1
|
Schnabl KB, Mandemaker LDB, Ganjkhanlou Y, Vollmer I, Weckhuysen BM. Green Additives in Chitosan-based Bioplastic Films: Long-term Stability Assessment and Aging Effects. CHEMSUSCHEM 2024; 17:e202301426. [PMID: 38373235 DOI: 10.1002/cssc.202301426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Although biomass-based alternatives for the manufacturing of bioplastic films are an important aspect of a more sustainable future, their physicochemical properties need to be able to compete with the existing market to establish them as a viable alternative. One important factor that is often neglected is the long-term stability of renewables-based functional materials, as they should neither degrade after a day or week, nor last forever. One material showing high potential in this regard, also due to its intrinsic biodegradability and antibacterial properties, is chitosan, which can form stable, self-standing films. We previously showed that green additives introduce a broad tunability of the chitosan-based material properties. In this work, we investigate the long-term stability and related degradation processes of chitosan-based bioplastics by assessing their physicochemical properties over 400 days. It was found that the film properties change similarly for samples stored in the fridge (4 °C, dark) as at ambient conditions (20 °C, light/dark cycles of the day). Additives with high vapor pressure, such as glycerol, evaporate and degrade, causing both brittleness and discoloration. In contrast, films with the addition of crosslinking additives, such as citric acid, show high stability also over a long time, bearing great preconditions for practical applications. This knowledge serves as a stepping-stone to utilizing chitosan as an alternative material for renewable-resourced bioplastic products.
Collapse
Affiliation(s)
- Kordula B Schnabl
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Yadolah Ganjkhanlou
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Queiroz de Oliveira W, Angélica Neri Numa I, Alvim ID, Azeredo HMC, Santos LB, Borsoi FT, de Araújo FF, Sawaya ACHF, do Nascimento GC, Clerici MTPS, do Sacramento CK, Maria Pastore G. Multilayer microparticles for programmed sequential release of phenolic compounds from Eugenia stipitata: Stability and bioavailability. Food Chem 2024; 443:138579. [PMID: 38301560 DOI: 10.1016/j.foodchem.2024.138579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A co-delivery system based on multilayer microparticles was developed and characterized for the sequential release of phenolic compounds (PCs) using different encapsulation processes (spray drying: SD and drying-chilling spray: SDC) and wall materials to improve the stability and bioavailability of PCs. Samples were characterized in terms of process yield (PY%), phenolic retention efficiency (PRE%), chemical structure and crystallinity (NMR, FTIR, DXR), thermal stability (DSC and FT-IR), anti-radical capacity (ORAC and ABTS) and in vitro digestion. PRE% of samples by SD were higher (p < 0.05) than SDC due to the formation of PCs from CRF (cará-roxo flour). NMR, FTIR, DXR confirmed the presence of key components and interactions for the formation of the advanced co-delivery system. The SDC particles showed crystalline regions by XRD and were stable at ∼47 °C. All samples showed good release of PC in the intestinal phase, and antiradical capacity that reached 23.66 µmol TE g-1.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri Numa
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Izabela D Alvim
- Technology Center of Cereal and Chocolate, Food Technology Institute (ITAL), 13070-178 Campinas, SP, Brazil
| | | | - Leticia B Santos
- Embrapa Instrumentation, R. 15 de Novembro, 1452, 13560-970 São Carlos, SP, Brazil; Graduate Program in Food, Nutrition and Food Engineering, UNESP - São Paulo State University, Rodovia Araraquara-Jaú, km 01, 14800-903 Araraquara, SP, Brazil
| | - Felipe T Borsoi
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Fábio F de Araújo
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil; Faculty of Pharmaceutical Science, University of Campinas, 13083-871 Campinas, SP, Brazil
| | - Alexandra C H F Sawaya
- Faculty of Pharmaceutical Science, University of Campinas, 13083-871 Campinas, SP, Brazil
| | - Gustavo C do Nascimento
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Maria Teresa P S Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Célio K do Sacramento
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, 45662-900 BA, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
3
|
Mora M, Fàbregas E, Céspedes F, Rovira P, Puy N. Dialysis and column chromatography for biomass pyrolysis liquids separation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:311-320. [PMID: 37331266 DOI: 10.1016/j.wasman.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
In the current study, a novel approach for separating value-added chemicals from pine wood residues' pyrolysis liquids (bio-oil) was effectively carried out. It combined two separation techniques used for the first time in this field: dialysis with water, methanol and acetone, and column chromatography with Amberlite™ XAD7 resin. This strategy made it possible to separate bio-oil into four fractions: (1) pyrolytic lignin, which can be utilized in the synthesis of resins, foams, electrodes, asphalt, etc. (2) acid-rich fraction, with particular relevance to the chemical industry, (3) antioxidant fraction, containing phenolic compounds, with a lot of interest for pharmaceutical and nutraceutical industry, and (4) a final fraction containing the most non-polar chemicals from bio-oil. Thus, it was possible to develop a process that allows the obtention of bioproducts from woody biomass, a residue obtained in significant quantities in the management of non-profitable forests, making a step forward within the context of circular economy and bioeconomy.
Collapse
Affiliation(s)
- Mireia Mora
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Esteve Fàbregas
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Francisco Céspedes
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Pere Rovira
- Forest Science and Technology Centre of Catalonia (CTFC). Crta. Sant Llorenç de Morunys, km2, 25280, Solsona, Lleida, Spain
| | - Neus Puy
- Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Forest Science and Technology Centre of Catalonia (CTFC). Crta. Sant Llorenç de Morunys, km2, 25280, Solsona, Lleida, Spain
| |
Collapse
|
4
|
Borrero-López AM, Wang L, Li H, Lourençon TV, Valencia C, Franco JM, Rojas OJ. Oleogels and reverse emulsions stabilized by acetylated Kraft lignins. Int J Biol Macromol 2023; 242:124941. [PMID: 37210063 DOI: 10.1016/j.ijbiomac.2023.124941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Acetylated Kraft lignins were evaluated for their ability of structuring vegetable oils into oleogels. Microwave-assisted acetylation was used to adjust lignin's degree of substitution according to reaction temperature (130 to 160 °C), and its effect in improving the viscoelasticity of the oleogels, which was related to the hydroxyl group content. The results were compared with those obtained by Kraft lignins acetylated using conventional methods at room temperature. A higher microwave temperature resulted in gel-like oil dispersions with improved viscoelastic properties, and stronger shear-thinning character, along with enhanced long-term stability. Lignin nanoparticles structured castor oil by enhancing hydrogen bonding between the hydroxyl groups of the oil and the nanoparticles. The oil structuring capacity of the modified lignins enhanced the stability of water-in-oil Pickering emulsions that resulted from low-energy mixing.
Collapse
Affiliation(s)
- Antonio M Borrero-López
- Pro2TecS - Chemical Process and Product Technology Research Centre, Dept. Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain.
| | - Ling Wang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Haiming Li
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Tainise V Lourençon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Concepción Valencia
- Pro2TecS - Chemical Process and Product Technology Research Centre, Dept. Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | - José M Franco
- Pro2TecS - Chemical Process and Product Technology Research Centre, Dept. Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland; Department of Applied Physics, School of Science, Aalto University, P.O. Box 16300, FIN-02150 Espoo, Finland; Departments of Chemical and Biological Engineering, Chemistry and Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Levdansky AV, Vasilyeva NY, Malyar YN, Kondrasenko AA, Fetisova OY, Kazachenko AS, Levdansky VA, Kuznetsov BN. An Efficient Method of Birch Ethanol Lignin Sulfation with a Sulfaic Acid-Urea Mixture. Molecules 2022; 27:molecules27196356. [PMID: 36234893 PMCID: PMC9571609 DOI: 10.3390/molecules27196356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
For the first time, the process of birch ethanol lignin sulfation with a sulfamic acid-urea mixture in a 1,4-dioxane medium was optimized experimentally and numerically. The high yield of the sulfated ethanol lignin (more than 96%) and containing 7.1 and 7.9 wt % of sulfur was produced at process temperatures of 80 and 90 °C for 3 h. The sample with the highest sulfur content (8.1 wt %) was obtained at a temperature of 100 °C for 2 h. The structure and molecular weight distribution of the sulfated birch ethanol lignin was established by FTIR, 2D 1H and 13C NMR spectroscopy, and gel permeation chromatography. The introduction of sulfate groups into the lignin structure was confirmed by FTIR by the appearance of absorption bands characteristic of the vibrations of sulfate group bonds. According to 2D NMR spectroscopy data, both the alcohol and phenolic hydroxyl groups of the ethanol lignin were subjected to sulfation. The sulfated birch ethanol lignin with a weight average molecular weight of 7.6 kDa and a polydispersity index of 1.81 was obtained under the optimum process conditions. Differences in the structure of the phenylpropane units of birch ethanol lignin (syringyl-type predominates) and abies ethanol lignin (guaiacyl-type predominates) was manifested in the fact that the sulfation of the former proceeds more completely at moderate temperatures than the latter. In contrast to sulfated abies ethanol lignin, the sulfated birch ethanol lignin had a bimodal and wider molecular weight distribution, as well as less thermal stability. The introduction of sulfate groups into ethanol lignin reduced its thermal stability.
Collapse
Affiliation(s)
- Alexander V. Levdansky
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
| | - Natalya Yu. Vasilyeva
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Yuriy N. Malyar
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence: (Y.N.M.); (B.N.K.); Tel.: +7-908-2065-517 (Y.N.M.)
| | - Alexander A. Kondrasenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
| | - Olga Yu. Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Vladimir A. Levdansky
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
| | - Boris N. Kuznetsov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, 660036 Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Correspondence: (Y.N.M.); (B.N.K.); Tel.: +7-908-2065-517 (Y.N.M.)
| |
Collapse
|
6
|
Jyothibasu JP, Wang RH, Tien YC, Kuo CC, Lee RH. Lignin-Derived Quinone Redox Moieties for Bio-Based Supercapacitors. Polymers (Basel) 2022; 14:polym14153106. [PMID: 35956620 PMCID: PMC9370813 DOI: 10.3390/polym14153106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022] Open
Abstract
Because of their rapid charging and discharging, high power densities, and excellent cycling life stabilities, supercapacitors have great potential for use in electric vehicles, portable electronics, and for grid frequency modulation. The growing need for supercapacitors that are both efficient and ecologically friendly has generated curiosity in developing sustainable biomass-based electrode materials and electrolytes. Lignin, an aromatic polymer with remarkable electroactive redox characteristics and a large number of active functional groups, is one such candidate for use in renewable supercapacitors. Because its chemical structure features an abundance of quinone groups, lignin undergoes various surface redox processes, storing and releasing both electrons and protons. Accordingly, lignin and its derivatives have been tested as electroactive materials in supercapacitors. This review discusses recent examples of supercapacitors incorporating electrode materials and electrolytes derived from lignin, focusing on the pseudocapacitance provided by the quinone moieties, with the goal of encouraging the use of lignin as a raw material for high-value applications. Employing lignin and its derivatives as active materials in supercapacitor electrodes and as a redox additive in electrolytes has the potential to minimize environmental pollution and energy scarcity while also providing economic benefits.
Collapse
Affiliation(s)
- Jincy Parayangattil Jyothibasu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (J.P.J.); (R.-H.W.); (Y.-C.T.)
| | - Ruei-Hong Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (J.P.J.); (R.-H.W.); (Y.-C.T.)
| | - You-Ching Tien
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (J.P.J.); (R.-H.W.); (Y.-C.T.)
| | - Chi-Ching Kuo
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (J.P.J.); (R.-H.W.); (Y.-C.T.)
- Correspondence: ; Tel.: +88-64-2285-4308; Fax: +88-64-2285-4734
| |
Collapse
|
7
|
Sagawa T, Kobayashi H, Murata C, Shichibu Y, Konishi K, Hashizume M, Fukuoka A. Catalytic Synthesis of Oxazolidinones from a Chitin-Derived Sugar Alcohol. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Sagawa
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585
| | - Hirokazu Kobayashi
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| | - Chinatsu Murata
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810
| | - Yukatsu Shichibu
- Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810
| | - Katsuaki Konishi
- Faculty of Environmental Earth Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0810
| | - Mineo Hashizume
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021
| |
Collapse
|
8
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
9
|
Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria. ENERGIES 2022. [DOI: 10.3390/en15092986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ethanol is a promising biofuel that can replace fossil fuel, mitigate greenhouse gas (GHG) emissions, and represent a renewable building block for biochemical production. Ethanol can be produced from various feedstocks. First-generation ethanol is mainly produced from sugar- and starch-containing feedstocks. For second-generation ethanol, lignocellulosic biomass is used as a feedstock. Typically, ethanol production contains four major steps, including the conversion of feedstock, fermentation, ethanol recovery, and ethanol storage. Each feedstock requires different procedures for its conversion to fermentable sugar. Lignocellulosic biomass requires extra pretreatment compared to sugar and starch feedstocks to disrupt the structure and improve enzymatic hydrolysis efficiency. Many pretreatment methods are available such as physical, chemical, physicochemical, and biological methods. However, the greatest concern regarding the pretreatment process is inhibitor formation, which might retard enzymatic hydrolysis and fermentation. The main inhibitors are furan derivatives, aromatic compounds, and organic acids. Actions to minimize the effects of inhibitors, detoxification, changing fermentation strategies, and metabolic engineering can subsequently be conducted. In addition to the inhibitors from pretreatment, chemicals used during the pretreatment and fermentation of byproducts may remain in the final product if they are not removed by ethanol distillation and dehydration. Maintaining the quality of ethanol during storage is another concerning issue. Initial impurities of ethanol being stored and its nature, including hygroscopic, high oxygen and carbon dioxide solubility, influence chemical reactions during the storage period and change ethanol’s characteristics (e.g., water content, ethanol content, acidity, pH, and electrical conductivity). During ethanol storage periods, nitrogen blanketing and corrosion inhibitors can be applied to reduce the quality degradation rate, the selection of which depends on several factors, such as cost and storage duration. This review article sheds light on the techniques of control used in ethanol fuel production, and also includes specific guidelines to control ethanol quality during production and the storage period in order to preserve ethanol production from first-generation to second-generation feedstock. Finally, the understanding of impurity/inhibitor formation and controlled strategies is crucial. These need to be considered when driving higher ethanol blending mandates in the short term, utilizing ethanol as a renewable building block for chemicals, or adopting ethanol as a hydrogen carrier for the long-term future, as has been recommended.
Collapse
|
10
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
11
|
Salvitti C, de Petris G, Troiani A, Managò M, Villani C, Ciogli A, Sorato A, Ricci A, Pepi F. Accelerated d-Fructose Acid-Catalyzed Reactions in Thin Films Formed by Charged Microdroplets Deposition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:565-572. [PMID: 35112862 DOI: 10.1021/jasms.1c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thin films derived by the deposition of charged microdroplets generated in the ESI source of a mass spectrometer act as highly concentrated reaction vessels in which the final products of an ion-molecule reaction can be isolated by their precipitation onto a solid surface under ambient conditions. In this study, the ESI Z-spray source supplied to a Q-TOF Ultima mass spectrometer was used to investigate the d-fructose acid-catalyzed reactions by microdroplets deposition onto a stainless-steel target surface. High conversion ratios of d-fructose into 5-hydroxymethylfuraldehyde (5-HMF), 5-methoxymethylfuraldehyde (5-MMF), and difructrose anhydrides (DFAs) were obtained with HCl and KHSO4 as metal-free catalysts by using synthetic conditions under which the same products in bulk are not formed. Furthermore, the reaction outcome was found to be highly sensitive to the catalyst and the solvent employed as well as to the ESI source parameters influencing the thin film formation from microdroplets deposition onto the solid surface.
Collapse
Affiliation(s)
- Chiara Salvitti
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia de Petris
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Claudio Villani
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Sorato
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andreina Ricci
- Department of Mathematics and Physics, University of Campania L. Vanvitelli, Viale Lincoln 5, 81100 Caserta, Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Zhang Y, Haque ANMA, Naebe M. Lignin-Cellulose Nanocrystals from Hemp Hurd as Light-Coloured Ultraviolet (UV) Functional Filler for Enhanced Performance of Polyvinyl Alcohol Nanocomposite Films. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3425. [PMID: 34947774 PMCID: PMC8708339 DOI: 10.3390/nano11123425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Lignin is a natural light-coloured ultraviolet (UV) absorber; however, conventional extraction processes usually darken its colour and could be detrimental to its UV-shielding ability. In this study, a sustainable way of fabricating lignin-cellulose nanocrystals (L-CNCs) from hemp hurd is proposed. A homogeneous morphology of the hemp particles was achieved by ball milling, and L-CNCs with high aspect ratio were obtained through mild acid hydrolysis on the ball-milled particles. The L-CNCs were used as filler in polyvinyl alcohol (PVA) film, which produced a light-coloured nanocomposite film with high UV-shielding ability and enhanced tensile properties: the absorption of UV at wavelength of 400 nm and transparency in the visible-light region at wavelength of 550 nm was 116 times and 70% higher than that of pure PVA, respectively. In addition to these advantages, the nanocomposite film showed a water vapour transmission property comparable with commercial food package film, indicating potential applications.
Collapse
Affiliation(s)
| | | | - Maryam Naebe
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (Y.Z.); (A.N.M.A.H.)
| |
Collapse
|
14
|
Ye L, Han Y, Wang X, Lu X, Qi X, Yu H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Affiliation(s)
- Cheng Yang
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145988. [PMID: 33684751 DOI: 10.1016/j.scitotenv.2021.145988] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Jin Y, Lin J, Cheng Y, Lu C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3378. [PMID: 34207222 PMCID: PMC8234621 DOI: 10.3390/ma14123378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
As a major component of lignocellulosic biomass, lignin is one of the largest natural resources of biopolymers and, thus, an abundant and renewable raw material for products, such as high-performance fibers for industrial applications. Direct conversion of lignin has long been investigated, but the fiber spinning process for lignin is difficult and the obtained fibers exhibit unsatisfactory mechanical performance mainly due to the amorphous chemical structure, low molecular weight of lignin, and broad molecular weight distribution. Therefore, different textile spinning techniques, modifications of lignin, and incorporation of lignin into polymers have been and are being developed to increase lignin's spinnability and compatibility with existing materials to yield fibers with better mechanical performance. This review presents the latest advances in the textile fabrication techniques, modified lignin-based high-performance fibers, and their potential in the enhancement of the mechanical performance.
Collapse
Affiliation(s)
- Yanhong Jin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Cheng
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Key Laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Shanghai 201620, China; (Y.J.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Mullen E, Morris MA. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1085. [PMID: 33922231 PMCID: PMC8146645 DOI: 10.3390/nano11051085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option.
Collapse
Affiliation(s)
- Eleanor Mullen
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| | - Michael A. Morris
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| |
Collapse
|
19
|
Morya R, Sharma A, Kumar M, Tyagi B, Singh SS, Thakur IS. Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin. BIORESOURCE TECHNOLOGY 2021; 320:124439. [PMID: 33246798 DOI: 10.1016/j.biortech.2020.124439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 05/11/2023]
Abstract
The strain Burkholderia sp. ISTR5 (R5) was studied for polyhydroxyalkanoate (PHA) production on Kraft lignin (KL) and lignosulfonate (LS) as substrates. During the initial screening, the maximum PHA mass fraction in biomass produced on KL and LS was 23% and 18%, respectively, at 96 h. PHA production on KL was further optimized using the Box-Behnken Design (BBD) model of Response Surface Methodology (RSM). After optimization, a 42.5% increase in PHA production and a 32.2% increase in the total cell biomass was observed. PHA was characterized by GC-MS, TEM, FTIR, NMR, and fluorescence microscopy. It was found to be a small chain length PHA with a copolymer of poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV). The degradation of PHBV was also studied using this strain; it was observed that R5 completely degraded PHBV in 120 h. Genomic and proteomic analysis of R5 revealed numerous enzymes for the metabolism of lignin degradation and PHA production.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Aditi Sharma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Bhawna Tyagi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
20
|
Synergy of imidazolium ionic liquids and flexible anionic polymer for controlling facilely montmorillonite swelling in water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Pyo SH, Glaser SJ, Rehnberg N, Hatti-Kaul R. Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration. ACS OMEGA 2020; 5:14275-14282. [PMID: 32596564 PMCID: PMC7315427 DOI: 10.1021/acsomega.9b04406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/20/2020] [Indexed: 05/07/2023]
Abstract
Levulinic acid (LA) is considered to be one of the promising organic bio-platform chemicals and intermediates for the synthesis of fuels, chemicals, and polymers. In the present study, heterogeneous catalytic dehydration of hexose sugars, fructose and glucose, using a strong cation exchange resin (hydrogen form) as an acid catalyst, was performed to produce LA in an aqueous medium. The effect of salts such as NaCl, KCl, CaCl2, Na2CO3, and Na2SO4 in the medium on the rate of sugar conversion and LA yield was evaluated. Under optimum reaction conditions, 10% (w/w) fructose was dehydrated to LA (with 74.6% yield) in 10% (w/w) NaCl aqueous solution in 24 h at 110 °C using the catalyst at 30% (w/w sugar). Even 10% (w/w) glucose monohydrate was directly dehydrated to LA (with 70.7% yield) under similar conditions but at 145 °C. This study shows that the salts enhance the rate of catalytic dehydration in the order of Cl- > CO3 2- > SO4 2-. Thus, the combination of high sugar concentration and heterogeneous catalysis in an aqueous system under relatively mild conditions could provide a high-yielding and sustainable process for bio-based LA production.
Collapse
Affiliation(s)
- Sang-Hyun Pyo
- Biotechnology,
Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
- . Phone: +46-46-222-4838. Fax: +46-46-222-4713
| | - Sara Jonsdottir Glaser
- Biotechnology,
Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | | | - Rajni Hatti-Kaul
- Biotechnology,
Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
22
|
Journot CMA, Nicolle L, Lavanchy Y, Gerber-Lemaire S. Selection of Water-Soluble Chitosan by Microwave-Assisted Degradation and pH-Controlled Precipitation. Polymers (Basel) 2020; 12:E1274. [PMID: 32498369 PMCID: PMC7362083 DOI: 10.3390/polym12061274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/26/2023] Open
Abstract
In the field of gene therapy, chitosan (CS) gained interest for its promise as a non-viral DNA vector. However, commercial sources of CS lack precise characterization and do not generally reach sufficient solubility in aqueous media for in vitro and in vivo evaluation. As low molecular weight CS showed improved solubility, we investigated the process of CS depolymerization by acidic hydrolysis, using either long time heating at 80 °C or short time microwave-enhanced heating. The resulting depolymerized chitosan (dCS) were analyzed by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) to determine their average molecular weight (Mn, Mp and Mw), polydispersity index (PD) and degree of deacetylation (DD). We emphasized the production of water-soluble CS (solubility > 5 mg/mL), obtained in reproducible yield and characteristics, and suitable for downstream functionalization. Optimal microwave-assisted conditions provided dCS with a molecular weight (MW) = 12.6 ± 0.6 kDa, PD = 1.41 ± 0.05 and DD = 85%. While almost never discussed in the literature, we observed the partial post-production aggregation of dCS when exposed to phase changes (from liquid to solid). Repeated cycles of freezing/thawing allowed the selection of dCS fractions which were exempt of crystalline particles formation upon solubilization from frozen samples.
Collapse
Affiliation(s)
- Céline M. A. Journot
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland; (C.M.A.J.); (L.N.)
| | - Laura Nicolle
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland; (C.M.A.J.); (L.N.)
| | - Yann Lavanchy
- Molecular and Hybrid Materials Characterization Center, Ecole Polytechnique Fédérale de Lausanne, EPFL STI MHMC MHMC-GE, Station 12, CH-1015 Lausanne, Switzerland;
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland; (C.M.A.J.); (L.N.)
| |
Collapse
|
23
|
Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydr Polym 2019; 217:178-189. [DOI: 10.1016/j.carbpol.2019.04.063] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
|
24
|
Pyo SH, Sayed M, Hatti-Kaul R. Batch and Continuous Flow Production of 5-Hydroxymethylfurfural from a High Concentration of Fructose Using an Acidic Ion Exchange Catalyst. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sang-Hyun Pyo
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Mahmoud Sayed
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|