1
|
Pignataro D, Sucunza D, Vanrell L, Lopez-Franco E, Dopeso-Reyes IG, Vales A, Hommel M, Rico AJ, Lanciego JL, Gonzalez-Aseguinolaza G. Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System. Front Neuroanat 2017; 11:2. [PMID: 28239341 PMCID: PMC5301009 DOI: 10.3389/fnana.2017.00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Adeno-associated viruses (AAVs) have become highly promising tools for research and clinical applications in the central nervous system (CNS). However, specific delivery of genes to the cell type of interest is essential for the success of gene therapy and therefore a correct selection of the promoter plays a very important role. Here, AAV8 vectors carrying enhanced green fluorescent protein (eGFP) as reporter gene under the transcriptional control of different CNS-specific promoters were used and compared with a strong ubiquitous promoter. Since one of the main limitations of AAV-mediated gene delivery lies in its restricted cloning capacity, we focused our work on small-sized promoters. We tested the transduction efficacy and specificity of each vector after stereotactic injection into the mouse striatum. Three glia-specific AAV vectors were generated using two truncated forms of the human promoter for glial fibrillar acidic protein (GFAP) as well as a truncated form of the murine GFAP promoter. All three vectors resulted in predominantly glial expression; however we also observed eGFP expression in other cell-types such as oligodendrocytes, but never in neurons. In addition, robust and neuron-specific eGFP expression was observed using the minimal promoters for the neural protein BM88 and the neuronal nicotinic receptor β2 (CHRNB2). In summary, we developed a set of AAV vectors designed for specific expression in cells of the CNS using minimal promoters to drive gene expression when the size of the therapeutic gene matters.
Collapse
Affiliation(s)
- Diego Pignataro
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain
| | - Diego Sucunza
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain
| | - Lucia Vanrell
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research Pamplona, Spain
| | | | - Iria G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Africa Vales
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research Pamplona, Spain
| | - Mirja Hommel
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Alberto J Rico
- Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Jose L Lanciego
- Department of Neurosciences, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical ResearchPamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasSpain; Instituto de Investigación Sanitaria de NavarraPamplona, Spain
| |
Collapse
|
2
|
HuR Mediates Changes in the Stability of AChR β-Subunit mRNAs after Skeletal Muscle Denervation. J Neurosci 2015; 35:10949-62. [PMID: 26245959 DOI: 10.1523/jneurosci.1043-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Acetylcholine receptors (AChRs) are heteromeric membrane proteins essential for neurotransmission at the neuromuscular junction. Previous work showed that muscle denervation increases expression of AChR mRNAs due to transcriptional activation of AChR subunit genes. However, it remains possible that post-transcriptional mechanisms are also involved in controlling the levels of AChR mRNAs following denervation. We examined whether post-transcriptional events indeed regulate AChR β-subunit mRNAs in response to denervation. First, in vitro stability assays revealed that the half-life of AChR β-subunit mRNAs was increased in the presence of denervated muscle protein extracts. A bioinformatics analysis revealed the existence of a conserved AU-rich element (ARE) in the 3'-untranslated region (UTR) of AChR β-subunit mRNA. Furthermore, denervation of mouse muscle injected with a luciferase reporter construct containing the AChR β-subunit 3'UTR, caused an increase in luciferase activity. By contrast, mutation of this ARE prevented this increase. We also observed that denervation increased expression of the RNA-binding protein human antigen R (HuR) and induced its translocation to the cytoplasm. Importantly, HuR binds to endogenous AChR β-subunit transcripts in cultured myotubes and in vivo, and this binding is increased in denervated versus innervated muscles. Finally, p38 MAPK, a pathway known to activate HuR, was induced following denervation as a result of MKK3/6 activation and a decrease in MKP-1 expression, thereby leading to an increase in the stability of AChR β-subunit transcripts. Together, these results demonstrate the important contribution of post-transcriptional events in regulating AChR β-subunit mRNAs and point toward a central role for HuR in mediating synaptic gene expression. SIGNIFICANCE STATEMENT Muscle denervation is a convenient model to examine expression of genes encoding proteins of the neuromuscular junction, especially acetylcholine receptors (AChRs). Despite the accepted model of AChR regulation, which implicates transcriptional mechanisms, it remains plausible that such events cannot fully account for changes in AChR expression following denervation. We show that denervation increases expression of the RNA-binding protein HuR, which in turn, causes an increase in the stability of AChR β-subunit mRNAs in denervated muscle. Our findings demonstrate for the first time the contribution of post-transcriptional events in controlling AChR expression in skeletal muscle, and points toward a central role for HuR in mediating synaptic development while also paving the way for developing RNA-based therapeutics for neuromuscular diseases.
Collapse
|
3
|
DeRosa BA, Belle KC, Thomas BJ, Cukier HN, Pericak-Vance MA, Vance JM, Dykxhoorn DM. hVGAT-mCherry: A novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells. Mol Cell Neurosci 2015; 68:244-57. [PMID: 26284979 PMCID: PMC4593758 DOI: 10.1016/j.mcn.2015.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND GABAergic synaptic transmission is known to play a critical role in the assembly of neuronal circuits during development and is responsible for maintaining the balance between excitatory and inhibitory signaling in the brain during maturation into adulthood. Importantly, defects in GABAergic neuronal function and signaling have been linked to a number of neurological diseases, including autism spectrum disorders, schizophrenia, and epilepsy. With patient-specific induced pluripotent stem cell (iPSC)-based models of neurological disease, it is now possible to investigate the disease mechanisms that underlie deficits in GABAergic function in affected human neurons. To that end, tools that enable the labeling and purification of viable GABAergic neurons from human pluripotent stem cells would be of great value. RESULTS To address the need for tools that facilitate the identification and isolation of viable GABAergic neurons from the in vitro differentiation of iPSC lines, a cell type-specific promoter-driven fluorescent reporter construct was developed that utilizes the human vesicular GABA transporter (hVGAT) promoter to drive the expression of mCherry specifically in VGAT-expressing neurons. The transduction of iPSC-derived forebrain neuronal cultures with the hVGAT promoter-mCherry lentiviral reporter construct specifically labeled GABAergic neurons. Immunocytochemical analysis of hVGAT-mCherry expression cells showed significant co-labeling with the GABAergic neuronal markers for endogenous VGAT, GABA, and GAD67. Expression of mCherry from the VGAT promoter showed expression in several cortical interneuron subtypes to similar levels. In addition, an effective and reproducible protocol was developed to facilitate the fluorescent activated cell sorting (FACS)-mediated purification of high yields of viable VGAT-positive cells. CONCLUSIONS These studies demonstrate the utility of the hVGAT-mCherry reporter construct as an effective tool for studying GABAergic neurons differentiated in vitro from human pluripotent stem cells. This approach could provide a means of obtaining large quantities of viable GABAergic neurons derived from disease-specific hiPSCs that could be used for functional assays or high-throughput screening of small molecule libraries.
Collapse
Affiliation(s)
- Brooke A DeRosa
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Kinsley C Belle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Blake J Thomas
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Holly N Cukier
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Margaret A Pericak-Vance
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Jeffery M Vance
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Derek M Dykxhoorn
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, United States; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
4
|
González-Castañeda RE, Sánchez-González VJ, Flores-Soto M, Vázquez-Camacho G, Macías-Islas MA, Ortiz GG. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer's Disease patients: A pilot study. Genet Mol Biol 2013; 36:28-36. [PMID: 23569405 PMCID: PMC3615522 DOI: 10.1590/s1415-47572013000100005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/15/2012] [Indexed: 02/05/2023] Open
Abstract
Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer’s Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels.
Collapse
Affiliation(s)
- Rocío E González-Castañeda
- Laboratorio de Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México. ; Instituto Tecnológico de Estudios Superiores de Monterrey, División de Ciencias de la Salud, Escuela de Medicina, Campus Guadalajara, Guadalajara, Jalisco, México
| | | | | | | | | | | |
Collapse
|
5
|
Akerstrom V, Chen C, Lan MS, Breslin MB. Modifications to the INSM1 promoter to preserve specificity and activity for use in adenoviral gene therapy of neuroendocrine carcinomas. Cancer Gene Ther 2012; 19:828-38. [DOI: 10.1038/cgt.2012.66] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Hobert O, Carrera I, Stefanakis N. The molecular and gene regulatory signature of a neuron. Trends Neurosci 2011; 33:435-45. [PMID: 20663572 DOI: 10.1016/j.tins.2010.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/17/2010] [Accepted: 05/25/2010] [Indexed: 12/13/2022]
Abstract
Neuron-type specific gene batteries define the morphological and functional diversity of cell types in the nervous system. Here, we discuss the composition of neuron-type specific gene batteries and illustrate gene regulatory strategies which determine the unique gene expression profiles and molecular composition of individual neuronal cell types from C. elegans to higher vertebrates. Based on principles learned from prokaryotic gene regulation, we argue that neuronal terminal gene batteries are functionally grouped into parallel-acting 'regulons'. The theoretical concepts discussed here provide testable hypotheses for future experimental analysis of the exact gene-regulatory mechanisms employed in the generation of neuronal diversity and identity.
Collapse
Affiliation(s)
- Oliver Hobert
- Columbia University Medical Center, Howard Hughes Medical Institute, New York, NY, USA.
| | | | | |
Collapse
|
7
|
Wang Y, Kakizaki T, Sakagami H, Saito K, Ebihara S, Kato M, Hirabayashi M, Saito Y, Furuya N, Yanagawa Y. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Neuroscience 2009; 164:1031-43. [PMID: 19766173 DOI: 10.1016/j.neuroscience.2009.09.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 08/19/2009] [Accepted: 09/04/2009] [Indexed: 11/29/2022]
Abstract
Inhibitory neurons play important roles in a number of brain functions. They are composed of GABAergic neurons and glycinergic neurons, and vesicular GABA transporter (VGAT) is specifically expressed in these neurons. Since the inhibitory neurons are scattered around in the CNS, it is difficult to identify these cells in living brain preparations. The glutamate decarboxylase (GAD) 67-GFP knock-in mouse has been widely used for the identification of GABAergic neurons, but their GAD67 expression was decreased compared to the wild-type mice. To overcome such a problem and to highlight the function and morphology of inhibitory neurons, we generated four lines of VGAT-Venus transgenic mice (lines #04, #29, #39 and #49) expressing Venus fluorescent protein under the control of mouse VGAT promoter. We found higher expression level of Venus transcripts and proteins as well as brighter fluorescent signal in line #39 mouse brains, compared to brains of other lines examined. By Western blots and spectrofluorometric measurements of forebrain, the line #39 mouse showed stronger GFP immunoreactivity and brighter fluorescent intensity than the GAD67-GFP knock-in mouse. In addition, Venus was present not only in somata, but also in neurites in the line #39 mouse by histological studies. In situ hybridization analysis showed that the expression pattern of Venus in the line #39 mouse was similar to that of endogenous VGAT. Double immunostaining analysis in line #39 mouse showed that Venus-expressing cells are primarily immunoreactive for GABA in cerebral cortex, hippocampus and cerebellar cortex and for GABA or glycine in dorsal cochlear nucleus. These results demonstrate that the VGAT-Venus line #39 mouse should be useful for studies on function and morphology of inhibitory neurons in the CNS.
Collapse
Affiliation(s)
- Y Wang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Uematsu M, Hirai Y, Karube F, Ebihara S, Kato M, Abe K, Obata K, Yoshida S, Hirabayashi M, Yanagawa Y, Kawaguchi Y. Quantitative Chemical Composition of Cortical GABAergic Neurons Revealed in Transgenic Venus-Expressing Rats. Cereb Cortex 2007; 18:315-30. [PMID: 17517679 DOI: 10.1093/cercor/bhm056] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although neocortical GABAergic (gamma-aminobutyric acidergic) interneurons have been the focus of intense study, especially in the rat, a consensus view of the functional diversity and organization of inhibitory cortical neurons has not yet been achieved. To better analyze GABAergic neurons in the rat, we used a bacterial artificial chromosome (BAC) construct and established 2 lines of transgenic rats that coexpress Venus, a yellow fluorescent protein, with the vesicular GABA transporter. The brain GABA content from both transgenic lines was similar to the level found in wild-type rats. In the frontal cortex, Venus was expressed in >95% of GABAergic neurons, most of which also expressed at least one of 6 biochemical markers, including alpha-actitin-2, which preferentially labeled late-spiking neurogliaform cells. Taking advantage of the fact that Venus expression allows for targeted recording from all classes of nonpyramidal cells, irrespective of their somatic morphologies, we demonstrated that fast-spiking neurons, which were heterogeneous in somatic size as well as vertical dendritic projection, had relatively uniform horizontal dimensions, suggesting a cell type-specific columnar input territory. Our data demonstrate the benefits of VGAT-Venus rats for investigating GABAergic circuits, as well as the feasibility of using BAC technology in rats to label subsets of specific, genetically defined neurons.
Collapse
Affiliation(s)
- Masakazu Uematsu
- Laboratory of Neurochemistry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Valor LM, Grant SGN. Integrating Synapse Proteomics with Transcriptional Regulation. Behav Genet 2006; 37:18-30. [PMID: 16977502 DOI: 10.1007/s10519-006-9114-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 08/18/2006] [Indexed: 01/28/2023]
Abstract
The mammalian postsynaptic proteome (PSP) comprises a highly interconnected set of approximately 1,000 proteins. The PSP is organized into macromolecular complexes that have a modular architecture defined by protein interactions and function. Signals initiated by neurotransmitter receptors are integrated by these complexes and their constituent enzymes to orchestrate multiple downstream cellular changes, including transcriptional regulation of genes at the nucleus. Genome wide transcriptome studies are beginning to map the sets of genes regulated by the synapse proteome. Conversely, understanding the transcriptional regulation of genes encoding the synapse proteome will shed light on synapse formation. Mutations that disrupt synapse signalling complexes result in cognitive impairments in mice and humans, and recent evidence indicates that these mutation change gene expression profiles. We discuss the need for global approaches combining genetics, transcriptomics and proteomics in order to understand cognitive function and disruption in diseases.
Collapse
Affiliation(s)
- L M Valor
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | |
Collapse
|
10
|
Danthi S, Boyd RT. Cell specificity of a rat neuronal nicotinic acetylcholine receptor α7 subunit gene promoter. Neurosci Lett 2006; 400:63-8. [PMID: 16546320 DOI: 10.1016/j.neulet.2006.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Neuronal nAChRs are pentameric transmembrane proteins which function as ligand-gated ion channels and are composed of multiple alpha and beta subunits. Nine neuronal nAChR alpha subunit genes (alpha2-alpha10) and three nAChR beta subunit genes (beta2-beta4) have been identified. nAChR subtypes are heteromers, composed of various combinations of nAChR subunits or homomers composed of alpha7, alpha8, or alpha9 subunits. nAChR subtypes are widely expressed in the nervous system, yet each subunit has a distinct and unique pattern of expression. This report focuses on the expression of the nAChR alpha7 gene since homomeric nAChRs can be formed from this one subunit, simplifying a study of the expression of a specific nAChR subtype. Alpha7 nAChRs are involved in several important biological activities in addition to synaptic transmission including mediating neurite outgrowth, neuronal development and cell death, and in presynaptic control of neurotransmitter release. Transcriptional regulation of alpha7 gene expression may be important to control the location and timing of these events. We previously isolated a rat alpha7 nAChR promoter and studied expression in PC12 cells. In this study we examined the expression of the alpha7 promoter in PC12, HEK293, L6, SN17 and Neuro-2A cells in order to define elements necessary for cell-specific expression. Elements promoting expression of alpha7 in muscle and fibroblasts were identified. We also demonstrated that several other nAChR genes are also expressed in SN 17 and Neuro-2A cells, supporting use of these cell lines as models to study transcriptional control of nAChR genes.
Collapse
Affiliation(s)
- Sanjay Danthi
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | |
Collapse
|
11
|
Plaisance V, Niederhauser G, Azzouz F, Lenain V, Haefliger JA, Waeber G, Abderrahmani A. The Repressor Element Silencing Transcription Factor (REST)-mediated Transcriptional Repression Requires the Inhibition of Sp1. J Biol Chem 2005; 280:401-7. [PMID: 15528196 DOI: 10.1074/jbc.m411825200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminal differentiation of neuronal and pancreatic beta-cells requires the specific expression of genes that are targets of an important transcriptional repressor named RE-1 silencing transcription factor (REST). The molecular mechanism by which these REST target genes are expressed only in neuronal and beta-cells and are repressed by REST in other tissues is a central issue in differentiation program of neuronal and beta-cells. Herein, we showed that the transcriptional factor Sp1 was required for expression of most REST target genes both in insulin-secreting cells and neuronal-like cells where REST is absent. Inhibition of REST in a non-beta and a non-neuronal cell model restored the transcriptional activity of Sp1. This activity was also restored by trichostatin A indicating the requirement of histone deacetylases for the REST-mediated silencing of Sp1. Conversely, exogenous introduction of REST blocked Sp1-mediated transcriptional activity. The REST inhibitory effect was mediated through its C-terminal repressor domain, which could interact with Sp1. Taken together, these data show that the inhibition of Sp1 by REST is required for the silencing of its target genes expression in non-neuronal and in non-beta-cells. We conclude that the interplay between REST and Sp1 determines the cell-specific expression of REST target genes.
Collapse
Affiliation(s)
- Valérie Plaisance
- Department of Internal Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Rodolosse A, Chalaux E, Adell T, Hagège H, Skoudy A, Real FX. PTF1alpha/p48 transcription factor couples proliferation and differentiation in the exocrine pancreas [corrected]. Gastroenterology 2004; 127:937-49. [PMID: 15362048 DOI: 10.1053/j.gastro.2004.06.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The basic helix-loop-helix transcription factor pancreas-specific transcription factor 1alpha (PTF1alpha)/p48 is critical for committing cells to a pancreatic fate and for the maintenance of the differentiated state in acinar cells. The aim was to analyze the ability of p48 to modulate cell proliferation, its relationship with cell differentiation, and the mechanisms involved therein. METHODS Pancreatic and nonpancreatic cells were transfected with p48 cDNA, and the effects on cell proliferation were examined. The effects on cell cycle regulators were analyzed by Western blotting and RT-PCR; transient transfection assays were used to analyze promoter regulation. RESULTS p48 Inhibited proliferation of acinar and nonacinar cells by inducing a delay in G1-S progression through the up-regulation of p21 CIP1/WAF1 and p27 KIP1 and the down-regulation of cyclin D2. A 2-fold increase in p21 CIP1/WAF1 mRNA and in the activity of the p21 CIP1/WAF1 promoter was observed. The growth inhibition action of p48 was not associated with exocrine differentiation or with apoptosis. The antiproliferative effects were dependent on the COOH-terminal region of p48 and did not require the bHLH domain. Loss of p48 expression occurring during acinar-to-ductal transitions, characteristic of chronic pancreatitis, was associated with an increase of cell proliferation in ductal complexes. CONCLUSIONS The results indicate that p48 couples cell proliferation and cell differentiation in the exocrine pancreas, thus contributing to tissue homeostasis. These effects may play a role in the increased risk for pancreatic cancer associated with chronic pancreatitis.
Collapse
Affiliation(s)
- Annie Rodolosse
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Ther 2004; 101:259-81. [PMID: 15031002 DOI: 10.1016/j.pharmthera.2003.12.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type A gamma-aminobutyric acid (GABA(A)) receptors mediate the majority of fast inhibitory neurotransmission in the CNS, and alterations in GABA(A) receptor function is believed to be involved in the pathology of several neurological and psychiatric illnesses, such as epilepsy, anxiety, Alzheimer's disease, and schizophrenia. GABA(A) receptors can be assembled from eight distinct subunit families defined by sequence similarity: alpha(1-6), beta(1-3), gamma(1-3), delta, pi, theta, and rho(1-3). The regulation of GABA(A) receptor function in the brain is a highly compensating system, influencing both the number and the composition of receptors at the cell surface. While transcriptional and translational points of control operate in parallel, it is becoming increasingly evident that many functional changes in GABA(A) receptors reflect the differential gene regulation of its subunits. The fact that certain GABA(A) receptor subunit genes are transcribed in distinct cell types during specific periods of development strongly suggests that genetic control plays a major role in the choice of subunit variants available for receptor assembly. This review focuses on the physiological conditions that alter subunit mRNA levels, the promoters that may control such levels, and the use of a conceptual framework created by bioinformatics to study coordinate and independent GABA(A) receptor subunit gene regulation. As this exciting field moves closer to identifying the language hidden inside the chromatin of GABA(A) receptor subunit gene clusters, future experiments will be aimed at testing models generated by computational analysis with biologically relevant in vivo and in vitro assays. It is hoped that through this functional genomic approach there will be the identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
14
|
Abderrahmani A, Niederhauser G, Plaisance V, Roehrich ME, Lenain V, Coppola T, Regazzi R, Waeber G. Complexin I regulates glucose-induced secretion in pancreatic β-cells. J Cell Sci 2004; 117:2239-47. [PMID: 15126625 DOI: 10.1242/jcs.01041] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neuronal-specific protein complexin I (CPX I) plays an important role in controlling the Ca2+-dependent neurotransmitter release. Since insulin exocytosis and neurotransmitter release rely on similar molecular mechanisms and that pancreatic β-cells and neuronal cells share the expression of many restricted genes, we investigated the potential role of CPX I in insulin-secreting cells. We found that pancreatic islets and several insulin-secreting cell lines express high levels of CPX I. The β-cell expression of CPX I is mediated by the presence of a neuron restrictive silencer element located within the regulatory region of the gene. This element bound the transcriptional repressor REST, which is found in most cell types with the exception of mature neuronal cells and β-cells. Overexpression of CPX I or silencing of the CPX I gene (Cplx1) by RNA interference led to strong impairment in β-cell secretion in response to nutrients such as glucose, leucine and KCl. This effect was detected both in the early and the sustained secretory phases but was much more pronounced in the early phase. We conclude that CPX I plays a critical role in β-cells in the control of the stimulated-exocytosis of insulin.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Department of Internal Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abderrahmani A, Niederhauser G, Plaisance V, Haefliger JA, Regazzi R, Waeber G. Neuronal traits are required for glucose-induced insulin secretion. FEBS Lett 2004; 565:133-8. [PMID: 15135066 DOI: 10.1016/j.febslet.2004.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 04/01/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The transcriptional repressor RE1 silencer transcription factor (REST) is an important factor that restricts some neuronal traits to neurons. Since these traits are also present in pancreatic beta-cells, we evaluated their role by generating a model of insulin-secreting cells that express REST. The presence of REST led to a decrease in expression of its known target genes, whereas insulin expression and its cellular content were conserved. As a consequence of REST expression, the capacity to secrete insulin in response to mitochondrial fuels, a particularity of mature beta-cells, was impaired. These data provide evidence that REST target genes are required for an appropriate glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Amar Abderrahmani
- Department of Internal Medicine, University of Lausanne, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Neumann SB, Seitz R, Gorzella A, Heister A, Doeberitz MVK, Becker CM. Relaxation of glycine receptor and onconeural gene transcription control in NRSF deficient small cell lung cancer cell lines. ACTA ACUST UNITED AC 2004; 120:173-81. [PMID: 14741407 DOI: 10.1016/j.molbrainres.2003.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Negative regulation of many neuronal genes is mediated by the neuron-restrictive silencer factor (NRSF/repressor element-1 binding transcription factor, REST), which binds to the neuron-restrictive silencer element (NRSE/repressor element-1, RE-1) and thereby represses transcription of neuronal genes in non-neuronal cells. Sequence analysis of 5'-flanking regions of glycine receptor (GlyR) subunit genes revealed a consensus motif for NRSE in the GLRA1 and GLRA3, but not in GLRB, genes. In this study, we examined tumor cell lines for the expression of NRSF, GlyR subunits and onconeural genes. We identified two small cell lung cancer (SCLC) cell lines lacking full-length NRSF/REST as well as its neuronal splice variants. Presence or absence of NRSF as well as its functionality in different SCLC cell lines was additionally shown in reporter gene assays. As GlyR alpha1 is selectively transcribed in NRSF/REST free cells, GlyR alpha1 transcripts might serve as positive signals for NRSF deficient cells. In contrast, GlyR beta is nearly ubiquitously transcribed in the cell lines analyzed and, therefore, should represent a useful marker for neoplastic cells. Sequence analysis of GlyR beta transcripts led to the identification of a new splice variant lacking exon 8, GlyR beta Delta8. This suggests that the lack of NRSF in SCLC cells, resulting in the relaxation of neuronal gene suppression, is an important mechanism underlying paraneoplastic expression.
Collapse
Affiliation(s)
- Sabine B Neumann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Valor LM, Castillo M, Ortiz JA, Criado M. Transcriptional regulation by activation and repression elements located at the 5'-noncoding region of the human alpha9 nicotinic receptor subunit gene. J Biol Chem 2003; 278:37249-55. [PMID: 12860975 DOI: 10.1074/jbc.m307043200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha9 subunit is a component of the neuronal nicotinic acetylcholine receptor gene superfamily that is expressed in very restricted locations. The promoter of the human gene has been analyzed in the human neuroblastoma SH-SY5Y, where alpha9 subunit expression was detected, and in C2C12 cells that do not express alpha9. A proximal promoter region (from -322 to +113) showed maximal transcriptional activity in SH-SY5Y cells, whereas its activity in C1C12 cells was much lower. Two elements unusually located at the 5'-noncoding region exhibited opposite roles. A negative element located between +15 and +48 appears to be cell-specific because it was effective in C2C12 but not in SH-SY5Y cells, where it was counterbalanced by the presence of the promoter region 5' to the initiation site. An activating element located between +66 and +79 and formed by two adjacent Sox boxes increased the activity of the alpha9 promoter about 4-fold and was even able to activate other promoters. This element interacts with Sox proteins, probably through a cooperative mechanism in which the two Sox boxes are necessary. We propose that the Sox complex provides an initial scaffold that facilitates the recruiting of the transcriptional machinery responsible for alpha9 subunit expression.
Collapse
Affiliation(s)
- Luis M Valor
- Department of Biochemistry and Molecular Biology, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550 San Juan, Alicante, Spain
| | | | | | | |
Collapse
|
18
|
Schmitt I, Evert BO, Khazneh H, Klockgether T, Wuellner U. The human MJD gene: genomic structure and functional characterization of the promoter region. Gene 2003; 314:81-8. [PMID: 14527720 DOI: 10.1016/s0378-1119(03)00706-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Machado-Joseph disease (MJD) is a progressive neurodegenerative disorder caused by expansion of a CAG motif within the translated region of the human MJD (hMJD) gene which has been mapped to chromosome 14q. In this study, the hMJD gene was identified in two overlapping bacterial artificial chromosome (BAC) clones and contained 11 exons resulting in a 6.14 kb transcript. The 5'-flanking region of the hMJD gene included a TATA-less promoter with GC-rich regions, a CCAAT box and multiple potential SP1 binding sites. Luciferase reporter assays performed in neuronal and non-neuronal human cell lines demonstrated a core promoter within the 200 bp region immediately upstream of the putative transcriptional start site (-89 according to the start codon). DNA-protein interactions defined by electrophoretic mobility shift assays (EMSA) revealed specific binding of nuclear proteins to the putative core promoter region.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, Neurobiology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | | | | | | | |
Collapse
|
19
|
Kobayashi T, Ebihara S, Ishii K, Kobayashi T, Nishijima M, Endo S, Takaku A, Sakagami H, Kondo H, Tashiro F, Miyazaki JI, Obata K, Tamura S, Yanagawa Y. Structural and functional characterization of mouse glutamate decarboxylase 67 gene promoter. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:156-68. [PMID: 12932828 DOI: 10.1016/s0167-4781(03)00138-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuronal expression of the mouse glutamate decarboxylase 67 (mGAD67) gene occurs exclusively in neurons that synthesize and release GABA (GABAergic neurons). This gene is also expressed in pancreatic islet cells and testicular spermatocytes. In order to elucidate the molecular mechanisms underlying the regulation of mGAD67 gene expression, we isolated and characterized the 5'-flanking region of this gene. Sequence analysis of a 10.2-kb DNA fragment of this gene containing a promoter region (8.4 kb) and noncoding exons 0A and 0B revealed the presence of numerous potential neuron-specific cis-regulatory elements. Functional analysis of the 5'-flanking region of exons 0A and 0B by transient transfection into cultured cells revealed that the region -98 to -52 close to exon 0A is important for the transcriptional activity of both exons 0A and 0B. In addition, we used transgenic mice to examine the expression pattern conferred by the 10.2 kb DNA fragment of the mGAD67 gene fused to the bacterial lacZ reporter gene. Transgene expression was observed in neurons of particular brain regions containing abundant GABAergic neurons such as the basal ganglia, in pancreatic islet cells and in testicular spermatocytes and spermatogonia. These results suggest that the 10.2 kb DNA fragment of the mGAD67 gene contains regulatory elements essential for its targeted expression in GABAergic neurons, islet cells and spermatocytes.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arai Y, Ishiwata M, Baba S, Kawasaki H, Kosugi I, Li RY, Tsuchida T, Miura K, Tsutsui Y. Neuron-specific activation of murine cytomegalovirus early gene e1 promoter in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:643-52. [PMID: 12875983 PMCID: PMC1868196 DOI: 10.1016/s0002-9440(10)63691-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The brain is the main target in congenital cytomegalovirus (CMV) infection and immunocompromised patients. No definite evidence that a CMV has special affinity for the central nervous system (CNS) has been published. Here, we generated transgenic mice with an e1 promoter/enhancer region connected to the reporter gene lacZ. Surprisingly, expression of the transgene was completely restricted to the CNS in all lines of transgenic mice. The transgene was expressed in subpopulation of neurons in the cerebral cortex, hippocampus, diencephalon, brainstem, cerebellum, and spinal cord in all of the lines. Non-neuronal cells in the CNS were negative for transgene expression. Activation of the transgene was first observed in neurons of mesencephalon in late gestation, and then the number of positive neurons increased in various parts of the brain as development proceeded. Upon infection of the transgenic mouse brains with MCMV, the location of the activated neurons became more extensive, and the number of such neurons increased. These results suggest that there are host factor(s) that directly activate the MCMV early gene promoter in neurons. This neuron-specific activation may be associated with persistent infection in the brain and may be responsible for the neuronal dysfunction and neuronal cell loss caused by CMV infection.
Collapse
Affiliation(s)
- Yoshifumi Arai
- Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
A subset of genes implicated in genetic and acquired neurological disorders encode proteins essential to neural patterning and neurogenesis. The gene silencing transcription factor neuronal repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) plays a critical role in elaboration of the neuronal phenotype. In neural progenitor and non-neural cells, REST acts by repression of a subset of neural genes important to synaptic plasticity and synaptic remodeling, including the AMPA receptor (AMPAR) subunit GluR2. Here we show that global ischemia triggers REST mRNA and protein expression. REST suppresses GluR2 promoter activity and gene expression in neurons destined to die. Because the GluR2 subunit governs AMPAR Ca2+ permeability, these changes are expected to have profound effects on neuronal survival. In keeping with this concept, acute knockdown of the REST gene by antisense administration prevents GluR2 suppression and rescues post-ischemic neurons from ischemia-induced cell death in an in vitro model. To our knowledge, our study represents the first example of ischemia-induced induction of a master transcriptional regulator gene and its protein expression critical to neural differentiation and patterning in adult neurons. Derepression of REST is likely to be an important mechanism of insult-induced neuronal death.
Collapse
|
22
|
Le Novère N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. JOURNAL OF NEUROBIOLOGY 2002; 53:447-56. [PMID: 12436412 DOI: 10.1002/neu.10153] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nicotinic acetylcholine receptors are made up of homologous subunits, which are encoded by a large multigene family. The wide number of receptor oligomers generated display variable pharmacological properties. One of the main questions underlying research in molecular pharmacology resides in the actual role of this diversity. It is generally assumed that the observed differences between the pharmacology of homologous receptors, for instance, the EC(50) for the endogenous agonist, or the kinetics of desensitization, bear some kind of physiologic relevance in vivo. Here we develop the quite challenging point of view that, at least within a given subfamily of nicotinic receptor subunits, the pharmacologic variability observed in vitro would not be directly relevant to the function of receptor proteins in vivo. In vivo responses are not expected to be sensitive to mild differences in affinities, and several examples of functional replacement of one subunit by another have been unravelled by knockout animals. The diversity of subunits might have been conserved through evolution primarily to account for the topologic diversity of subunit distribution patterns, at the cellular and subcellular levels. A quantitative variation of pharmacological properties would be tolerated within a physiologic envelope, as a consequence of a near-neutral genetic drift. Such a "gratuitous" pharmacologic diversity is nevertheless of practical interest for the design of drugs, which would specifically tackle particular receptor oligomers with a defined subunit composition among the multiple nicotinic receptors present in the organism.
Collapse
Affiliation(s)
- Nicolas Le Novère
- Receptors and Cognition, CNRS URA 2182, Institut Pasteur, 75724 Paris, France.
| | | | | |
Collapse
|
23
|
Okamoto SI, Sherman K, Bai G, Lipton SA. Effect of the ubiquitous transcription factors, SP1 and MAZ, on NMDA receptor subunit type 1 (NR1) expression during neuronal differentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:89-96. [PMID: 12425938 DOI: 10.1016/s0169-328x(02)00440-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The silencer factor NRSF/REST has been reported to restrict expression to neurons of a variety of genes, including that encoding NMDA receptor subunit type 1 (NR1), by suppressing transcription in nonneuronal cells. However, we recently reported that in addition to the absence of NRSF/REST-binding activity, another neuron-specific mechanism is necessary for high level expression of the NR1 gene in neurons. In this study, we explored the mechanism of induction of NR1 promoter activity during neuronal differentiation of the P19 cell line. We identified a 27 base pair GC-rich region in the promoter as an important element responsible for induction of the NR1 gene after neuronal differentiation. We found that the ubiquitous transcription factors SP1 and MAZ bind to this GC-rich region. Surprisingly, the binding activities of SP1 and MAZ are not remarkably changed after neuronal differentiation. Mutations in the SP1 and MAZ sites impair binding of SP1 and MAZ proteins and also decrease NR1 promoter activity. These findings suggest that SP1 and MAZ mediate enhancement of NR1 promoter activity during neuronal differentiation despite the fact that their binding activity does not change.
Collapse
Affiliation(s)
- Shu-ichi Okamoto
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Lu J, Sloan SR. The basic helix-loop-helix domain of the E47 transcription factor requires other protein regions for full DNA binding activity. Biochem Biophys Res Commun 2002; 290:1521-8. [PMID: 11820794 DOI: 10.1006/bbrc.2002.6375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most transcription factors are believed to be composed of independently functioning modules [A. D. Frankel and P. S. Kim (1991) Cell 65, 717-719]. Basic helix-loop-helix (bHLH) transcription factors appear to fit this model, with the HLH domains mediating dimerization, the basic regions mediating DNA binding, and other modules controlling other functions such as transcriptional activation. We tested predictions of this model using forced dimers of bHLH proteins including E47 homodimers and MyoD:E47 heterodimers and found that protein dimers containing complete bHLH domains but lacking other regions of E47 have only 20% of the DNA binding ability and transcriptional transactivation activity of wild-type dimers. These results demonstrate that the bHLH domains do not function as completely independent DNA binding modules. In addition, these results demonstrate that the transcriptional activation domains from a single bHLH protein are sufficient to activate transcription.
Collapse
Affiliation(s)
- Jun Lu
- Joint Program in Transfusion Medicine, and Department of Laboratory Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Ulgiati D, Holers VM. CR2/CD21 proximal promoter activity is critically dependent on a cell type-specific repressor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6912-9. [PMID: 11739509 DOI: 10.4049/jimmunol.167.12.6912] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcription of the human complement receptor type 2 (CR2/CD21) gene is controlled by both proximal promoter and intronic elements. CR2 is primarily expressed on B cells from the immature through mature cell stages. We have previously described the presence of an intronic element that is required for both cell- and stage-specific expression of CR2. In this study, we report the identification of a cell type-specific repressor element within the proximal promoter. This repressor sequence is shown by linker scanning mutagenesis to comprise an E box motif. By supershift analysis this element binds members of the basic helix-loop-helix family of proteins, in particular E2A gene products. Mutational analysis demonstrates that binding of E2A proteins is critical for functioning of this repressor. Thus, E2A activity is key not only for early B cell development, but also for controlling CR2 expression, a gene expressed only during later stages of ontogeny.
Collapse
Affiliation(s)
- D Ulgiati
- Department of Immunology and Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
26
|
Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, Burger C, Moniwa M, Davie JR, Bowers WJ, Federoff HJ, Rose DW, Rosenfeld MG, Brehm P, Mandel G. Regulation of neuronal traits by a novel transcriptional complex. Neuron 2001; 31:353-65. [PMID: 11516394 DOI: 10.1016/s0896-6273(01)00371-3] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transcriptional repressor, REST, helps restrict neuronal traits to neurons by blocking their expression in nonneuronal cells. To examine the repercussions of REST expression in neurons, we generated a neuronal cell line that expresses REST conditionally. REST expression inhibited differentiation by nerve growth factor, suppressing both sodium current and neurite growth. A novel corepressor complex, CoREST/HDAC2, was shown to be required for REST repression. In the presence of REST, the CoREST/HDAC2 complex occupied the native Nav1.2 sodium channel gene in chromatin. In neuronal cells that lack REST and express sodium channels, the corepressor complex was not present on the gene. Collectively, these studies define a novel HDAC complex that is recruited by the C-terminal repressor domain of REST to actively repress genes essential to the neuronal phenotype.
Collapse
Affiliation(s)
- N Ballas
- Howard Hughes Medical Institute, State University of New York, Stony Brook, 11794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wells T, Carter DA. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy? J Neurosci Methods 2001; 108:111-30. [PMID: 11478971 DOI: 10.1016/s0165-0270(01)00391-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As mammalian genome projects move towards completion, the attention of molecular neuroscientists is currently moving away from gene identification towards both cell-specific gene expression patterns (neuronal transcriptions) and protein expression/interactions (neuronal proteomics). In the long term, attention will increasingly be directed towards experimental interventions which are able to question neuronal function in a sophisticated manner that is cognisant of both transcriptomic and proteomic organization. Central to this effort will be the application of a new generation of transgenic approaches which are now evolving towards an appropriate level of molecular, temporal and spatial resolution. In this review, we summarize recent developments in transgenesis, and show how they have been applied in the principal model species for neuroscience, namely rats and mice. Current concepts of transgene design are also considered together with an overview of new genetically-encoded tools including both cellular indicators such as fluorescent activity reporters, and cellular regulators such as dominant negative signalling factors. Application of these tools in a whole animal context can be used to question both basic concepts of brain function, and also current concepts of underlying dysfuction in neurological diseases.
Collapse
Affiliation(s)
- T Wells
- School of Biosciences, Cardiff University, PO Box 911, Museum Avenue, Cardiff CF10 3US, UK
| | | |
Collapse
|
28
|
Borges K, Dingledine R. Functional organization of the GluR1 glutamate receptor promoter. J Biol Chem 2001; 276:25929-38. [PMID: 11340067 DOI: 10.1074/jbc.m009105200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GluR1 glutamate receptor subunit is expressed in most brain areas and plays a major role in excitatory synaptic transmission. We cloned and sequenced 5 kilobase pairs of the rat GluR1 promoter and identified multiple transcriptional start sites between -295 and -202 (relative to the first ATG). Similar to other glutamate receptor subunit promoters, the GluR1 promoter lacks TATA and CAAT elements in that region but binds Sp1 proteins at two sites. Promoter activity of GluR1 fragments cloned into pGL3 was assessed by immunocytochemistry and by measuring luciferase activity after transfection into primary cultures of rat cortical neurons and glia. GluR1 promoter activity was stronger in neurons, with neuronal specificity appearing to reside mainly within the neuronal expression-enhancing regions, -1395 to -743 and -253 to -48. The latter region contains 4 sites that bound recombinant cAMP-response element-binding proteins and a glial silencing region between -253 and -202. In both neurons and glia, promoter activity was increased by a 64-base pair GA repeat upstream of the initiation sites and reduced by a 57-base pair region that contained an N box. In contrast to the GluR2 promoter the regulatory regions are mainly located outside of the GluR1 initiation region.
Collapse
Affiliation(s)
- K Borges
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
29
|
Terzano S, Flora A, Clementi F, Fornasari D. The minimal promoter of the human alpha 3 nicotinic receptor subunit gene. Molecular and functional characterization. J Biol Chem 2000; 275:41495-503. [PMID: 11018033 DOI: 10.1074/jbc.m006197200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minimal promoter of the human alpha(3) nicotinic receptor subunit gene has been mapped to a region of 60 base pairs and found to contain two Sp1 sites, one of which is essential for promoter activity. DNase footprinting has revealed the presence of another region of interaction with nuclear factors (named F2) immediately downstream of the Sp1 sites. This region has been found to be functional since it is capable of stimulating the minimal promoter. The F2 protection is completely and specifically competed by an AP2 consensus oligonucleotide that has been proved to bind AP2alpha exclusively. However, the AP2alpha recombinant protein was unable to bind the F2 region directly, thus suggesting that AP2alpha may participate in F2 protection by protein-protein interactions with other nuclear factors. The minimal promoter has been shown to be stimulated by two additional regions, one located downstream of F2 and the other upstream of the minimal promoter itself. In neuronal cells, the combined stimulatory activities of these three regions have synergistic effects, whereas in non-neuronal cells, there is a negative interference between the upstream and downstream regions. These opposite transcriptional effects may account for at least part of the neuro-specific expression profile of the alpha(3) gene.
Collapse
Affiliation(s)
- S Terzano
- Department of Medical Pharmacology, University of Milan and CNR Cellular and Molecular Pharmacology Center, Via Vanvitelli 32, 20129 Milano, Italy
| | | | | | | |
Collapse
|
30
|
Paquette AJ, Perez SE, Anderson DJ. Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo. Proc Natl Acad Sci U S A 2000; 97:12318-23. [PMID: 11050251 PMCID: PMC17339 DOI: 10.1073/pnas.97.22.12318] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF; also known as REST for repressor element-1 silencing transcription factor) is a transcriptional repressor of multiple neuronal genes, but little is known about its function in vivo. NRSF is normally down-regulated upon neuronal differentiation. Constitutive expression of NRSF in the developing spinal cord of chicken embryos caused repression of two endogenous target genes, N-tubulin and Ng-CAM, but did not prevent overt neurogenesis. Nevertheless, commissural neurons that differentiated while constitutively expressing NRSF showed a significantly increased frequency of axon guidance errors. These data suggest that down-regulation of NRSF is necessary for the proper development of at least some classes of neurons in vivo.
Collapse
Affiliation(s)
- A J Paquette
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
31
|
Han ZY, Le Novère N, Zoli M, Hill JA, Champtiaux N, Changeux JP. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 2000; 12:3664-74. [PMID: 11029636 DOI: 10.1046/j.1460-9568.2000.00262.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here a systematic mapping of nAChR subunit mRNAs in Macaca mulatta brain. A fragment, from the transmembrane segments MIII to MIV of Macaca neuronal nAChR subunits was cloned, and shown to exhibit high identity (around 95%) to the corresponding human subunits. Then, specific oligodeoxynucleotides were synthesized for in situ hybridization experiments. Both alpha4 and beta2 mRNA signals were widely distributed in the brain, being stronger in the thalamus and in the dopaminergic cells of the mesencephalon. Most brain nuclei displayed both alpha4 and beta2 signals with the exception of some basal ganglia regions and the reticular thalamic nucleus which were devoid of alpha4 signal. alpha6 and beta3 mRNA signals were selectively concentrated in the substantia nigra and the medial habenula. The strongest signals for alpha3 or beta4 mRNAs were found in the epithalamus (medial habenula and pineal gland), whereas there were no specific alpha3 or beta4 signals in mesencephalic dopaminergic nuclei. alpha5 and alpha7 mRNA signals were found in several brain areas, including cerebral cortex, thalamus and substantia nigra, although at a lower level than alpha4 and beta2. The distribution of alpha3, alpha4, alpha5, alpha6, alpha7, beta2, beta3 and beta4 subunit mRNAs in the monkey is substantially similar to that observed in rodent brain. Surprisingly, alpha2 mRNA signal was largely distributed in the Macaca brain, at levels comparable with those of alpha4 and beta2. This observation represents the main difference between rodent and Macaca subunit mRNA distribution and suggests that, besides alpha4beta2*, alpha2beta2* nAChRs constitute a main nAChR isoform in primate brain.
Collapse
Affiliation(s)
- Z Y Han
- CNRS URA 2182, 'Récepteurs et Cognition', Institut Pasteur, 25-28, rue du Dr Roux, 75724 Paris Cédex 15, France
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The establishment of novel animal models using gene targeting and transgenic technology has opened a new area of neuropharmacological research. For the first time, it became possible to alter the expression of a gene in a specific cell type of an intact animal by either overexpression, inhibition or ablation. This review describes the technology and lists the relevant tools, such as reporter genes, suicide genes, immortalizing genes, and promoters, necessary for the targeted expression of these and other genes in specific cells of the central nervous system. In addition, the problem is discussed that the mouse is the species in which this technology is by far the most developed, while the rat has been used as the model species for neuropharmacology during the last century.
Collapse
Affiliation(s)
- M Bader
- Max-Delbrück-Center for Molecular Medicine, Transgenics in Berlin-Buch GmbH, Berlin, Germany
| |
Collapse
|
33
|
Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000; 20:429-40. [PMID: 10611221 PMCID: PMC85097 DOI: 10.1128/mcb.20.2.429-440.2000] [Citation(s) in RCA: 1368] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M E Massari
- Department of Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
34
|
Okamoto S, Sherman K, Lipton SA. Absence of binding activity of neuron-restrictive silencer factor is necessary, but not sufficient for transcription of NMDA receptor subunit type 1 in neuronal cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:44-54. [PMID: 10640675 DOI: 10.1016/s0169-328x(99)00250-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuron-restrictive silencer factor (NRSF, also termed REST) has been proposed to restrict expression of a set of genes to neurons by blocking their transcription in nonneuronal cells. The N-methyl-D-aspartate (NMDA) receptor subunit type I (NR1) gene contains a consensus sequence for the NRSF/REST binding site (NRSE/RE1). In this study, we evaluated the contribution of NRSF/REST to neuronal specificity of the NR1 gene. NR1 mRNA expression correlates with the absence of NRSF/REST binding activity, rather than expression of NRSF/REST protein, in several cell lines, suggesting that the absence of NRSF/REST-binding activity is necessary for the expression of the NR1 gene. HeLa cells, which do not express the NR1 gene, have NRSF/REST binding activity to the NR1 NRSE/RE1, resulting in inhibition of NR1 promoter activity. However, we also found that two nonneuronal cell lines (C6 glioma and P19 embryonal carcinoma) that lack NRSF/REST-binding activity, manifest only small amounts of NR1 mRNA compared to neuronal cell lines (PC12 pheochromocytoma and neuronally differentiated P19 cells). The enhancement of NR1 mRNA levels during neuronal differentiation of P19 cells is accompanied by an increase in NR1 promoter activity in an NRSF/REST-binding independent manner. Our results suggest therefore that the absence of NRSF/REST-binding activity is necessary but not sufficient for robust NR1 transcription in neuronal cells.
Collapse
Affiliation(s)
- S Okamoto
- Cerebrovascular and NeuroScience Research Institute, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, LMRC 1st floor, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
35
|
Poiraud E, Gruszczynski C, Porteu A, Cambier H, Escurat M, Koulakoff A, Kahn A, Berwald-Netter Y, Gautron S. The Na-G ion channel is transcribed from a single promoter controlled by distinct neuron- and Schwann cell-specific DNA elements. J Neurochem 1999; 73:2575-85. [PMID: 10582621 DOI: 10.1046/j.1471-4159.1999.0732575.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na-G is a putative sodium (or cationic) channel expressed in neurons and glia of the PNS, in restricted neuronal subpopulations of the brain, and in several tissues outside the nervous system, like lung and adrenal medulla. To analyze the mechanisms underlying tissue-specific expression of this channel, we isolated the 5' region of the corresponding gene and show that Na-G mRNA transcription proceeds from a single promoter with multiple initiation sites. By transgenic mice studies, we demonstrate that 600 bp containing the Na-G proximal promoter region and the first exon are sufficient to drive the expression of a beta-galactosidase reporter gene in neurons of both CNS and PNS, whereas expression in Schwann cells depends on more remote DNA elements lying in the region between -6,500 and -1,050 bp upstream of the main transcription initiation sites. Crucial elements for lung-specific expression seem to be located in the region between -1,050 and -375 bp upstream of the promoter. Using in vivo footprint experiments, we demonstrate that several sites of the Na-G proximal promoter region are bound specifically by nuclear proteins in dorsal root ganglion neurons, as compared with nonexpressing hepatoma cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Central Nervous System/metabolism
- DNA Footprinting
- DNA, Complementary/genetics
- Exons/genetics
- Ganglia, Spinal/metabolism
- Genes, Reporter
- Liver/metabolism
- Lung/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscles/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/metabolism
- Neurons, Afferent/metabolism
- Nuclear Proteins/metabolism
- Organ Specificity
- Peripheral Nervous System/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred F344
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Schwann Cells/metabolism
- Sodium Channels/biosynthesis
- Sodium Channels/genetics
- Transcription, Genetic
- Voltage-Gated Sodium Channels
- beta-Galactosidase/biosynthesis
Collapse
Affiliation(s)
- E Poiraud
- Biochimie Cellulaire, CNRS UPR 9065, Collège de France, Paris
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The glucocorticoid signaling pathway is responsive to a considerable number of internal and external signals and can therefore establish diverse patterns of gene expression. A glial-specific pattern, for example, is shown by the glucocorticoid-inducible gene glutamine synthetase. The enzyme is expressed at a particularly high level in glial cells, where it catalyzes the recycling of the neurotransmitter glutamate, and at a low level in most other cells, for housekeeping duties. Glial specificity of glutamine synthetase induction is achieved by the use of positive and negative regulatory elements, a glucocorticoid response element and a neural restrictive silencer element. Though not glial specific by themselves, these elements may establish a glial-specific pattern of expression through their mutual activity and their combined effect. The inductive activity of glucocorticoids is markedly repressed by the c-Jun protein, which is expressed at relatively high levels in proliferating glial cells. The signaling pathway of c-Jun is activated by the disruption of glia-neuron cell contacts, by transformation with v-src, and in proliferating retinal cells of early embryonic ages. The c-Jun protein inhibits the transcriptional activity of the glucocorticoid receptor and thus represses glutamine synthetase expression. This repressive mechanism might also affect the ability of glial cells to cope with glutamate neurotoxicity in injured tissues.
Collapse
Affiliation(s)
- L Vardimon
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
37
|
Avisar N, Shiftan L, Ben-Dror I, Havazelet N, Vardimon L. A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids. J Biol Chem 1999; 274:11399-407. [PMID: 10196233 DOI: 10.1074/jbc.274.16.11399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamine synthetase is a key enzyme in the recycling of the neurotransmitter glutamate. Expression of this enzyme is regulated by glucocorticoids, which induce a high level of glutamine synthetase in neural but not in various non-neural tissues. This is despite the fact that non-neural cells express functional glucocorticoid receptor molecules capable of inducing other target genes. Sequencing and functional analysis of the upstream region of the glutamine synthetase gene identified, 5' to the glucocorticoid response element (GRE), a 21-base pair glutamine synthetase silencer element (GSSE), which showed considerable homology with the neural restrictive silencer element NRSE. The GSSE was able to markedly repress the induction of gene transcription by glucocorticoids in non-neural cells and in embryonic neural retina. The repressive activity of the GSSE could be conferred on a heterologous GRE promoter and was orientation- and position-independent with respect to the transcriptional start site, but appeared to depend on a location proximal to the GRE. Gel-shift assays revealed that non-neural cells and cells of early embryonic retina contain a high level of GSSE binding activity and that this level declines progressively with age. Our results suggest that the GSSE might be involved in the restriction of glutamine synthetase induction by glucocorticoids to differentiated neural tissues.
Collapse
Affiliation(s)
- N Avisar
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
38
|
Abstract
Studies describing the structures of the M1, M2 and M4 muscarinic acetylcholine receptors (mAChR) genes and the genetic elements that control their expression are reviewed. In particular, we focus on the role of the neuron-restrictive silencer element/restriction element-1 (NRSE/RE-1) in the regulation of the M4 mAChR gene. The NRSE/RE-1 was first identified as a genetic control element that prevents the expression of the SCG-10 and type II sodium channel (NaII) genes in non-neuronal cells in culture. The NRSE/RE-1 inhibits gene expression by binding the repressor/silencer protein NRSF/REST, which is present in many non-neuronal cell lines and tissues. Our studies show that although the expression of the M4 mAChR gene is inhibited by NRSF/REST, this inhibition is not always complete. Rather, the efficiency of silencing by NRSF/REST is different in different cells. A plausible explanation for this differential silencing is that the NRSF/RE-1 interacts with distinct sets of promoter binding proteins in different types of cells. We hypothesize that modulation of NRSF/REST silencing activity by these proteins contributes to the cell-specific pattern of expression of the M4 mAChR in neuronal and non-neuronal cells. Recent studies that suggest a more complex role for the NRSE/RE-1 in regulating gene expression are also discussed.
Collapse
Affiliation(s)
- D Saffen
- Department of Neurochemistry, Graduate School of Medicine, Tokyo University, Japan
| | | | | | | |
Collapse
|
39
|
Heckert LL, Daggett MA, Chen J. Multiple promoter elements contribute to activity of the follicle-stimulating hormone receptor (FSHR) gene in testicular Sertoli cells. Mol Endocrinol 1998; 12:1499-512. [PMID: 9773974 PMCID: PMC1496885 DOI: 10.1210/mend.12.10.0183] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The FSH receptor (FSHR) is expressed only in granulosa cells of the ovary and Sertoli cells of the testis. This highly specific pattern of gene expression asserts that transcriptional events unique to these two cell types are responsible for activation of the FSHR gene. We have characterized the promoter elements required for activity of the rat FSHR gene in a Sertoli cell line MSC-1, primary cultures of rat Sertoli cells, and two non-Sertoli cell lines. Transient transfection analysis of deletion and block replacement mutants identified several elements, both 5' and 3' to the transcriptional start sites, that are essential for full promoter activity in Sertoli cells. These studies confirmed the use of an important E box element (CACGTG), which had the single greatest impact on promoter function. Bases within the core CACGTG of the E box, as well as flanking sequences, were shown to be essential for its function. Electrophoretic mobility shift assays identified both upstream stimulatory factor 1 (USF1) and USF2 as primary components of the complexes binding the E box. Sequence requirements for USF binding in vitro modestly diverged from the sequence requirements for in vivo function of the element. Comparison of the E box binding proteins in different cell types revealed that similar proteins bind the E box in Sertoli and non-Sertoli cell lines. Extracts from primary cultures of rat and mouse Sertoli cells have a second E box-binding complex that cross-reacts with USF antibodies that is not present in the cell lines.
Collapse
Affiliation(s)
- L L Heckert
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City 66160, USA.
| | | | | |
Collapse
|
40
|
Shacka JJ, Robinson SE. Postnatal developmental regulation of neuronal nicotinic receptor subunit alpha 7 and multiple alpha 4 and beta 2 mRNA species in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:67-75. [PMID: 9706392 DOI: 10.1016/s0165-3806(98)00058-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study examined the postnatal development of neuronal nicotinic receptor (nAChR) alpha 7, alpha 4 and beta 2 subunit mRNA in the Sprague Dawley rat brain. The hippocampus, septum and cortex were removed on postnatal day 1 (P1), P7, P14, or P28 and analyzed by sex. Northern analysis of cortical and pooled hippocampal and septal total RNA with 32P-alpha-dCTP-labeled alpha 7, alpha 4 (recognizing alpha 4.1 and alpha 4.2 mRNA), and beta 2 nAChR cDNA probes identified three (2.4, 3.8 and 8.0 kb) alpha 4, four (3.5, 5.0, 7.5 and 10.0 kb) beta 2 and a single 5.7 kb alpha 7 mRNA species. Cortical alpha 4 mRNA peaked on P14 and remained high on P28, whereas hippocampal/septal alpha 4 mRNA was higher on P7 and P14 than on P1 and P28. Expression of cortical and hippocampal/septal beta 2 mRNAs decreased on P7, followed by a dramatic peak on P14. alpha 7 mRNA peaked on P7. Throughout development, 2.4 kb alpha 4 mRNA was more intense than 3.8 kb alpha 4 mRNA, whereas 5.0 kb beta 2 mRNA was the most intense cortical and hippocampal/septal beta 2 mRNA species. The alpha 4.1-specific cDNA probe detected similar-sized alpha 4 bands as the pan-specific alpha 4 cDNA probe, therefore precluding the identification of any band as alpha 4.2-specific. These results suggest that postnatal expression of alpha 4 and alpha 7 but not beta 2 mRNAs is brain region-specific, and that the contribution of multiple nAChR subunit mRNA species in development may vary.
Collapse
Affiliation(s)
- J J Shacka
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613, USA
| | | |
Collapse
|
41
|
Watanabe H, Zoli M, Changeux JP. Promoter analysis of the neuronal nicotinic acetylcholine receptor alpha4 gene: methylation and expression of the transgene. Eur J Neurosci 1998; 10:2244-53. [PMID: 9749753 DOI: 10.1046/j.1460-9568.1998.00235.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR) subunit genes compose a family of genes. The major isoform of nAChR in the brain is made up of the alpha4 and beta2 subunits and possesses a high affinity for nicotine. To investigate the mechanisms of the regulation of the nAChR alpha4 gene expression in mouse, its genomic DNA was cloned and characterized. The transcription initiation site was mapped by primer extension and RNase protection experiments and localized at about 254 bp upstream of the translation initiation site. The 5' flanking region of this gene did not have typical TATA box but GC-rich sequences were found around the initiation site. Methylation analysis of this region revealed that genomic DNAs from liver and muscle are partially methylated, whereas little methylation was observed in genomic DNA from brain. To characterize the cis-acting elements driving cell-specific expression of the alpha4 subunit gene, we produced lines of transgenic mice which carry a series of fragments of the alpha4 gene fused with bacterial lacZ as a reporter gene. An 11.5-kb DNA fragment containing 9 kb of the region upstream of the transcription initiation site and the first intron was found to confer an expression pattern which coincides rather well with the endogenous gene expression pattern at early embryonic stages, suggesting that the elements necessary for the onset of alpha4 gene expression are located in this region. A DNA fragment containing the 1.8-kb upstream sequence and the first intron drove expression of lacZ in a limited subset of alpha4 expressing cells, whereas the 1.8-kb upstream sequence alone did not elicit any significant expression. These results show that both upstream and intronic sequences are important for cell-specific expression of the nAChR alpha4 gene.
Collapse
Affiliation(s)
- H Watanabe
- Neurobiologie Moléculaire, CNRS URA 1284, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
42
|
Shacka JJ, Robinson SE. Exposure to prenatal nicotine transiently increases neuronal nicotinic receptor subunit alpha7, alpha4 and beta2 messenger RNAs in the postnatal rat brain. Neuroscience 1998; 84:1151-61. [PMID: 9578402 DOI: 10.1016/s0306-4522(97)00564-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study determined the effects of prenatal nicotine exposure (2 mg/kg/day) in Sprague Dawley CD rats via subcutaneously implanted osmotic minipumps, during gestational days 7-21, on postnatal levels of neuronal nicotinic receptor alpha4, alpha7 and beta2 subunit messenger RNAs. Northern analysis of postnatal day 1, 7, 14 and 28 hippocampal/septal and cortical total RNA using alpha-[32P]dCTP-labeled alpha4, alpha7 and beta2 complementary DNA probes identified a single (5.7-kb) alpha7 messenger RNA, three (2.4-, 3.8- and 8.0-kb) alpha4 messenger RNAs and four (3.7-, 5.0-, 7.5- and 10.0-kb) beta2 messenger RNAs. In comparison to prenatal saline, prenatal nicotine produced several significantly higher messenger RNA levels (cortical: 5.7-kb alpha7, 2.4-, 3.8- and 8.0-kb alpha4, 10.0-kb beta2; hippocampal/septal: 2.4- and 8.0-kb alpha4); these increases occurred predominantly on, but were not restricted to, postnatal day 14. Effects of nicotine were generally resolved by postnatal day 28. Collapsing the data across sex and age, a significant treatment effect indicated that hippocampal/septal and cortical 8.0-kb alpha4 messenger RNA levels and 10.0-kb beta2 messenger RNA levels were significantly higher following prenatal nicotine exposure. This is the first study indicating that prenatal nicotine produces alterations in developing postnatal rat neuronal nicotinic receptor messenger RNA levels, possibly by premature stimulation of neuronal nicotinic receptors. These results further implicate the teratogenic potential of nicotine in postnatal neuronal development.
Collapse
Affiliation(s)
- J J Shacka
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613, USA
| | | |
Collapse
|
43
|
Kimura I. Calcium-dependent desensitizing function of the postsynaptic neuronal-type nicotinic acetylcholine receptors at the neuromuscular junction. Pharmacol Ther 1998; 77:183-202. [PMID: 9576627 DOI: 10.1016/s0163-7258(97)00113-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several subunits that commonly have been regarded as neuronal-type nicotinic acetylcholine receptor (nAChR) subtypes, have been found in the postjunctional endplate membrane of adult skeletal muscle fibres. The postsynaptic function of these neuronal-type nAChR subtypes at the neuromuscular junction has been investigated by using aequorin luminescence and fluorescence confocal imaging. A biphasic elevation of intracellular Ca2+ is elicited by prolonged nicotinic action at the mouse muscle endplates. The fast and slow Ca2+ components are operated by a postsynaptic muscle- and colocalized neuronal-type nAChR, respectively. Neuromuscular functions may be regulated by a dual nAChR system to maintain the normal postsynaptic excitability. Certain neuronal-type nAChR may be endowed with the same functional role in the central nervous system also.
Collapse
Affiliation(s)
- I Kimura
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Japan
| |
Collapse
|
44
|
Katarova Z, Mugnaini E, Sekerková G, Mann JR, Aszódi A, Bösze Z, Greenspan R, Szabó G. Regulation of cell-type specific expression of lacZ by the 5'-flanking region of mouse GAD67 gene in the central nervous system of transgenic mice. Eur J Neurosci 1998; 10:989-99. [PMID: 9753166 DOI: 10.1046/j.1460-9568.1998.00109.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional regulation of the murine gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was studied by beta-galactosidase histochemistry in transgenic mice carrying fusion genes between progressively longer portions of the 5'-upstream regulatory region of GAD67 and E. coli lacZ. No expression was detected in brains of mice carrying 1.3 kb of upstream sequences including a housekeeping and two conventional promoters, and two negative regulatory elements with homology to known silencers. In mice carrying the same portion of the promoter region plus the first intron, lacZ expression in the adult central nervous system was found in few, exclusively neuronal sites. The number of correctly stained GABAergic centres increased dramatically with increasing the length of the 5'-upstream region included in the construct which suggests that multiple putative spatial enhancers are located in this region. Their action is influenced by epigenetic mechanisms that may be due to site-of-integration and transgene copy-number effects. Additional cis-acting elements are needed to obtain fully correct expression in all GABAergic neurons of the adult central nervous system.
Collapse
Affiliation(s)
- Z Katarova
- Institute of Biochemistry, Biological Research Center, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Nicotine is a very widely used drug of abuse, which exerts a number of neurovegetative, behavioural and psychological effects by interacting with neuronal nicotinic acetylcholine receptors (NAChRs). These receptors are distributed widely in human brain and ganglia, and form a family of ACh-gated ion channels of different subtypes, each of which has a specific pharmacology and physiology. As human NAChRs have been implicated in a number of human central nervous system disorders (including the neurodegenerative Alzheimer's disease, schizophrenia and epilepsy), they are suitable potential targets for rational drug therapy. Much of our current knowledge about the structure and function of NAChRs comes from studies carried out in other species, such as rodents and chicks, and information concerning human nicotinic receptors is still incomplete and scattered in the literature. Nevertheless, it is already evident that there are a number of differences in the anatomical distribution, physiology, pharmacology, and expression regulation of certain subtypes between the nicotinic systems of humans and other species. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining the molecular basis of their functional diversity viewed mainly from pharmacological and biochemical perspectives. It will also summarize our current knowledge concerning the structure and function of the NAChRs expressed by other species, and the newly discovered drugs used to classify their numerous subtypes. Finally, the role of NAChRs in behaviour and pathology will be considered.
Collapse
Affiliation(s)
- C Gotti
- Department of Medical Pharmacology, University of Milan, Italy
| | | | | |
Collapse
|
46
|
Arnold DB, Heintz N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc Natl Acad Sci U S A 1997; 94:8842-7. [PMID: 9238065 PMCID: PMC23159 DOI: 10.1073/pnas.94.16.8842] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Calbindin D28 encodes a calcium binding protein that is expressed in the cerebellum exclusively in Purkinje cells. We have used biolistic transfection of organotypic slices of P12 cerebellum to identify a 40-bp element from the calbindin promoter that is necessary and sufficient for Purkinje cell specific expression in this transient in situ assay. This element (PCE1) is also present in the calmodulin II promoter, which regulates expression of a second Purkinje cell Ca2+ binding protein. Expression of high levels of exogenous calbindin or calretinin decreased transcription mediated by PCE1 in Purkinje cells 2.5- to 3-fold, whereas the presence of 1 microM ionomycin in the extracellular medium increased expression. These results demonstrate that PCE1 is a component of a cell-specific and Ca2+-sensitive transcriptional regulatory mechanism that may play a key role in setting the Ca2+ buffering capacity of Purkinje cells.
Collapse
Affiliation(s)
- D B Arnold
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
47
|
Sekerková G, Katarova Z, Joó F, Wolff JR, Prodan S, Szabó G. Visualization of beta-galactosidase by enzyme and immunohistochemistry in the olfactory bulb of transgenic mice carrying the LacZ transgene. J Histochem Cytochem 1997; 45:1147-55. [PMID: 9267475 DOI: 10.1177/002215549704500812] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the olfactory bulb (OB) of a transgenic mouse line that carries the bacterial LacZ gene under the control of the 5'-regulatory region of the GAD67 gene, expression of the beta-galactosidase was confined almost exclusively to the non-GABAergic mitral and tufted cells. By light microscopy, enzyme histochemistry showed strong staining in the cell bodies and faint diffuse staining in the axons and dendrites. With immunohistochemistry for beta-galactosidase the entire cytoplasm, including the axons and dendrites, was strongly stained. By electron microscopy, beta-galactosidase enzyme histochemistry resulted in a submicroscopic reaction product that was diffusely distributed in the cytoplasm of neurons. In addition, large deposits of the reaction product were also seen attached to the cytoplasmic side of the membranes. In contrast, when the intracellular localization of beta-galactosidase was determined by immunohistochemistry, homogeneous cytoplasmic staining was obtained that filled the entire cytoplasm including the terminal dendrites and fine axons. Therefore, synaptic contacts of the beta-galactosidase-positive output neurons with other beta-galactosidase-negative neuronal cells were readily recognized in the OB. As we demonstrated, transgenic mouse lines expressing the LacZ reporter gene in a well-defined neuronal subpopulation can be used to follow beta-galactosidase-positive neurons and to directly identify their synaptic connections.
Collapse
Affiliation(s)
- G Sekerková
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
48
|
Bessis A, Champtiaux N, Chatelin L, Changeux JP. The neuron-restrictive silencer element: a dual enhancer/silencer crucial for patterned expression of a nicotinic receptor gene in the brain. Proc Natl Acad Sci U S A 1997; 94:5906-11. [PMID: 9159173 PMCID: PMC20879 DOI: 10.1073/pnas.94.11.5906] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neuron-restrictive silencer element (NRSE) has been identified in several neuronal genes and confers neuron specificity by silencing transcription in nonneuronal cells. NRSE is present in the promoter of the neuronal nicotinic acetylcholine receptor beta2-subunit gene that determines its neuron-specific expression in the nervous system. Using transgenic mice, we show that NRSE may either silence or enhance transcription depending on the cellular context within the nervous system. In vitro in neuronal cells, NRSE activates transcription of synthetic promoters when located downstream in the 5' untranslated region, or at less than 50 bp upstream from the TATA box, but switches to a silencer when located further upstream. In contrast, in nonneuronal cells NRSE always functions as a silencer. Antisense RNA inhibition shows that the NRSE-binding protein REST contributes to the activation of transcription in neuronal cells.
Collapse
Affiliation(s)
- A Bessis
- Neurobiologie Moléculaire, UA CNRS D1284, Département des Biotechnologies, Institut Pasteur 25/28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
49
|
Tapia-Ramírez J, Eggen BJ, Peral-Rubio MJ, Toledo-Aral JJ, Mandel G. A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc Natl Acad Sci U S A 1997; 94:1177-82. [PMID: 9037026 PMCID: PMC19764 DOI: 10.1073/pnas.94.4.1177] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1996] [Accepted: 12/16/1996] [Indexed: 02/03/2023] Open
Abstract
The type II voltage-dependent sodium channel is present in neuronal cells, where it mediates the propagation of nerve impulses. Restricted expression of the type II sodium channel gene to neurons is due, at least in part, to binding of the repressor protein REST (also termed NRSF or XBR) to the RE1 (also called NRSE) sequence in the type II sodium channel gene. Previous studies have shown that a domain in REST containing eight GL1-Krüppel zinc finger motifs mediates DNA binding. Deletional and GAL4-fusion gene analyses now reveal repressor domains that lie outside of the DNA-binding domain in both the amino and carboxyl termini of REST. Mutational analysis further identifies a single zinc finger motif in the carboxyl-terminal domain as being essential for repressing type II sodium channel reporter genes. These studies reveal two domains in REST that may mediate interactions with other proteins involved in restricting expression of a large set of genes to the vertebrate nervous system.
Collapse
Affiliation(s)
- J Tapia-Ramírez
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA
| | | | | | | | | |
Collapse
|
50
|
Fornasari D, Battaglioli E, Flora A, Terzano S, Clementi F. Structural and functional characterization of the human alpha3 nicotinic subunit gene promoter. Mol Pharmacol 1997; 51:250-61. [PMID: 9203630 DOI: 10.1124/mol.51.2.250] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe the structural and functional features of the human alpha3 nicotinic receptor subunit promoter. A 0.35-kb region immediately upstream of the start codon was identified that when transfected in human neuroblastoma cells was able to drive the expression of the luciferase reporter gene with a strength comparable to that of the well-characterized simian virus 40 promoter/enhancer. This region displayed the features of a multistart-site, GC-rich, TATA-less, and CAAT-less promoter, containing many overlapping Sp1 and AP-2 putative binding sites. Further dissections of the 0.35-kb fragment revealed that its 3' region, specifying the 5' UT of the mRNA, plays a relevant positive effect in determining the strength of the promoter. This region contains putative cis-acting elements for AP-2, nuclear factor-kappaB, and the recently described multiple-start site element downstream-1. By mutation analysis, we showed that these sites are functional and when combined increase the promoter activity by 4-fold. The 0.35-kb promoter was found to be under the negative control of upstream sequences that include a modern Alu repeat. The alpha3 Alu repeat works as a composite region, containing both positive and negative elements that control the activity of the downstream promoter. Finally, we investigated the tissue-specific activity of the human alpha3 gene 5' regulatory sequences, showing that they are able to drive the expression of the reporter gene preferentially in neuronal cells.
Collapse
Affiliation(s)
- D Fornasari
- CNR Cellular and Molecular Pharmacology Center, Department of Medical Pharmacology, University of Milan, Italy.
| | | | | | | | | |
Collapse
|