristine uranium ore deposit at Domiasiat located in North-East India exhibited noteworthy tolerance for cesium (Cs) and strontium (Sr). The strain displayed a high minimum inhibitory concentration (MIC) of 400 mM for CsCl and for SrCl2. Flow cytometric analysis employing membrane integrity indicators like propidium iodide (PI) and thiazole orange (TO) indicated a greater sensitivity of Arthrobacter cells to cesium than to strontium. On being challenged with 75 mM of Cs, the cells sequestered 9612 mg Cs g(-1) dry weight of cells in 12 h. On being challenged with 75 mM of Sr, the cells sequestered 9989 mg Sr g(-1) dry weight of cells in 18 h. Heat killed cells exhibited limited Cs and Sr binding as compared to live cells highlighting the importance of cell viability for optimal binding. The association of the metals with Arthrobacter sp. KMSZP6 was further substantiated by Field Emission-Scanning Electron Microscopy (FE-SEM) coupled with Energy dispersive X-ray (EDX) spectroscopy. This organism tolerated up to 1 kGy (60)Co-gamma rays without loss of survival. The present report highlights the superior tolerance and binding capacity of the KMSZP6 strain for cesium and strontium over other earlier reported strains and reveals its potential for bioremediation of nuclear waste.
Collapse
|
13
|
Hernández-Ruiz E, Alvarado-Flores J, Rubio-Franchini I, Ventura-Juárez J, Rico-Martínez R. Adverse effects and bioconcentration of chromium in two freshwater rotifer species. CHEMOSPHERE 2016; 158:107-115. [PMID: 27258901 DOI: 10.1016/j.chemosphere.2016.05.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/11/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
Bioaccumulation of trivalent (CrIII) and hexavalent chromium (CrVI), and its adverse effects were studied in two rotifer species: Brachionus calyciflorus (two different strains), and Lecane quadridentata. Median Lethal Concentration (LC50) at 24 h of both species showed that CrVI is highly toxic: LC50 ranges from 4.7 × 10(-5) to 4 × 10(-6) mg L(-1)), compared with CrIII: LC50 ranges from 0.64 to 1.279 mg L(-1). Using the LC50 as an exposure concentration, and using atomic absorption, the bioconcentration factor (BCF) was obtained and BCFs of rotifers exposed to CrIII are four orders of magnitude lower than BCFs of rotifers exposed to CrVI. The effect of Cr on the elemental composition of the two species of rotifers in their structures by X-ray microanalysis by energy dispersion showed that Cr is found in intoxicated rotifers, but not in control rotifers. The basal immunoreactivity to metallothioneins is greater in B. calyciflorus than L. quadridentata. The immunoreactivity to metallothioneins decreases in B. calyciflorus when is exposed to CrIII, in contrast in L. quadridentata the immunoreactivity to metallothioneins increase when is exposed to CrIII, and the immunoreactivity to CrVI in L. quadridentata decrease. A mechanism is proposed in which the harder lorica of L. quadridentata acts as a barrier and accumulator of CrVI, and allows for attenuating responses like metallothionein production in L. quadridentata. Instead, in B. calyciflorus the lack of a harder lorica allows for deeper penetration of CrVI, and no time to produce attenuating measures.
Collapse
Affiliation(s)
- Esmeralda Hernández-Ruiz
- Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Química. Avenida Universidad 940, Ciudad Universitaria, CP 20131, Aguascalientes, Ags., Mexico
| | - Jesús Alvarado-Flores
- Catedrático CONACYT/Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán A.C., Cancún, Quintana Roo, Mexico
| | - Isidoro Rubio-Franchini
- Instituto de Salud del Estado de Aguascalientes. Laboratorio Estatal de Salud Pública. Aguascalientes, Ags., Mexico
| | - Javier Ventura-Juárez
- Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Morfología, Avenida Universidad 940, Aguascalientes, Ags., CP 20131, Mexico
| | - Roberto Rico-Martínez
- Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Departamento de Química. Avenida Universidad 940, Ciudad Universitaria, CP 20131, Aguascalientes, Ags., Mexico.
| |
Collapse
|
14
|
O'Connor CJ, Singh RM, Walde P, Spedding DJ. The Effect of pH on the Uptake of 35S(-II) by Wine Yeasts. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391158600100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rates of uptake of 35S from S(-II) solutions by wine yeasts, Saccharomyces cerevisiae strains R92 and R104 and Saccharomyces chevalieri strain R93, were measured at a variety of solution pH values between pH 3.1 and pH 7.8. A pH effect was observed, the rates of uptake being higher at the lower pH values, but this effect was not related entirely to changes in the H2S or HS- concentration. The transport process of S(-II) appeared to be due to simple diffusion of H2S(aq) and carrier mediated transport of HS-(aq). The kinetic constants Km and V max were calculated for the carrier component of the mechanism at pH 7.2 and the permeability coefficient P was calculated for the diffusion of H2S(aq) at pH 3.1 and 7.2. By using these parameters, it was possible to calculate a theoretical ini tial rate of uptake over a range of extracellular S(-II) concentrations (0 to 50 mmoll-1) at pH 3.1 and pH 7.2. The experimentally determined initial rates were found to agree, within the experimental error, with the theoretical values. The initial rate of uptake of S(-II) and the values of Km for yeast strain R104 (a low sulfide producer) were found to be less than those for both strain R92 (a normal sulfide producer) and for strain R93 (a high sulfide producer).
Collapse
Affiliation(s)
- Charmian J. O'Connor
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Ragina M.D. Singh
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Peter Walde
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - D. John Spedding
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| |
Collapse
|
15
|
O'Connor CJ, Singh RM, Walde P, Spedding DJ. Effect of Temperature on the Uptake of 35S(-II) by Wine Yeasts. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391158600100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rates of uptake of 35S from S(-II) solutions by wine yeasts, Saccharomyces cerevisiae strains R92 and R104 and Saccharomyces chevalieri strain R93, were measured at pH 3.1 and 7.2 over the temperature range 5 ° C to 80 ° C and at 0.3 (or 0.5) mM and 5.0 mM S(-II) concentrations. Three critical temperatures were observed; the first, at ca 20 ° C is attributed to a phase change of the yeast cell membrane from a crystalline to a liquid crystalline state; the second, at the temperature of maximum activity at 30 ° C to 40 ° C is thought to arise from a switch from a metastable to a thermodynamically more stable state which is less effective in supporting the transport functions; and the third, at tempera tures greater than 50 ° C correlates well with the thermal viability of the yeasts. Variation of the activation energy, Ea, with extracellular S(-II) concen tration was observed and Ea for the uptake of S(-II) from a solution of 5 mM S(-II) at pH 7.2 was higher than at pH 3.1. The values of Ea support the postulate of a simple diffusion of H2S(aq) and carrier mediated transport of HS-(aq) for the transport of S(-II).
Collapse
Affiliation(s)
- Charmian J. O'Connor
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Ragina M.D. Singh
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - Peter Walde
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| | - D. John Spedding
- Department of Chemistry University of Auckland Private Bag Auckland, New Zealand
| |
Collapse
|
16
|
Mesquita VA, Machado MD, Silva CF, Soares EV. Influence of the metabolic state on the tolerance of Pichia kudriavzevii to heavy metals. J Basic Microbiol 2016; 56:1244-1251. [PMID: 27283353 DOI: 10.1002/jobm.201600232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/22/2016] [Indexed: 11/09/2022]
Abstract
This work aims to examine the influence of the metabolic state of the yeast Pichia kudriavzevii on the susceptibility to a metals mixture (5 mg L-1 Cd, 10 mg L-1 Pb, and 5 mg L-1 Zn). Cells exposed to the metals mixture in the presence of 25 mmol L-1 glucose displayed a higher loss of membrane integrity and proliferation capacity, compared to cells incubated in the absence of glucose. The analysis of the effect of individual metals revealed that glucose increased the toxic effect of Cd marginally, and of Pb significantly. The increased susceptibility to heavy metals due to glucose was attenuated in the simultaneous presence of a mitochondrial respiration inhibitor such as sodium azide (NaN3 ). ATP-depleted yeast cells, resulting from treatment with the non-metabolizable glucose analogue 2-deoxy-d-glucose, showed an increased susceptibility to heavy metals mixture. Pre-incubation of yeast cells with 1 or 1.5 mmol L-1 Ca2+ reduced significantly (P < 0.05) the loss of membrane integrity induced by the metals mixture. These findings contribute to the understanding of metals mechanisms of toxicity in the non-conventional yeast P. kudriavzevii.
Collapse
Affiliation(s)
- Vanessa A Mesquita
- Bioengineering Laboratory-CIETI, Department of Chemical Engineering, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, 4200-072, Portugal.,Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Manuela D Machado
- Bioengineering Laboratory-CIETI, Department of Chemical Engineering, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, 4200-072, Portugal.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Cristina F Silva
- Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Department of Chemical Engineering, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, 4200-072, Portugal.,CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
17
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Interactions Between Monovalent Cations and Nutrient Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:271-289. [PMID: 26721278 DOI: 10.1007/978-3-319-25304-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of appropriate fluxes of monovalent cation is a requirement for growth and survival. In the budding yeast Saccharomyces cerevisiae an electrochemical gradient of H(+) is fundamental for the uptake of diverse cations, such as K(+), and of many other nutrients. In spite of early work suggesting that alterations in monovalent cation fluxes impact on the uptake and utilization of nutrients, such as phosphate anions, only recently this important aspect of the yeast physiology has been addressed and characterized in some detail. This chapter provides a historical background and summarizes the latest findings.
Collapse
|
19
|
Hubenova Y, Mitov M. Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry 2015; 106:177-85. [DOI: 10.1016/j.bioelechem.2015.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
20
|
Zhang J, Sassen T, ten Pierick A, Ras C, Heijnen JJ, Wahl SA. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae. Biotechnol Bioeng 2015; 112:1033-46. [PMID: 25502731 DOI: 10.1002/bit.25516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 11/07/2022]
Abstract
Eukaryotic metabolism consists of a complex network of enzymatic reactions and transport processes which are distributed over different subcellular compartments. Currently, available metabolite measurement protocols allow to measure metabolite whole cell amounts which hinder progress to describe the in vivo dynamics in different compartments, which are driven by compartment specific concentrations. Phosphate (Pi) is an essential component for: (1) the metabolic balance of upper and lower glycolytic flux; (2) Together with ATP and ADP determines the phosphorylation energy. Especially, the cytosolic Pi has a critical role in disregulation of glycolysis in tps1 knockout. Here we developed a method that enables us to monitor the cytosolic Pi concentration in S. cerevisiae using an equilibrium sensor reaction: maltose + Pi < = > glucose + glucose-1-phosphate. The required enzyme, maltose phosphorylase from L. sanfranciscensis was overexpressed in S. cerevisiae. With this reaction in place, the cytosolic Pi concentration was obtained from intracellular glucose, G1P and maltose concentrations. The cytosolic Pi concentration was determined in batch and chemostat (D = 0.1 h(-1) ) conditions, which was 17.88 µmol/gDW and 25.02 µmol/gDW, respectively under Pi-excess conditions. Under Pi-limited steady state (D = 0.1 h(-1) ) conditions, the cytosolic Pi concentration dropped to only 17.7% of the cytosolic Pi in Pi-excess condition (4.42 µmol/gDW vs. 25.02 µmol/gDW). In response to a Pi pulse, the cytosolic Pi increased very rapidly, together with the concentration of sugar phosphates. Main sources of the rapid Pi increase are vacuolar Pi (and not the polyPi), as well as Pi uptake from the extracellular space. The temporal increase of cytosolic Pi increases the driving force of GAPDH reaction of the lower glycolytic reactions. The novel cytosol specific Pi concentration measurements provide new insight into the thermodynamic driving force for ATP hydrolysis, GAPDH reaction, and Pi transport over the plasma and vacuolar membranes.
Collapse
Affiliation(s)
- Jinrui Zhang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, 2600 GA, Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Volkov V. Quantitative description of ion transport via plasma membrane of yeast and small cells. FRONTIERS IN PLANT SCIENCE 2015; 6:425. [PMID: 26113853 PMCID: PMC4462678 DOI: 10.3389/fpls.2015.00425] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/21/2023]
Abstract
Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.
Collapse
Affiliation(s)
- Vadim Volkov
- *Correspondence: Vadim Volkov, Faculty of Life Sciences, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| |
Collapse
|
22
|
Siegel G, Malmsten M, Ermilov E. Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance. Adv Colloid Interface Sci 2014; 205:275-318. [PMID: 24534475 DOI: 10.1016/j.cis.2014.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022]
Abstract
In the review article presented here, we demonstrate that the connective tissue is more than just a matrix for cells and a passive scaffold to provide physical support. The extracellular matrix can be subdivided into proteins (collagen, elastin), glycoconjugates (structural glycoproteins, proteoglycans) and glycosaminoglycans (hyaluronan). Our main focus rests on the anionic biopolyelectrolytes of the perlecan/syndecan superfamily which belongs to extracellular matrix and cell membrane integral proteoglycans. Though the extracellular domain of the syndecans may well be performing a structural role within the extracellular matrix, a key function of this class of membrane intercalated proteoglycans may be to act as signal transducers across the plasma membrane and thus be more appropriately included in the group of cell surface receptors. Nevertheless, there is a continuum in functions of syndecans and perlecans, especially with respect to their structural role and biomedical significance. HS/CS proteoglycans are receptor sites for lipoprotein binding thus intervening directly in lipid metabolism. We could show that among all lipoproteins, HDL has the highest affinity to these proteoglycans and thus instals a feedforward forechecking loop against atherogenic apoB100 lipoprotein deposition on surface membranes and in subendothelial spaces. Therefore, HDL is not only responsible for VLDL/IDL/LDL cholesterol exit but also controls thoroughly the entry. This way, it inhibits arteriosclerotic nanoplaque formation. The ternary complex 'lipoprotein receptor (HS/CS-PG) - lipoprotein (LDL, oxLDL, Lp(a)) - calcium' may be interpreted as arteriosclerotic nanoplaque build-up on the molecular level before any cellular reactivity, possibly representing the arteriosclerotic primary lesion combined with endothelial dysfunction. With laser-based ellipsometry we could demonstrate that nanoplaque formation is a Ca(2+)-driven process. In an in vitro biosensor application of HS-PG coated silica surfaces we tested nanoplaque formation and size in clinical trials with cardiovascular high-risk patients who underwent treatment with ginkgo or fluvastatin. While ginkgo reduced nanoplaque formation (size) by 14.3% (23.4%) in the isolated apoB100 lipid fraction at a normal blood Ca(2+) concentration, the effect of the statin with a reduction of 44.1% (25.4%) was more pronounced. In addition, ginkgo showed beneficial effects on several biomarkers of oxidative stress and inflammation. Besides acting as peripheral lipoprotein binding receptor, HS/CS-PG is crucially implicated in blood flow sensing. A sensor molecule has to fulfil certain mechanochemical and mechanoelectrical requirements. It should possess viscoelastic and cation binding properties capable of undergoing conformational changes caused both mechanically and electrostatically. Moreover, the latter should be ion-specific. Under no-flow conditions, the viscoelastic polyelectrolyte at the endothelium - blood interface assumes a random coil form. Blood flow causes a conformational change from the random coil state to the directed filament structure state. This conformational transition effects a protein unfurling and molecular elongation of the GAG side chains like in a 'stretched' spring. This configuration is therefore combined with an increase in binding sites for Na(+) ions. Counterion migration of Na(+) along the polysaccharide chain is followed by transmembrane Na(+) influx into the endothelial cell and by endothelial cell membrane depolarization. The simultaneous Ca(2+) influx releases NO and PGI2, vasodilatation is the consequence. Decrease in flow reverses the process. Binding of Ca(2+) and/or apoB100 lipoproteins (nanoplaque formation) impairs the flow sensor function. The physicochemical and functional properties of proteoglycans are due to their amphiphilicity and anionic polyelectrolyte character. Thus, they potently interact with cations, albeit in a rather complex manner. Utilizing (23)Na(+) and (39)K(+) NMR techniques, we could show that, both in HS-PG solutions and in native vascular connective tissue, the mode of interaction for monovalent cations is competition. Mg(2+) and Ca(2+) ions, however, induced a conformational change leading to an increased allosteric, cooperative K(+) and Na(+) binding, respectively. Since extracellular matrices and basement membranes form a tight-fitting sheath around the cell membrane of muscle and Schwann cells, in particular around sinus node cells of the heart, and underlie all epithelial and endothelial cell sheets and tubes, a release of cations from or an adsorption to these polyanionic macromolecules can transiently lead to fast and drastic activity changes in these tiny extracellular tissue compartments. The ionic currents underlying pacemaker and action potential of sinus node cells are fundamentally modulated. Therefore, these polyelectrolytic ion binding characteristics directly contribute to and intervene into heart rhythm.
Collapse
Affiliation(s)
- G Siegel
- Charité - University Clinic Berlin, 10117 Berlin, Germany; University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden.
| | - M Malmsten
- University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden; Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - E Ermilov
- Charité - University Clinic Berlin, 10117 Berlin, Germany
| |
Collapse
|
23
|
Gášková D, Plášek J, Zahumenský J, Benešová I, Buriánková L, Sigler K. Alcohols are inhibitors of Saccharomyces cerevisiae multidrug-resistance pumps Pdr5p and Snq2p. FEMS Yeast Res 2013; 13:782-95. [PMID: 24028576 DOI: 10.1111/1567-1364.12088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 11/30/2022] Open
Abstract
The effect of alcohols on cell membrane proteins has originally been assumed to be mediated by their primary action on membrane lipid matrix. Many studies carried out later on both animal and yeast cells have revealed that ethanol and other alcohols inhibit the functions of various membrane channels, receptors and solute transport proteins, and a direct interaction of alcohols with these membrane proteins has been proposed. Using our fluorescence diS-C3 (3) diagnostic assay for multidrug-resistance pump inhibitors in a set of isogenic yeast Pdr5p and Snq2p mutants, we found that n-alcohols (from ethanol to hexanol) variously affect the activity of both pumps. Beginning with propanol, these alcohols have an inhibitory effect that increases with increasing length of the alcohol acyl chain. While ethanol does not exert any inhibitory effect at any of the concentration used (up to 3%), hexanol exerts a strong inhibition at 0.1%. The alcohol-induced inhibition of MDR pumps was detected even in cells whose membrane functional and structural integrity were not compromised. This supports a notion that the inhibitory action does not necessarily involve only changes in the lipid matrix of the membrane but may entail a direct interaction of the alcohols with the pump proteins.
Collapse
Affiliation(s)
- Dana Gášková
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague 2, Czech Republic
| | | | | | | | | | | |
Collapse
|
24
|
Mochaba FM, O'Connor-Cox ESC, Axcell BC. A NOVEL AND PRACTICAL YEAST VITALITY METHOD BASED ON MAGNESIUM ION RELEASE. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1997.tb00941.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 2011; 94:425-35. [DOI: 10.1007/s00253-011-3784-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/15/2011] [Accepted: 11/22/2011] [Indexed: 11/27/2022]
|
26
|
Liu YH, Dai GZ, Qiu BS. POTASSIUM ALLEVIATES THE INHIBITORY ACTION OF AMMONIUM UPON THE PHOTOSYNTHETIC RECOVERY OF NOSTOC FLAGELLIFORME (CYANOPHYCEAE) DURING REHYDRATION 1. JOURNAL OF PHYCOLOGY 2011; 47:557-564. [PMID: 27021985 DOI: 10.1111/j.1529-8817.2011.01000.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Effects of ammonium on the photosynthetic recovery of Nostoc flagelliforme Berk. et M. A. Curtis were assayed when being rehydrated in low-K+ or high-K+ medium. Its photosynthetic recovery was K+ limited after 3 years of dry storage. The potassium absorption of N. flagelliforme reached the maximum after 3 h rehydration in low-K+ medium but at 5 min in high-K+ medium. The K+ content of N. flagelliforme rehydrated in high-K+ medium was much higher than that in low-K+ medium. The maximal PSII quantum yield (Fv /Fm ) value of N. flagelliforme decreased significantly when samples were rehydrated in low-K+ medium treated with 5 mM NH4 Cl. However, the treatment of 20 mM NH4 Cl had little effect on its Fv /Fm value in high-K+ medium. The relative Fv /Fm 24 h EC50 (concentration at which 50% inhibition occurred) value of NH4+ in high-K+ medium (64.35 mM) was much higher than that in low-K+ medium (22.17 mM). This finding indicated that high K+ could alleviate the inhibitory action of NH4+ upon the photosynthetic recovery of N. flagelliforme during rehydration. In the presence of 10 mM tetraethylammonium chloride (TEACl), the relative Fv /Fm 24 h EC50 value of NH4+ was increased to 46.34 and 70.78 mM, respectively, in low-K+ and high-K+ media. This observation suggested that NH4+ entered into N. flagelliforme cells via the K+ channel. Furthermore, NH4+ could decrease K+ absorption in high-K+ medium.
Collapse
Affiliation(s)
- Ying-Hui Liu
- College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Guo-Zheng Dai
- College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Bao-Sheng Qiu
- College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
27
|
Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem J 2011; 434:243-51. [DOI: 10.1042/bj20101118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
When starved of Pi, yeast cells activate the PHO signalling pathway, wherein the Pho4 transcription factor mediates expression of genes involved in Pi acquisition, such as PHO84, encoding the high-affinity H+/Pi symporter. In contrast, transcription of PHO87 and PHO90, encoding the low-affinity H+/Pi transport system, is independent of phosphate status. In the present work, we reveal that, upon Pi starvation, these low-affinity Pi transporters are endocytosed and targeted to the vacuole. For Pho87, this process strictly depends on SPL2, another Pho4-dependent gene that encodes a protein known to interact with the N-terminal SPX domain of the transporter. In contrast, the vacuolar targeting of Pho90 upon Pi starvation is independent of both Pho4 and Spl2, although it still requires its SPX domain. Furthermore, both Pho87 and Pho90 are also targeted to the vacuole upon carbon-source starvation or upon treatment with rapamycin, which mimics nitrogen starvation, but although these responses are independent of PHO pathway signalling, they again require the N-terminal SPX domain of the transporters. These observations suggest that other SPX-interacting proteins must be involved. In addition, we show that Pho90 is the most important Pi transporter under high Pi conditions in the absence of a high-affinity Pi-transport system. Taken together, our results illustrate that Pho87 and Pho90 represent non-redundant Pi transporters, which are tuned by the integration of multiple nutrient signalling mechanisms in order to adjust Pi-transport capacity to the general nutritional status of the environment.
Collapse
|
28
|
Heuck S, Gerstmann UC, Michalke B, Kanter U. Genome-wide analysis of caesium and strontium accumulation in Saccharomyces cerevisiae. Yeast 2011; 27:817-35. [PMID: 20641020 DOI: 10.1002/yea.1780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(137)Cs and (90)Sr contribute to significant and long-lasting contamination of the environment with radionuclides. Due to their relatively high biological availability, they are transferred rapidly into biotic systems and may enter the food chain. In this study, we analysed 4862 haploid yeast knockout strains of Saccharomyces cerevisiae to identify genes involved in caesium (Cs(+)) and/or strontium (Sr(2+)) accumulation. According to this analysis, 212 mutant strains were associated with reproducible altered Cs(+) and/or Sr(2+) accumulation. These mutants were deficient for a wide range of cellular processes. Among those, the vacuolar function and biogenesis turned out to be crucial for both Cs(+) and Sr(2+) accumulation. Disruption of the vacuole diminished Cs(+) accumulation, whereas Sr(2+) enrichment was enhanced. Further analysis with a subset of the identified candidates were undertaken comparing the accumulation of Cs(+) and Sr(2+) with their essential counterparts potassium (K(+)) and calcium (Ca(2+)). Sr(2+) and Ca(2+) accumulation was highly correlated in yeast excluding the possibility of a differential regulation or uptake mechanisms. In direct contrast, the respective results suggest that Cs(+) uptake is at least partially dependent on mechanisms distinct from K(+) uptake. Single candidates (e.g. KHA1) are presented which might be specifically responsible for Cs(+) homeostasis.
Collapse
Affiliation(s)
- Sabine Heuck
- Helmholtz Zentrum München, Institut für Strahlenschutz, Neuherberg, Germany
| | | | | | | |
Collapse
|
29
|
|
30
|
Van der Heggen M, Martins S, Flores G, Soares EV. Lead toxicity in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010; 88:1355-61. [DOI: 10.1007/s00253-010-2799-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/19/2010] [Accepted: 07/24/2010] [Indexed: 11/25/2022]
|
31
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
32
|
Affiliation(s)
- J L Milner
- Department of Chemistry and Biochemistry, University of Guelph Guelph, Ontario, Canada
| | | | | |
Collapse
|
33
|
Shanks JV, Bailey JE. Elucidation of the cytoplasmic and vacuolar components in the inorganic phosphate region in the 31P NMR spectrum of yeast. Biotechnol Bioeng 2009; 35:1102-10. [PMID: 18592488 DOI: 10.1002/bit.260351105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subcellular compartments, such as the vacuole in yeast, play important roles in cell metabolism and in cell response to external conditions. Concentrations of inorganic phosphate and pH values of the vacuole and cytoplasm were determined for anaerobic Saccharomyces cerevisiae cells based upon (31)P NMR spectroscopy. A new approach allows the determination of these values for the vacuole in cases when the resonance for inorganic phosphate in the cytoplasm overlaps with the resonance for inorganic phosphate in the vacuole. The intracellular inorganic phosphate resonance was first decomposed into two components by computer analysis. The assignments of the components were determined from in vivo correlations of P(i) chemical shift and the chemical shifts of the cytoplasmic sugar phosphates, and the pH dependency of the resonance of pyrophosphate and the terminal phosphate of poly-phosphate (PP(1)) which reside in the vacuole. An in vivo correlation relating PP(1) and P(i) (vac) chemical shifts was established from numerous evaluations of intracellular compositions for several strains of S. cerevisiae. This correlation will aid future analysis of (31)P NMR spectra of yeast and will extend NMR studies of compartmentation to cellular suspensions in phosphate-containing medium. Application of this method shows that both vacuolar and extracellular P(i) were phosphate reserves during glycolysis in anaerobic S. cerevisiae. Net transport of inorganic phosphate across the vacuolar membrane was not correlated with the pH gradient across the membrane.
Collapse
Affiliation(s)
- J V Shanks
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
34
|
|
35
|
Sant'Ana GDS, Paes LDS, Paiva AFV, Fietto LG, Totola AH, Trópia MJM, Silveira-Lemos D, Lucas C, Fietto JLR, Brandão RL, Castro IDM. Protective effect of ions against cell death induced by acid stress in Saccharomyces. FEMS Yeast Res 2009; 9:701-12. [PMID: 19473262 DOI: 10.1111/j.1567-1364.2009.00523.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces boulardii is a probiotic used to prevent or treat antibiotic-induced gastrointestinal disorders and acute enteritis. For probiotics to be effective they must first be able to survive the harsh gastrointestinal environment. In this work, we show that S. boulardii displayed the greatest tolerance to simulated gastric environments compared with several Saccharomyces cerevisiae strains tested. Under these conditions, a pH 2.0 was the main factor responsible for decreased cell viability. Importantly, the addition of low concentrations of sodium chloride (NaCl) protected cells in acidic conditions more effectively than other salts. In the absence of S. boulardii mutants, the protective effects of Na(+) in yeast viability in acidic conditions was tested using S. cerevisiae Na(+)-ATPases (ena1-4), Na(+)/H(+) antiporter (nha1Delta) and Na(+)/H(+) antiporter prevacuolar (nhx1Delta) null mutants, respectively. Moreover, we provide evidence suggesting that this protection is determined by the plasma membrane potential, once altered by low pH and low NaCl concentrations. Additionally, the absence or low expression/activity of Ena proteins seems to be closely related to the basal membrane potential of the cells.
Collapse
Affiliation(s)
- Gilzeane dos Santos Sant'Ana
- Laboratório de Biologia Celular e Molecular (LBCM), Núcleo de Pesquisa em Ciências Biológicas, Departamento de Farmácia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Miranda M, Bashi E, Vylkova S, Edgerton M, Slayman C, Rivetta A. Conservation and dispersion of sequence and function in fungal TRK potassium transporters: focus onCandida albicans. FEMS Yeast Res 2009; 9:278-92. [DOI: 10.1111/j.1567-1364.2008.00471.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Abstract
K(+) channels are revered for their universal action of suppressing electrical activity in nerve and muscle, as well as regulating salt and water transport in epithelial tissues involved in metabolism and digestion. These multisubunit membrane-embedded proteins carry out their physiological chore, selectively allowing the passage of potassium across the membrane, in response to changes in membrane voltage and ligand concentration. Elucidating the diverse gating properties of K(+) channels is of great biological interest since their molecular motions provide insight into how these structurally similar proteins function in a wide variety of tissues. Armed with patch clamps, chart recorders, and now high-resolution structures, electrophysiologists have been dipping into the top tray of the chemist's tool box: synthesizing cysteine-modifying agents and organic cations and grinding up insects, spiders, and other vermin to isolate natural products to poke, probe, and prod K(+) channels. Recently, there has been further cross-fertilization between chemists and K(+) channelologists, resulting in greater accessibility to more elaborate synthetic methodologies and screening approaches. In this review, we catalogue the evolution of chemical tools and approaches that have been utilized to elucidate the mechanistic underpinnings of K(+) channel biology.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Anesthesiology, University of British Columbia, 2350 Health Science Mall, Vancouver, BC V6T 1Z3, Canada.
| | | |
Collapse
|
39
|
Prista C, González-Hernández JC, Ramos J, Loureiro-Dias MC. Cloning and characterization of two K+ transporters of Debaryomyces hansenii. MICROBIOLOGY-SGM 2007; 153:3034-3043. [PMID: 17768246 DOI: 10.1099/mic.0.2007/006080-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two genes from the halotolerant yeast Debaryomyces hansenii were cloned, DhTRK1 and DhHAK1. These genes encode K(+) transporters with sequence similarities to the TRK and HAK transporters from Debaryomyces occidentalis and Candida albicans. The DhHAK1p transporter was only expressed in K(+)-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a trk1Delta trk2Delta mutant of Saccharomyces cerevisiae, unable to grow at low K(+). This expression resulted in partial recovery of growth and ability to retain K(+) at low concentrations. In liquid media, 0.5 M NaCl affected growth of these S. cerevisiae transformants as it does in D. hansenii, resulting in a much less deleterious effect than in wild-type S. cerevisiae. Kinetics of Rb(+) uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K(+) transporters exhibiting a sigmoid response against Rb(+) concentration and presenting a deviation from classic Michaelis-Menten kinetics at low substrate concentrations. Rb(+) uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na(+) at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of D. hansenii.
Collapse
Affiliation(s)
- Catarina Prista
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, TU Lisbon, 1349-017 Lisboa, Portugal
| | | | - José Ramos
- Departamento Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, E-14071 Córdoba, Spain
| | - Maria C Loureiro-Dias
- Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, TU Lisbon, 1349-017 Lisboa, Portugal
| |
Collapse
|
40
|
Pérez-Valle J, Jenkins H, Merchan S, Montiel V, Ramos J, Sharma S, Serrano R, Yenush L. Key role for intracellular K+ and protein kinases Sat4/Hal4 and Hal5 in the plasma membrane stabilization of yeast nutrient transporters. Mol Cell Biol 2007; 27:5725-36. [PMID: 17548466 PMCID: PMC1952112 DOI: 10.1128/mcb.01375-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
K+ transport in living cells must be tightly controlled because it affects basic physiological parameters such as turgor, membrane potential, ionic strength, and pH. In yeast, the major high-affinity K+ transporter, Trk1, is inhibited by high intracellular K+ levels and positively regulated by two redundant "halotolerance" protein kinases, Sat4/Hal4 and Hal5. Here we show that these kinases are not required for Trk1 activity; rather, they stabilize the transporter at the plasma membrane under low K+ conditions, preventing its endocytosis and vacuolar degradation. High concentrations (0.2 M) of K+, but not Na+ or sorbitol, transported by undefined low-affinity systems, maintain Trk1 at the plasma membrane in the hal4 hal5 mutant. Other nutrient transporters, such as Can1 (arginine permease), Fur4 (uracil permease), and Hxt1 (low-affinity glucose permease), are also destabilized in the hal4 hal5 mutant under low K+ conditions and, in the case of Can1, are stabilized by high K+ concentrations. Other plasma membrane proteins such as Pma1 (H+ -pumping ATPase) and Sur7 (an eisosomal protein) are not regulated by halotolerance kinases or by high K+ levels. This novel regulatory mechanism of nutrient transporters may participate in the quiescence/growth transition and could result from effects of intracellular K+ and halotolerance kinases on membrane trafficking and/or on the transporters themselves.
Collapse
Affiliation(s)
- Jorge Pérez-Valle
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hess DC, Lu W, Rabinowitz JD, Botstein D. Ammonium toxicity and potassium limitation in yeast. PLoS Biol 2007; 4:e351. [PMID: 17048990 PMCID: PMC1609136 DOI: 10.1371/journal.pbio.0040351] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 08/21/2006] [Indexed: 11/18/2022] Open
Abstract
DNA microarray analysis of gene expression in steady-state chemostat cultures limited for potassium revealed a surprising connection between potassium and ammonium: potassium limits growth only when ammonium is the nitrogen source. Under potassium limitation, ammonium appears to be toxic for Saccharomyces cerevisiae. This ammonium toxicity, which appears to occur by leakage of ammonium through potassium channels, is recapitulated under high-potassium conditions by over-expression of ammonium transporters. Although ammonium toxicity is well established in metazoans, it has never been reported for yeast. To characterize the response to ammonium toxicity, we examined the filtrates of these cultures for compounds whose excretion might serve to detoxify the ammonium (such as urea in mammals). Using liquid chromatography-tandem mass spectrometry to assay for a wide array of metabolites, we detected excreted amino acids. The amounts of amino acids excreted increased in relation to the severity of growth impairment by ammonium, suggesting that amino acid excretion is used by yeast for ammonium detoxification.
Collapse
Affiliation(s)
- David C Hess
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA.
| | | | | | | |
Collapse
|
42
|
Rai AK, Sharma NK. Phosphate metabolism in the cyanobacterium Anabaena doliolum under salt stress. Curr Microbiol 2006; 52:6-12. [PMID: 16392006 DOI: 10.1007/s00284-005-0043-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 07/29/2005] [Indexed: 11/27/2022]
Abstract
In the present study, we have investigated the effects of NaCl concentrations on the growth and phosphate metabolism of an Anabaena doliolum strain isolated from a paddy field, in order to determine the possible effects of salinization. Growth rate, chlorophyll content, and protein content decreased with increasing salt concentration in the growth medium, while carbohydrate concentration increased. Phosphate content and phosphate uptake rate decreased. There was an increase in total alkaline phosphatase activity, with an approximately 7-fold increase in extracellular activity compensating for an approximately 3-fold decrease in cell-bound activity. NaCl effects on protein and chlorophyll concentrations were greater in P-deficient medium, while presence or absence of P in the medium had little effect on cellular carbohydrate concentrations. It is concluded that growth in high salt likely leads to reduced phosphate uptake in A. doliolum.
Collapse
Affiliation(s)
- Ashwani K Rai
- Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
43
|
Elkholy S, Khalil KD, Elsabee MZ, Eweis M. Grafting of vinyl acetate onto chitosan and biocidal activity of the graft copolymers. J Appl Polym Sci 2006. [DOI: 10.1002/app.24785] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Abstract
AIMS To calculate the energetic requirements for benzoic acid tolerance in Zygosaccharomyces bailii in chemostat experiments. METHODS AND RESULTS A 5.6-l stirred-tank chemostat was used. The yield of ATP (Y(ATP)) was calculated under nitrogen atmosphere, assuming equimolar ATP and ethanol production. Under these conditions Y(ATP), equal to 20 g mol(-1) of ATP, was not affected by the acid, whereas the maintenance coefficient (m(ATP)) increased from 1.0 mmol of ATP g(-1) h(-1) in the absence of the acid to 4.8 in the presence of 0.67 mmol l(-1) undissociated benzoic acid. These ATP requirements were similar to those found in Saccharomyces cerevisiae with other weak acids. CONCLUSIONS No significant differences have been found in the energy expended to cope with the acid between sensitive and tolerant species. Therefore, the main difference between tolerant and sensitive species could rely on cellular features that would not need extra energy in terms of ATP. SIGNIFICANCE AND IMPACT OF THE STUDY The potential mechanisms involved in the tolerance to weak acids in yeasts have been extensively studied but their actual relevance has not been assessed. Our results suggest that future efforts should concentrate on nonexpending energy features as membrane permeability and metabolic tolerance in the cytoplasm.
Collapse
Affiliation(s)
- J S Leyva
- Departamento de Microbiología, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
45
|
Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:236-50. [PMID: 15807785 DOI: 10.1111/j.1365-313x.2005.02364.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture, is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice [Proc. Natl Acad. Sci. USA, 99 (2002) 13324], respectively, but not with StPT3, indicating that two non-orthologous mycorrhiza-responsive genes encoding Pi transporters are co-expressed in the Solanaceae. The cloned promoter regions from both genes, LePT4 and StPT4, exhibit a high degree of sequence identity and were shown to direct expression exclusively in colonized cells when fused to the GUS reporter gene, in accordance with the abundance of LePT4 and StPT4 transcripts in mycorrhized roots. Furthermore, extensive sequencing of StPT4-like clones and subsequent expression analysis in potato and tomato revealed the presence of a close paralogue of StPT4 and LePT4, named StPT5 and LePT5, respectively, representing a third Pi transport system in solanaceous species which is upregulated upon AM fungal colonization of roots. Knock out of LePT4 in the tomato cv. MicroTom indicated considerable redundancy between LePT4 and other Pi transporters in tomato.
Collapse
Affiliation(s)
- Réka Nagy
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Plant Biochemistry & Physiology Group, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zvyagilskaya RA, Persson BL. A new alkalitolerant Yarrowia lipolytica yeast strain is a promising model for dissecting properties and regulation of Na+-dependent phosphate transport systems. BIOCHEMISTRY (MOSCOW) 2004; 69:1310-7. [PMID: 15627385 DOI: 10.1007/s10541-005-0016-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A newly isolated osmo-, salt-, and alkalitolerant Yarrowia lipolytica yeast strain is distinguished from other yeast species by its capacity to grow vigorously at alkaline pH values (9.7), which makes it a promising model organism for studying Na+-dependent phosphate transport systems in yeasts. Phosphate uptake by Y. lipolytica cells grown at pH 9.7 was mediated by several kinetically discrete Na+-dependent systems specifically activated by Na+. One of these, a low-affinity transporter, operated at high concentrations of extracellular phosphate. The other two, high-affinity systems, maximally active in phosphate-starved cells, were repressed or derepressed depending on the prevailing extracellular phosphate concentration and pH value. The contribution of Na+/P(i)-cotransport systems to the total cellular phosphate uptake progressively increased with increasing pH, reaching its maximum at pH >/= 9.
Collapse
Affiliation(s)
- R A Zvyagilskaya
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | | |
Collapse
|
47
|
Czakó-Vér K, Koósz Z, Antal J, Rácz T, Sipiczki M, Pesti M. Characterization of chromate-sensitive and -tolerant mutants of Schizosaccharomyces pombe. Folia Microbiol (Praha) 2004; 49:31-6. [PMID: 15114862 DOI: 10.1007/bf02931642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Stable chromium(VI)-sensitive and -tolerant mutants were obtained by induced mutagenesis of Schizosaccharomyces pombe lysine and leucine auxotrophic heterothallic strains 6chr+ and 9chr+. Eleven of them were selected for further studies. Fast transport of 51CrO4(2-) was detected in a representative sensitive mutant, chr-51S, while the tolerant mutant chr1-66T and the parental strain 6chr+ exhibited significantly lower 51CrO4(2-) uptake. The segregation of tetrads of three selected CrVI-tolerant mutants, chr1-66T, chr1-14T and chr2-04T, strongly indicated that tolerance was determined by single mutations. Random spore analysis proved that the mutations of chr1-66T and chr1-14T were allelic and the mutation of mutant chr2-04T was not allelic with the mutation of chr1-66T. Recombinants carrying the ura4D18 selective marker were created for transformation experiments. Two of them (chr1-661T and chr2-046T) can be used to clone and identify the genes responsible for their CrVI tolerance phenotype.
Collapse
Affiliation(s)
- K Czakó-Vér
- Department of General and Environmental Microbiology, Faculty of Science, University of Pécs, 7601 Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
48
|
Zeng GF, Pypaert M, Slayman CL. Epitope Tagging of the Yeast K+ Carrier Trk2p Demonstrates Folding That Is Consistent with a Channel-like Structure. J Biol Chem 2004; 279:3003-13. [PMID: 14570869 DOI: 10.1074/jbc.m309760200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRK family proteins, which mediate the concentrative uptake of potassium by plant cells, fungi, and bacteria, resemble primitive potassium channels in sequence and have recently been proposed actually to fold like potassium channels in a 4-MPM motif (Durell, S. R., and Guy, H. R. (1999) Biophys. J. 77, 789 - 807), instead of like conventional substrate porters in the 12-TM motif (Gaber, R. F., Styles, C. A., and Fink, G. R. (1988) Mol. Cell. Biol. 8, 2848-2859). The known fungal members of this family possess a very long hydrophilic loop, positioned intracellularly in the K(+)-channel model and extracellularly in the substrate porter model. This and two shorter hydrophilic segments have been tested as topological markers for the true folding pattern of TRK proteins using Saccharomyces cerevisiae Trk2p. Hemagglutinin epitope tags were inserted into all three segments, and the enhanced green fluorescent protein (EGFP) was fused to the C terminus of Trk2p. The gene constructs were expressed from a high copy plasmid, and sidedness of the tags was determined by native fluorescence (EGFP), indirect immunofluorescence, and immunoelectron microscopy. Both the long-loop tag and the C-terminal EGFP fusion allowed abundant protein to reach the plasma membrane and support normal yeast growth. In all determinations, the long-loop tag was localized to the inner surface of the yeast cell plasma membrane, thus strongly supporting the channel-like folding model. Additional observations showed (i). membrane-associated Trk2p to lie in proteolipid rafts; (ii). significant tagged protein, expressed from the plasmid, to be sequestered in cytoplasmic vesicular-tubular clusters; and (iii). suppression of such clusters by yeast growth in 5-10% glycerol. This chaperone-like effect may assist other membrane proteins (overexpressed or heterologously expressed) to function within the yeast plasma membrane.
Collapse
Affiliation(s)
- Ge-Fei Zeng
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
49
|
Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 2003; 43:225-44. [PMID: 12740714 DOI: 10.1007/s00294-003-0400-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2003] [Revised: 04/05/2003] [Accepted: 04/08/2003] [Indexed: 01/08/2023]
Abstract
Membrane transport systems active in cellular inorganic phosphate (P(i)) acquisition play a key role in maintaining cellular P(i) homeostasis, independent of whether the cell is a unicellular microorganism or is contained in the tissue of a higher eukaryotic organism. Since unicellular eukaryotes such as yeast interact directly with the nutritious environment, regulation of P(i) transport is maintained solely by transduction of nutrient signals across the plasma membrane. The individual yeast cell thus recognizes nutrients that can act as both signals and sustenance. The present review provides an overview of P(i) acquisition via the plasma membrane P(i) transporters of Saccharomyces cerevisiae and the regulation of internal P(i) stores under the prevailing P(i) status.
Collapse
Affiliation(s)
- Bengt L Persson
- Department of Chemistry and Biomedical Science, Kalmar University, P.O. Box 905, 39182, Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Soares EV, Hebbelinck K, Soares HMVM. Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can J Microbiol 2003; 49:336-43. [PMID: 12897827 DOI: 10.1139/w03-044] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The decreasing order of toxicity of select heavy metals on the yeast Saccharomyces cerevisiae, in 10 mM MES (2-(N-morpholino)ethanesulfonic acid) pH buffer at pH 6.0, was found to be copper, lead, and nickel. Heavy metal (200 microM) induced a decrease in the number of viable cells by about 50% in the first 5 min for copper and in 4 h for lead, while nickel was not toxic up to a 200 microM concentration over a period of 48 h. Glucose (25 mM) strongly enhanced the toxic effect of 50 microM copper but had little or no effect on the toxicity of 200 microM lead or nickel. Copper, lead, and nickel induced the leakage of UV260-absorbing compounds from cells with different kinetics. The addition of 0.5 mM calcium, before addition of 200 microM copper, showed a protective action against cell death and decreased the release of UV-absorbing compounds, while no effect was observed against lead or nickel toxic effects. Copper complexation capacities of the filtrates of cells exposed for 2 h in 200 microM copper and 24 h in 200 microM lead were 51 and 14 microM, respectively. The implication of the complexation shown by these soluble compounds in the bioavailability of heavy metals is discussed.
Collapse
Affiliation(s)
- Eduardo V Soares
- CIEA-Departmento de Engenharia Química, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida, 431, P-4200-072 Porto, Portugal.
| | | | | |
Collapse
|