1
|
Huang S, Lin L, Gao X, Li Y, Qiu H, Deng C, Qian L, Chen Y, Tang W, Liang Y, Su S, Yang Z. Glymphatic system dysfunction in pediatric tourette syndrome Neuroimaging evidence from MRI metrics. J Psychiatr Res 2025; 184:1-7. [PMID: 40031125 DOI: 10.1016/j.jpsychires.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND AND OBJECTIVES The glymphatic system, vital for brain waste clearance, is implicated in neurodevelopmental diseases, but its role in pediatric Tourette syndrome (TS) is not well understood. This study investigates structural and functional alterations in the glymphatic system in pediatric TS using non-invasive MRI techniques. METHODS This case-control study included 37 children with Tourette syndrome (TS) and 37 age- and gender-matched typically developing (TD) controls. We assessed brain volumetric differences and glymphatic function using two MRI metrics: perivascular space (PVS) burden for glymphatic influx and the DTI-ALPS index for waste clearance, with PVS quantified via semi-automated analysis of axial T2-weighted images. Correlations between MRI metrics and clinical symptoms in TS children were analyzed using partial correlations. RESULTS Children with Tourette syndrome (TS) exhibited significant reductions in brain parenchymal and white matter volume compared to typically developing (TD) children (all PFDR < 0.001), along with a higher perivascular space (PVS) volume (6.29 ± 3.62 mL vs. 4.76 ± 2.13 mL; PFDR = 0.046), indicating impaired glymphatic influx. The DTI-ALPS index was lower in TS (1.21 ± 0.18 vs. 1.46 ± 0.12; PFDR < 0.001), reflecting reduced waste clearance, and Dzassoc and Dzproj metrics were positively correlated with motor tic severity in TS (all P ≤ 0.02). CONCLUSIONS Our findings suggest significant glymphatic dysfunction in pediatric TS, indicating its role in the disorder's pathogenesis. Increased PVS burden and decreased DTI-ALPS index may serve as non-invasive biomarkers for diagnosing and understanding TS mechanisms.
Collapse
Affiliation(s)
- Shuzhen Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiang Gao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yufen Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huaqiong Qiu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chengfen Deng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100817, China
| | - Yingqian Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Tang
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujian Liang
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Su
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Katz TC, Khan TR, Chaponis O, Tomczak KK. Repetitive but Not Interchangeable: Similarities and Differences in the Repetitive Behaviors of Tourette Syndrome, Obsessive-Compulsive Disorder, Tourettic Obsessive-Compulsive Disorder, and Autism Spectrum Disorder. Psychiatr Clin North Am 2025; 48:165-180. [PMID: 39880511 DOI: 10.1016/j.psc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Repetitive behaviors are the hallmark of many neuropsychiatric disorders, including Tourette syndrome (TS), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). Tics, compulsions, and stereotypies may appear similar and can be difficult to disentangle. This review addresses similarities and differences between these behaviors including clinical presentations, neuroimaging, genetics, and treatment paradigms in order to clarify the relationship between these disorders. The extensive genetic and neurocircuitry-based similarities raise the possibility that in some cases TS and OCD may represent a single neuropsychiatric entity, such as Tourettic OCD, that lies along the impulsive-compulsive spectrum.
Collapse
Affiliation(s)
- Tamar C Katz
- Harvard University, Boston Children's Hospital, Department of Psychiatry, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Tuba Rashid Khan
- Harvard University, Boston Children's Hospital, Department of Neurology, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Olivia Chaponis
- Tic Disorders and Tourette Syndrome Program, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kinga K Tomczak
- Harvard University, Boston Children's Hospital, Tic Disorders and Tourette Syndrome Program, Department of Neurology, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Yang K, Lei T, Jun J, Yang Q, Li J, Wang M, Cui Y. Advances in Clustering and Classification of Tic Disorders: A Systematic Review. Neuropsychiatr Dis Treat 2024; 20:2663-2677. [PMID: 39758558 PMCID: PMC11697672 DOI: 10.2147/ndt.s499080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose Tic disorders (TD) are common neurodevelopmental disorders characterized by heterogeneous tic symptoms in children, making diagnostic classification difficult. This complexity requires accurate subtyping using data-driven computational methods to identify patterns within clinical data. This systematic review primarily summarizes the current evidence for the classification of TD using a data-driven approach. Patients and Methods We conducted a systematic literature search on PubMed and Web of Science up to December 2023 and identified 16 publications analyzing 14 unique samples, totaling approximately 6000 subjects. Results Nine studies classified different subtypes of TD based on symptoms and behavior. Seven studies identified novel factor structures based on TD and its complex comorbidity patterns. Seven studies highlighted associations between TD symptom patterns and genetics, reflecting the diversity of underlying genetic mechanisms underlying TD. Conclusion This systematic review reveals significant variability in research on the classification of TD, which limits the application of findings for accurate diagnosis and guiding treatment strategies in pediatric psychiatry. Further research incorporating multidimensional information (such as genetic, neuroimaging, and environmental and social factors) is essential to improve the understanding of TD subtypes.
Collapse
Affiliation(s)
- Kai Yang
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Tianyuan Lei
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - JinHyun Jun
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Qinghao Yang
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Jingyi Li
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Mengjiao Wang
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, 100045, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100045, People’s Republic of China
| |
Collapse
|
4
|
Baldermann JC, Petry-Schmelzer JN, Schüller T, Mahfoud L, Brandt GA, Dembek TA, van der Linden C, Krauss JK, Szejko N, Müller-Vahl KR, Ganos C, Al-Fatly B, Heiden P, Servello D, Galbiati T, Johnson KA, Butson CR, Okun MS, Andrade P, Domschke K, Fink GR, Fox MD, Horn A, Kuhn J, Visser-Vandewalle V, Barbe MT. A critical role of action-related functional networks in Gilles de la Tourette syndrome. Nat Commun 2024; 15:10687. [PMID: 39681552 DOI: 10.1038/s41467-024-55242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Gilles de la Tourette Syndrome (GTS) is a chronic tic disorder, characterized by unwanted motor actions and vocalizations. While brain stimulation techniques show promise in reducing tic severity, optimal target networks are not well-defined. Here, we leverage datasets from two independent deep brain stimulation (DBS) cohorts and a cohort of tic-inducing lesions to infer critical networks for treatment and occurrence of tics by mapping stimulation sites and lesions to a functional connectome derived from 1,000 healthy participants. We find that greater tic reduction is linked to higher connectivity of DBS sites (N = 37) with action-related functional resting-state networks, i.e., the cingulo-opercular (r = 0.62; p < 0.001) and somato-cognitive action networks (r = 0.47; p = 0.002). Regions of the cingulo-opercular network best match the optimal connectivity profiles of thalamic DBS. We replicate the significance of targeting cingulo-opercular and somato-cognitive action network connectivity in an independent DBS cohort (N = 10). Finally, we demonstrate that tic-inducing brain lesions (N = 22) exhibit similar connectivity to these networks. Collectively, these results suggest a critical role for these action-related networks in the pathophysiology and treatment of GTS.
Collapse
Affiliation(s)
- Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Jan Niklas Petry-Schmelzer
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Schüller
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lin Mahfoud
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gregor A Brandt
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Till A Dembek
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina van der Linden
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Natalia Szejko
- Department of Neurology, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
- Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
| | - Kirsten R Müller-Vahl
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology University of Toronto, Toronto Western Hospital, Toronto, Canada
| | - Bassam Al-Fatly
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Tommaso Galbiati
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Pablo Andrade
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Gereon R Fink
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Kuhn
- Alexianer Hospital Cologne, Alexianer Köln GmbH, Cologne, Germany
- Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Walter U, Buchmann J, Sülldorf A, Dück A, Russnak A, Hässler F, Berger C. Transcranial sonography of subcortical structures in tic/tourette disorder. J Psychiatr Res 2024; 176:18-22. [PMID: 38830296 DOI: 10.1016/j.jpsychires.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Functional neuroimaging studies demonstrate disinhibition of the cortico-striatal-thalamo-cortical circuit. However, structural imaging studies revealed conflicting results, some suggesting smaller volumes of the caudate nucleus (CN) in children with Gilles de la Tourette syndrome (TS). Here we wanted to find out whether transcranial sonography (TCS) detects alterations of raphe nuclei, substantia nigra, lenticular nucleus (LN), or CN in children with Tic disorder or TS (TIC/TS).The study included 25 treatment-naive children (age: 12.2 ± 2.5 years) with a DSM-V based diagnosis of Tic disorder or TS (10 subjects), without other psychiatric or neurologic diagnosis, and 25 healthy controls (age: 12.17 ± 2.57 years), matched for age and sex. Parental rating of behavioral, emotional abnormalities, somatic complaints and social competencies of the participants were assessed using the Child Behavior Check List (CBCL/4-18R). TCS of deep brain structures was conducted through the preauricular acoustic bone windows using a 2.5-MHz phased-array ultrasound system. Fisher's exact test and Mann-Whitney-U test were used for comparisons between TIC/TS patients and healthy volunteers. The number of participants with hyperechogenic area of left CN in the TIC/TS sample was increased, compared to the healthy control group. TIC/TS patients with hyperechogenic CN showed an increased occurrence of thought- and obsessive-compulsive problems. This TCS study revealed pathologic structural changes in CN, its higher occurrence in TIC/TS compared to healthy controls and the relation to comorbidity of thought problems. Further research should focus on the molecular cause of these alterations, probably the disturbed iron metabolism.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Johannes Buchmann
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Anne Sülldorf
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Alexander Dück
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Antonia Russnak
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Frank Hässler
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
6
|
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, Neudorfer C, Reinhardt P, Zvarova P, Polosan M, Akram H, Vissani M, Zhang C, Sun B, Navratil P, Reich MM, Volkmann J, Yeh FC, Baldermann JC, Dembek TA, Visser-Vandewalle V, Alho EJL, Franceschini PR, Nanda P, Finke C, Kühn AA, Dougherty DD, Richardson RM, Bergman H, DeLong MR, Mazzoni A, Romito LM, Tyagi H, Zrinzo L, Joyce EM, Chabardes S, Starr PA, Li N, Horn A. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat Neurosci 2024; 27:573-586. [PMID: 38388734 PMCID: PMC10917675 DOI: 10.1038/s41593-024-01570-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.
Collapse
Affiliation(s)
- Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ilkem Aysu Sahin
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Zvarova
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mircea Polosan
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Psychiatry, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Harith Akram
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chencheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pavel Navratil
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Mahlon R DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Himanshu Tyagi
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuropsychiatry, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Eileen M Joyce
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuropsychiatry, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephan Chabardes
- Université Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ningfei Li
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Zapparoli L, Devoto F, Mariano M, Seghezzi S, Servello D, Porta M, Paulesu E. Mapping Gilles de la Tourette syndrome through the distress and relief associated with tic-related behaviors: an fMRI study. Transl Psychiatry 2024; 14:7. [PMID: 38191475 PMCID: PMC10774308 DOI: 10.1038/s41398-023-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Personal distress associated with tic urges or inhibition and relief associated with tic production are defining features of the personal experience in Gilles de la Tourette syndrome (GTS). These affective phenomena have not been studied using fMRI, hindering our understanding of GTS pathophysiology and possible treatments. Here, we present a novel cross-sectional fMRI study designed to map tic-related phenomenology using distress and relief as predicting variables. We adopted a mental imagery approach and dissected the brain activity associated with different phases of tic behaviors, premonitory urges, and the ensuing tic execution or inhibition: these were compared with the mental simulation of "relaxed situations" and pre-determined stereotyped motor behaviors. We then explored whether the ensuing brain patterns correlated with the distress or relief perceived for the different phases of the tasks. Patients experienced a higher level of distress during the imagery of tic-triggering scenarios and no relief during tic inhibition. On the other hand, patients experienced significant relief during tic imagery. Distress during tic-triggering scenarios and relief during tic imagery were significantly correlated. The distress perceived during urges correlated with increased activation in cortical sensorimotor areas, suggesting a motor alarm. Conversely, relief during tic execution was positively associated with the activity of a subcortical network. The activity of the putamen was associated with both distress during urges and relief during tic execution. These findings highlight the importance of assessing the affective component of tic-related phenomenology. Subcortical structures may be causally involved in the affective component of tic pathophysiology, with the putamen playing a central role in both tic urge and generation. We believe that our results can be readily translated into clinical practice for the development of personalized treatment plans tailored to each patient's unique needs.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
- fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| | - Francantonio Devoto
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marika Mariano
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Silvia Seghezzi
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
- Institute of Cognitive Neuroscience, University College London, London, UK
| | | | - Mauro Porta
- Tourette Center, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi - Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
- fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| |
Collapse
|
8
|
Shitova AD, Zharikova TS, Kovaleva ON, Luchina AM, Aktemirov AS, Olsufieva AV, Sinelnikov MY, Pontes-Silva A, Zharikov YO. Tourette syndrome and obsessive-compulsive disorder: A comprehensive review of structural alterations and neurological mechanisms. Behav Brain Res 2023; 453:114606. [PMID: 37524204 DOI: 10.1016/j.bbr.2023.114606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
Currently, it is possible to study the pathogenesis of Tourette's syndrome (TS) in more detail, due to more advanced methods of neuroimaging. However, medical and surgical treatment options are limited by a lack of understanding of the nature of the disorder and its relationship to some psychiatric disorders, the most common of which is obsessive-compulsive disorder (OCD). It is believed that the origin of chronic tic disorders is based on an imbalance of excitatory and inhibitory influences in the Cortico-Striato-Thalamo-Cortical circuits (CSTC). The main CSTCs involved in the pathological process have been identified by studying structural and neurotransmitter disturbances in the interaction between the cortex and the basal ganglia. A neurotransmitter deficiency in CSTC has been demonstrated by immunohistochemical and genetic methods, but it is still not known whether it arises as a consequence of genetically determined disturbances of neuronal migration during ontogenesis or as a consequence of altered production of proteins involved in neurotransmitter production. The aim of this review is to describe current ideas about the comorbidity of TS with OCD, the involvement of CSTC in the pathogenesis of both disorders and the background of structural and neurotransmitter changes in CSTC that may serve as targets for drug and neuromodulatory treatments.
Collapse
Affiliation(s)
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Olga N Kovaleva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anastasia M Luchina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Arthur S Aktemirov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anna V Olsufieva
- Moscow University for Industry and Finance "Synergy", Moscow 125315, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology and Radiotherapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow 117418, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| |
Collapse
|
9
|
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, Neudorfer C, Reinhardt P, Zvarova P, Polosan M, Akram H, Vissani M, Zhang C, Sun B, Navratil P, Reich MM, Volkmann J, Yeh FC, Baldermann JC, Dembek TA, Visser-Vandewalle V, Alho EJL, Franceschini PR, Nanda P, Finke C, Kühn AA, Dougherty DD, Richardson RM, Bergman H, DeLong MR, Mazzoni A, Romito LM, Tyagi H, Zrinzo L, Joyce EM, Chabardes S, Starr PA, Li N, Horn A. Mapping Dysfunctional Circuits in the Frontal Cortex Using Deep Brain Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286766. [PMID: 36945497 PMCID: PMC10029043 DOI: 10.1101/2023.03.07.23286766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jill L. Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ilkem Aysu Sahin
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Zvarova
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mircea Polosan
- Univ. Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Psychiatry Department, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chencheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pavel Navratil
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A. Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Darin D. Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University, Hassadah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Mahlon R. DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Luigi M. Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Philip A. Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ningfei Li
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Zito GA, Hartmann A, Béranger B, Weber S, Aybek S, Faouzi J, Roze E, Vidailhet M, Worbe Y. Multivariate classification provides a neural signature of Tourette disorder. Psychol Med 2023; 53:2361-2369. [PMID: 35135638 DOI: 10.1017/s0033291721004232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been related to functional abnormalities in large-scale brain networks. Using a fully data driven approach in a prospective, case-control study, we tested the hypothesis that functional connectivity of these networks carries a neural signature of TD. Our aim was to investigate (i) the brain networks that distinguish adult patients with TD from controls, and (ii) the effects of antipsychotic medication on these networks. METHODS Using a multivariate analysis based on support vector machine (SVM), we developed a predictive model of resting state functional connectivity in 48 patients and 51 controls, and identified brain networks that were most affected by disease and pharmacological treatments. We also performed standard univariate analyses to identify differences in specific connections across groups. RESULTS SVM was able to identify TD with 67% accuracy (p = 0.004), based on the connectivity in widespread networks involving the striatum, fronto-parietal cortical areas and the cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy (p = 0.019), based on the connectivity among striatum, insular and cerebellar networks. Univariate approaches revealed differences in functional connectivity within the striatum in patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD. CONCLUSIONS SVM was able to identify a neuronal network that distinguishes patients with TD from control, as well as medicated and unmedicated patients with TD, holding a promise to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of treatment.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- Support Centre for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Andreas Hartmann
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Benoît Béranger
- Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMR, 7225, Paris, France
| | - Samantha Weber
- Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Selma Aybek
- Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Johann Faouzi
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Inria Paris, Aramis project-team, Paris, France
| | - Emmanuel Roze
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
| | - Marie Vidailhet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
| | - Yulia Worbe
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
- National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
11
|
Johnson KA, Worbe Y, Foote KD, Butson CR, Gunduz A, Okun MS. Tourette syndrome: clinical features, pathophysiology, and treatment. Lancet Neurol 2023; 22:147-158. [PMID: 36354027 PMCID: PMC10958485 DOI: 10.1016/s1474-4422(22)00303-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Yulia Worbe
- Sorbonne University, ICM, Inserm, CNRS, Department of Neurophysiology, Hôpital Saint Antoine (DMU 6), AP-HP, Paris, France
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Christopher R Butson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Tics y síndrome de Tourette en la infancia: una puesta al día. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Tomskiy AA, Poddubskaya AA, Gamaleya AA, Zaitsev OS. Neurosurgical management of Tourette syndrome: A literature review and analysis of a case series treated with deep brain stimulation. PROGRESS IN BRAIN RESEARCH 2022; 272:41-72. [PMID: 35667806 DOI: 10.1016/bs.pbr.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tourette syndrome (TS) is a heterogeneous disorder, which clinical presentation includes both multiple motor and vocal tics and commonly associated psychiatric conditions (obsessive-compulsive disorder, attention deficit hyperactivity disorder, depression, anxiety, etc.). Treatment options primarily consist of non-pharmacological interventions (habit reversal training, relaxation techniques, cognitive behavioral therapy, and social rehabilitation) and pharmacotherapy. In case of the intractable forms, neurosurgical treatment may be considered, primarily deep brain stimulation (DBS). DBS appear to be effective in medically intractable TS patients, although, the preferential brain target is still not defined. The majority of studies describe small number of cases and the issues of appropriate patient selection and ethics remain to be clarified. In this article, we review the main points in management of TS, discuss possible indications and contraindications for neurosurgical treatment, and analyze our experience of DBS in a case series of refractory TS patients with the focus on target selection and individual outcomes.
Collapse
Affiliation(s)
- Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Anna A Poddubskaya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation; Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Anna A Gamaleya
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Oleg S Zaitsev
- Psychiatry Research Group, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| |
Collapse
|
14
|
Wang N, Wu X, Yang Q, Wang D, Wu Z, Wei Y, Cui J, Hong L, Xiong L, Qin D. Qinglong Zhidong Decoction Alleviated Tourette Syndrome in Mice via Modulating the Level of Neurotransmitters and the Composition of Gut Microbiota. Front Pharmacol 2022; 13:819872. [PMID: 35392572 PMCID: PMC8981146 DOI: 10.3389/fphar.2022.819872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Qinglong Zhidong Decoction (QLZDD), a traditional Chinese medicine (TCM) prescription, has been effectively used to alleviate Tourette syndrome (TS) in children. However, the therapeutic mechanism of QLZDD on TS has not been evaluated. The present study aims to elucidate the therapeutic effect and the possible therapeutic mechanism of QLZDD on TS in mouse model. A 3,3-iminodipropionitrile (IDPN, 350 mg/kg)-induced-TS mouse model was established. The mice were randomly divided into the control group, the model group, the haloperidol group (14 mg/kg), the low-, middle-, or high-QLZDD-dose groups (6.83 g/kg, 13.65 g/kg, 27.3 g/kg). QLZDD was administrated orally once a day for 4 weeks. The tic-like behavior was recorded weekly. Then, neurotransmitters and neurotransmitter receptors were analyzed by ELISA, immunohistochemistry (IHC), and quantitative reverse transcription PCR in striatum. Further, the alteration to intestinal flora was monitored by 16s rRNA sequencing, and the role of gut microbiota in the alleviation of TS by QLZDD was investigated. QLZDD ameliorated the tic-like behavior, and decreased the level of excitatory neurotransmitters such as Glu and DA and increased the level of the inhibitory neurotransmitter GABA significantly. Moreover, QLZDD significantly blocked the mRNA expression and the protein expression of D1R and D2R in the striatum, while activated the levels of DAT and GABAR. Interestingly, QLZDD mediated the composition of gut microbiota by increasing the abundance of Lactobacillus and Bacteroides but decreasing the abundance of Alloprevotella and Akkermansia. Taken together, QLZDD ameliorated the tic-like behavior in TS mouse, its mechanism of action may be associated with restoring the balance of gut microbiota and neurotransmitters. The study indicated a promising role of QLZDD in alleviating TS and a therapeutic strategy for fighting TS in clinical settings.
Collapse
Affiliation(s)
- Na Wang
- Yunnan University of Chinese Medicine, Kunming, China
- Huanghe S & T University, Zhengzhou, China
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinchen Wu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Qi Yang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Dingyue Wang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- Yunnan University of Chinese Medicine, Kunming, China
| | - Li Hong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
15
|
Zhao Y, Yang L, Gong G, Cao Q, Liu J. Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110477. [PMID: 34798202 DOI: 10.1016/j.pnpbp.2021.110477] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) usually present overlapping symptoms. Abnormal white matter (WM) microstructure has been found in these disorders. Identification of common and unique neural abnormalities across NDDs could provide further insight into the underlying pathophysiological mechanisms. METHODS We performed a voxel-based meta-analysis of whole-brain diffusion tensor imaging (DTI) studies in autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) and other NDDs. A systematic literature search was conducted through March 2020 to identify studies that compared measures of WM microstructure between patients with NDDs and neurotypical controls. Peak voxel coordinates were meta-analyzed via anisotropic effect size-signed differential mapping (AES-SDM) as well as activation likelihood estimation (ALE). RESULTS Our final sample included a total of 4137 subjects from 66 studies across five NDDs. Fractional anisotropy (FA) reductions were found in the splenium of the CC in ADHD, and the genu and splenium of CC in ASD. And mean diffusivity (MD) increases were shown in posterior thalamic radiation in ASD. No consistent abnormalities were detected in specific learning disorder, motor disorder or communication disorder. Significant differences between child/adolescent and adult patients were found within the CC across NDDs, reflective of aberrant neurodevelopmental processes in NDDs. CONCLUSIONS The current study demonstrated atypical WM patterns in ASD, ADHD and other NDDs. Microstructural abnormalities in the splenium of the CC were possibly shared among ASD and ADHD.
Collapse
Affiliation(s)
- Yilu Zhao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Li Yang
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Qingjiu Cao
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| | - Jing Liu
- The Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health, (Peking University), Beijing, China.
| |
Collapse
|
16
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
17
|
Blaty JL, DelRosso LM. Tourette Disorder and Sleep. Biomed J 2022; 45:240-249. [PMID: 35031507 PMCID: PMC9250095 DOI: 10.1016/j.bj.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Healthy sleep is of utmost importance for growth, development, and overall health. Strong evidence shows that sleep is affected negatively in patients and particularly children with Tourette Disorder (TD). There is also a frequent association of TD with Attention Deficit Hyperactivity Disorder (ADHD) which alone has negative effects on sleep and cumulatively worsens the associated sleep findings. The most consistent polysomnographic findings in patients with TD is decreased total sleep time, lower sleep efficiency and an elevated arousal index. Polysomnography studies have confirmed the presence of movements and persistence of tics during both Rapid Eye Movement (REM) and NREM sleep [1]. In general Patients with TD are found to have an increased incidence of sleep onset and sleep maintenance insomnia. Some studies have shown increased incidence of parasomnias (including sleepwalking, sleep talking and night terrors), but this may be confounded by the increased underlying sleep disruptions seen in TD. The hypersomnolence found in patients with TD is also suggested to be secondary to the underlying TD sleep disruption. There is not a significant association with sleep disordered breathing or circadian rhythm disorders and TD. Treatment of underlying TD is important for the improvement of sleep related TD manifestations and is outlined in this review.
Collapse
Affiliation(s)
- Justin L Blaty
- Seattle Children's Hospital, University of Washington, Seattle, WA, United States
| | - Lourdes M DelRosso
- Seattle Children's Hospital, University of Washington, Seattle, WA, United States.
| |
Collapse
|
18
|
Adelhöfer N, Paulus T, Mückschel M, Bäumer T, Bluschke A, Takacs A, Tóth-Fáber E, Tárnok Z, Roessner V, Weissbach A, Münchau A, Beste C. Increased scale-free and aperiodic neural activity during sensorimotor integration-a novel facet in Tourette syndrome. Brain Commun 2021; 3:fcab250. [PMID: 34805995 PMCID: PMC8599001 DOI: 10.1093/braincomms/fcab250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by multiple motor and phonic tics. Tics in Tourette syndrome resemble spontaneously occurring movements in healthy controls and are therefore sometimes difficult to distinguish from these. Tics may in fact be mis-interpreted as a meaningful action, i.e. a signal with social content, whereas they lack such information and could be conceived a surplus of action or 'motor noise'. These and other considerations have led to a 'neural noise account' of Tourette syndrome suggesting that the processing of neural noise and adaptation of the signal-to-noise ratio during information processing is relevant for the understanding of Tourette syndrome. So far, there is no direct evidence for this. Here, we tested the 'neural noise account' examining 1/f noise, also called scale-free neural activity as well as aperiodic activity, in n = 74 children, adolescents and adults with Tourette syndrome and n = 74 healthy controls during task performance using EEG data recorded during a sensorimotor integration task. In keeping with results of a previous study in adults with Tourette syndrome, behavioural data confirmed that sensorimotor integration was also stronger in this larger Tourette syndrome cohort underscoring the relevance of perceptual-action processes in this disorder. More importantly, we show that 1/f noise and aperiodic activity during sensorimotor processing is increased in patients with Tourette syndrome supporting the 'neural noise account'. This implies that asynchronous/aperiodic neural activity during sensorimotor integration is stronger in patients with Tourette syndrome compared to healthy controls, which is probably related to abnormalities of GABAergic and dopaminergic transmission in these patients. Differences in 1/f noise and aperiodic activity between patients with Tourette syndrome and healthy controls were driven by high-frequency oscillations and not lower-frequency activity currently discussed to be important in the pathophysiology of tics. This and the fact that Bayesian statistics showed that there is evidence for the absence of a correlation between neural noise and clinical measures of tics, suggest that increased 1/f noise and aperiodic activity are not directly related to tics but rather represents a novel facet of Tourette syndrome.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Theresa Paulus
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany.,Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, 1021 Budapest, Hungary
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, China
| |
Collapse
|
19
|
The sooner the better: clinical and neural correlates of impulsive choice in Tourette disorder. Transl Psychiatry 2021; 11:560. [PMID: 34732691 PMCID: PMC8566507 DOI: 10.1038/s41398-021-01691-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Reward sensitivity has been suggested as one of the central pathophysiological mechanisms in Tourette disorder. However, the subjective valuation of a reward by introduction of delay has received little attention in Tourette disorder, even though it has been suggested as a trans-diagnostic feature of numerous neuropsychiatric disorders. We aimed to assess delay discounting in Tourette disorder and to identify its brain functional correlates. We evaluated delayed discounting and its brain functional correlates in a large group of 54 Tourette disorder patients and 31 healthy controls using a data-driven approach. We identified a subgroup of 29 patients with steeper reward discounting, characterised by a higher burden of impulse-control disorders and a higher level of general impulsivity compared to patients with normal behavioural performance or to controls. Reward discounting was underpinned by resting-state activity of a network comprising the orbito-frontal, cingulate, pre-supplementary motor area, temporal and insular cortices, as well as ventral striatum and hippocampus. Within this network, (i) lower connectivity of pre-supplementary motor area with ventral striatum predicted a higher impulsivity and a steeper reward discounting and (ii) a greater connectivity of pre-supplementary motor area with anterior insular cortex predicted steeper reward discounting and more severe tics. Overall, our results highlight the heterogeneity of the delayed reward processing in Tourette disorder, with steeper reward discounting being a marker of burden in impulsivity and impulse control disorders, and the pre-supplementary motor area being a hub region for the delay discounting, impulsivity and tic severity.
Collapse
|
20
|
Towards an Ideology-Free, Truly Mechanistic Health Psychology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111126. [PMID: 34769644 PMCID: PMC8583446 DOI: 10.3390/ijerph182111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Efficient transfer of concepts and mechanistic insights from the cognitive to the health sciences and back requires a clear, objective description of the problem that this transfer ought to solve. Unfortunately, however, the actual descriptions are commonly penetrated with, and sometimes even motivated by, cultural norms and preferences, a problem that has colored scientific theorizing about behavioral control—the key concept for many psychological health interventions. We argue that ideologies have clouded our scientific thinking about mental health in two ways: by considering the societal utility of individuals and their behavior a key criterion for distinguishing between healthy and unhealthy people, and by dividing what actually seem to be continuous functions relating psychological and neurocognitive underpinnings to human behavior into binary, discrete categories that are then taken to define clinical phenomena. We suggest letting both traditions go and establish a health psychology that restrains from imposing societal values onto individuals, and then taking the fit between behavior and values to conceptualize unhealthiness. Instead, we promote a health psychology that reconstructs behavior that is considered to be problematic from well-understood mechanistic underpinnings of human behavior.
Collapse
|
21
|
Yang C, Yao L, Liu N, Zhang W, Tao B, Cao H, Gong Q, Lui S. Microstructural Abnormalities of White Matter Across Tourette Syndrome: A Voxel-Based Meta-Analysis of Fractional Anisotropy. Front Neurol 2021; 12:659250. [PMID: 34566829 PMCID: PMC8458640 DOI: 10.3389/fneur.2021.659250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: Tourette syndrome (TS) is a neuropsychiatric disorder with multiple motor and vocal tics whose neural basis remains unclear. Diffusion tensor imaging (DTI) studies have demonstrated white matter microstructural alternations in TS, but the findings are inconclusive. In this study, we aimed to elucidate the most consistent white matter deficits in patients with TS. Method: By systematically searching online databases up to December 2020 for all DTI studies comparing fractional anisotropy (FA) between patients with TS and healthy controls (HCs), we conducted anisotropic effect size-signed differential mapping (AES-SDM) meta-analysis to investigate FA differences in TS, as well as performed meta-regression analysis to explore the effects of demographics and clinical characteristics on white matter abnormalities among TS. Results: A total of eight datasets including 168 patients with TS and 163 HCs were identified. We found that TS patients showed robustly decreased FA in the corpus callosum (CC) and right inferior longitudinal fasciculus (ILF) compared with HCs. These two regions preserved significance in the sensitivity analysis. No regions of increased FA were reported. Meta-regression analysis revealed that age, sex, tic severity, or illness duration of patients with TS were not linearly correlated with decreased FA. Conclusion: Patients with TS display deficits of white matter microstructure in the CC and right ILF known to be important for interhemispheric connections as well as long association fiber bundles within one hemisphere. Because the results reported in the primary literature were highly variable, future investigations with large samples would be required to support the identified white matter changes in TS.
Collapse
Affiliation(s)
- Chengmin Yang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Tao
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Sarchioto M, Howe F, Dumitriu IE, Morgante F, Stern J, Edwards MJ, Martino D. Analyses of peripheral blood dendritic cells and magnetic resonance spectroscopy support dysfunctional neuro-immune crosstalk in Tourette syndrome. Eur J Neurol 2021; 28:1910-1921. [PMID: 33768607 DOI: 10.1111/ene.14837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/27/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Evidence supports that neurodevelopmental diseases, such as Tourette syndrome (TS), may involve dysfunctional neural-immune crosstalk. This could lead to altered brain maturation and differences in immune and stress responses. Dendritic cells (DCs) play a major role in immunity as professional antigen-presenting cells; changes in their frequency have been observed in several autoimmune conditions. METHODS In 18 TS patients (15 on stable pharmacological treatment, three unmedicated) and 18 age-matched healthy volunteers (HVs), we explored circulating blood-derived DCs and their relationship with clinical variables and brain metabolites, measured via proton magnetic resonance spectroscopy (1H-MRS). DC subsets, including plasmacytoid and myeloid type 1 and 2 dendritic cells (MDC1, MDC2), were studied with flow cytometry. 1H-MRS was used to measure total choline, glutamate plus glutamine, total creatine (tCr), and total N-acetylaspartate and N-acetylaspartyl-glutamate levels in frontal white matter (FWM) and the putamen. RESULTS We did not observe differences in absolute concentrations of DC subsets or brain inflammatory metabolites between patients and HVs. However, TS patients manifesting anxiety showed a significant increase in MDC1s compared to TS patients without anxiety (p = 0.01). We also found a strong negative correlation between MDC1 frequency and tCr in the FWM of patients with TS (p = 0.0015), but not of HVs. CONCLUSION Elevated frequencies of the MDC1 subset in TS patients manifesting anxiety may reflect a proinflammatory status, potentially facilitating altered neuro-immune crosstalk. Furthermore, the strong inverse correlation between brain tCr levels and MDC1 subset frequency in TS patients suggests a potential association between proinflammatory status and metabolic changes in sensitive brain regions.
Collapse
Affiliation(s)
- Marianna Sarchioto
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Franklyn Howe
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Ingrid E Dumitriu
- Molecular and Clinical Sciences Research Institute, St George's, University of London and Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Jeremy Stern
- Atkinson Morley Regional Neuroscience Centre, St George's University of London, London, UK
| | - Mark J Edwards
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary and Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
23
|
Münchau A, Colzato LS, AghajaniAfjedi A, Beste C. A neural noise account of Gilles de la Tourette syndrome. NEUROIMAGE-CLINICAL 2021; 30:102654. [PMID: 33839644 PMCID: PMC8055711 DOI: 10.1016/j.nicl.2021.102654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
A neural noise account on Tourette syndrome is conceptualized. We outline how neurophysiological methods can be used to test this account. The neural noise account may lead to novel treatment options.
Tics, often preceded by premonitory urges, are the clinical hallmark of Tourette syndrome. They resemble spontaneous movements, but are exaggerated, repetitive and appear misplaced in a given communication context. Given that tics often go unnoticed, it has been suggested that they represent a surplus of action, or motor noise. In this conceptual position paper, we propose that tics and urges, but also patterns of the cognitive profile in Tourette syndrome might be explained by the principle of processing of neural noise and adaptation to it during information processing. We review evidence for this notion in the light of Tourette pathophysiology and outline why neurophysiological and imaging approaches are central to examine a possibly novel view on Tourette syndrome. We discuss how neurophysiological data at multiple levels of inspections, i.e., from local field potentials using intra-cranial recording to scalp-measured EEG data, in combination with imaging approaches, can be used to examine the neural noise account in Tourette syndrome. We outline what signal processing methods may be suitable for that. We argue that, as a starting point, the analysis of 1/f neural noise or scale-free activity may be suitable to investigate the role of neural noise and its adaptation during information processing in Tourette syndrome. We outline, how the neural noise perspective, if substantiated by further neurophysiological studies and re-analyses of existing data, may pave the way to novel interventions directly targeting neural noise levels and patterns in Tourette syndrome.
Collapse
Affiliation(s)
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany; Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Azam AghajaniAfjedi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Ganos C, Neumann WJ, Müller-Vahl KR, Bhatia KP, Hallett M, Haggard P, Rothwell J. The Phenomenon of Exquisite Motor Control in Tic Disorders and its Pathophysiological Implications. Mov Disord 2021; 36:1308-1315. [PMID: 33739492 DOI: 10.1002/mds.28557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022] Open
Abstract
The unifying characteristic of movement disorders is the phenotypic presentation of abnormal motor outputs, either as isolated phenomena or in association with further clinical, often neuropsychiatric, features. However, the possibility of a movement disorder also characterized by supranormal or enhanced volitional motor control has not received attention. Based on clinical observations and cases collected over a number of years, we here describe the intriguing clinical phenomenon that people with tic disorders are often able to control specific muscle contractions as part of their tic behaviors to a degree that most humans typically cannot. Examples are given in accompanying video documentation. We explore medical literature on this topic and draw analogies with early research of fine motor control physiology in healthy humans. By systematically analyzing the probable sources of this unusual capacity, and focusing on neuroscientific accounts of voluntary motor control, sensory feedback, and the role of motor learning in tic disorders, we provide a novel pathophysiological account explaining both the presence of exquisite control over motor output and that of overall tic behaviors. We finally comment on key questions for future research on the topic and provide concluding remarks on the complex movement disorder of tic behaviors. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christos Ganos
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kirsten R Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Impulsive prepotent actions and tics in Tourette disorder underpinned by a common neural network. Mol Psychiatry 2021; 26:3548-3557. [PMID: 32994553 PMCID: PMC8505252 DOI: 10.1038/s41380-020-00890-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 01/25/2023]
Abstract
Tourette disorder (TD), which is characterized by motor and vocal tics, is not in general considered as a product of impulsivity, despite a frequent association with attention deficit hyperactivity disorder and impulse control disorders. It is unclear which type of impulsivity, if any, is intrinsically related to TD and specifically to the severity of tics. The waiting type of motor impulsivity, defined as the difficulty to withhold a specific action, shares some common features with tics. In a large group of adult TD patients compared to healthy controls, we assessed waiting motor impulsivity using a behavioral task, as well as structural and functional underpinnings of waiting impulsivity and tics using multi-modal neuroimaging protocol. We found that unmedicated TD patients showed increased waiting impulsivity compared to controls, which was independent of comorbid conditions, but correlated with the severity of tics. Tic severity did not account directly for waiting impulsivity, but this effect was mediated by connectivity between the right orbito-frontal cortex with caudate nucleus bilaterally. Waiting impulsivity in unmedicated patients with TD also correlated with a higher gray matter signal in deep limbic structures, as well as connectivity with cortical and with cerebellar regions on a functional level. Neither behavioral performance nor structural or functional correlates were related to a psychometric measure of impulsivity or impulsive behaviors in general. Overall, the results suggest that waiting impulsivity in TD was related to tic severity, to functional connectivity of orbito-frontal cortex with caudate nucleus and to structural changes within limbic areas.
Collapse
|
26
|
Zhang C, Xu L, Zheng X, Liu S, Che F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev Neurobiol 2020; 81:79-91. [PMID: 33258273 PMCID: PMC8048680 DOI: 10.1002/dneu.22795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Ash1l potentially contributes to neurodevelopmental diseases. Although specific Ash1l mutations are rare, they have led to informative studies in animal models that may bring therapeutic advances. Ash1l is highly expressed in the brain and correlates with the neuropathology of Tourette syndrome (TS), autism spectrum disorder, and intellectual disability during development, implicating shared epigenetic factors and overlapping neuropathological mechanisms. Functional convergence of Ash1l generated several significant signaling pathways: chromatin remodeling and transcriptional regulation, protein synthesis and cellular metabolism, and synapse development and function. Here, we systematically review the literature on Ash1l, including its discovery, expression, function, regulation, implication in the nervous system, signaling pathway, mutations, and putative involvement in TS and other neurodevelopmental traits. Such findings highlight Ash1l pleiotropy and the necessity of transcending a single gene to complicated mechanisms of network convergence underlying these diseases. With the progress in functional genomic analysis (highlighted in this review), and although the importance and necessity of Ash1l becomes increasingly apparent in the medical field, further research is required to discover the precise function and molecular regulatory mechanisms related to Ash1l. Thus, a new perspective is proposed for basic scientific research and clinical interventions for cross‐disorder diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| |
Collapse
|
27
|
Zapparoli L, Seghezzi S, Devoto F, Mariano M, Banfi G, Porta M, Paulesu E. Altered sense of agency in Gilles de la Tourette syndrome: behavioural, clinical and functional magnetic resonance imaging findings. Brain Commun 2020; 2:fcaa204. [PMID: 33409491 PMCID: PMC7772095 DOI: 10.1093/braincomms/fcaa204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Current neurocognitive models of motor control postulate that accurate action monitoring is crucial for a normal experience of agency-the ability to attribute the authorship of our actions and their consequences to ourselves. Recent studies demonstrated that action monitoring is impaired in Gilles de la Tourette syndrome, a movement disorder characterized by motor and vocal tics. It follows that Tourette syndrome patients may suffer from a perturbed sense of agency, the hypothesis tested in this study. To this end, we recruited 25 Tourette syndrome patients and 25 matched healthy controls in a case-control behavioural and functional magnetic resonance imaging study. As an implicit index of the sense of agency, we measured the intentional binding phenomenon, i.e., the perceived temporal compression between voluntary movements and their external consequences. We found evidence of an impaired sense of agency in Tourette syndrome patients who, as a group, did not show a significant intentional binding. The more reduced was the individual intentional binding, the more severe were the motor symptoms. Specific differences between the two groups were also observed in terms of brain activation patterns. In the healthy controls group, the magnitude of the intentional binding was associated with the activity of a premotor-parietal-cerebellar network. This relationship was not present in the Tourette syndrome group, suggesting an altered activation of the agency brain network for self-generated acts. We conclude that the less accurate action monitoring described in Tourette syndrome also involves the assessment of the consequences of actions in the outside world. We discuss that this may lead to difficulties in distinguishing external consequences produced by their own actions from the ones caused by others in Tourette syndrome patients.
Collapse
Affiliation(s)
- Laura Zapparoli
- Psychology Department and Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Silvia Seghezzi
- Psychology Department and Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milan, Italy.,Neuroscience of School of Medicine and Surgery, University of Milano-Bicocca, 20126, Milan, Italy
| | - Francantonio Devoto
- Psychology Department and Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milan, Italy.,Neuroscience of School of Medicine and Surgery, University of Milano-Bicocca, 20126, Milan, Italy
| | - Marika Mariano
- Psychology Department and Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy.,San Raffaele Vita e Salute University, 20132, Milan, Italy
| | - Mauro Porta
- IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, 20161, Milan, Italy
| |
Collapse
|
28
|
Ayribas B, Toprak T. New approach to patients with premature ejaculation: Do social cognition and attachment profiles play a role in premature ejaculation? Andrologia 2020; 53:e13882. [PMID: 33142351 DOI: 10.1111/and.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 11/27/2022] Open
Abstract
Premature ejaculation is the most prevalent male sexual dysfunction and causes significant individual and relational distress in subjects. This study aimed to investigate the underlying psychopathologies of premature ejaculation using theory of mind, empathy and attachment parameters and included 91 participants: 46 with lifelong premature ejaculation and 45 without any ejaculatory complaints. Arabic index of premature ejaculation and stopwatch intravaginal ejaculatory latency times were recorded from all subjects in order to evaluate ejaculatory function. We used reading mind in the eyes, empathy quotient and experiences in close relationships-revised tasks to evaluate social cognitive and attachment profiles of the participants. We compared differences between groups in terms of task performances and symptom severity. Premature ejaculation patients showed significantly low levels of theory of mind abilities as well as empathic skills compared to controls. Although groups did not differ significantly in means of attachment avoidance parameters, premature ejaculation patients had significantly higher levels of attachment anxiety parameters. There was no correlation between symptom severity and social cognition and attachment scores in premature ejaculation patients. These results suggest that patients with premature ejaculations may suffer from significant social cognitive deficits and have anxious but not avoidant pattern of attachment. These results may implicate insights in terms of pharmacological and psychotherapeutic treatments of premature ejaculation.
Collapse
Affiliation(s)
- Basar Ayribas
- Department of Psychiatry, Kafkas University, Kars, Turkey
| | - Tuncay Toprak
- Department of Urology, University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
29
|
Atkinson-Clement C, Sofia F, Fernandez-Egea E, de Liege A, Beranger B, Klein Y, Deniau E, Roze E, Hartmann A, Worbe Y. Structural and functional abnormalities within sensori-motor and limbic networks underpin intermittent explosive symptoms in Tourette disorder. J Psychiatr Res 2020; 125:1-6. [PMID: 32169732 DOI: 10.1016/j.jpsychires.2020.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intermittent explosive outbursts (IEO), manifesting as sudden episodes of verbal or physical aggression, are frequently present in patients with Tourette disorder (TD) and considered as one of the most disabling symptoms by patients and families. The neuronal correlates of these behaviours are poorly understood, and this was the primary objective of the present study. METHODS We assessed the presence of IEO in 55 patients with TD and then compared the subgroup of the patients with IEO to those without these manifestations using a multimodal neuroimaging approach. RESULTS 47% of TD patients presented IEO, which was frequently associated with attention deficit hyperactivity disorder (ADHD). TD patients (without ADHD) with IEO compared to TD without IEO, showed structural changes in the right supplementary motor area as well as in the right hippocampus (increased fractional anisotropy), and in the left orbitofrontal cortex (decreased mean diffusivity). Using these three nodes as seeds for resting state functional connectivity, we showed a lower connectivity within the sensori-motor cortico-basal ganglia network, and an altered connectivity pattern among the orbito-frontal cortex, amygdala and hippocampus. CONCLUSIONS Overall, our results indicate that TD with IEO is associated with brain dysfunction related to a less efficient top-down control on action selection, and impairments related to emotional regulation, impulse control and aggressive behaviours.
Collapse
Affiliation(s)
- Cyril Atkinson-Clement
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France
| | - Fuaad Sofia
- Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Emilio Fernandez-Egea
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Astrid de Liege
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France; National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Benoit Beranger
- Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, UMRS975, CNRS UMR7225, ICM, F-75013, Paris, France
| | - Yanica Klein
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France; National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Emmanuelle Deniau
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France; National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Emmanuel Roze
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France
| | - Andreas Hartmann
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France; National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Yulia Worbe
- Sorbonne University, 75005, Paris, France; Inserm U1127, CNRS UMR7225, UM75, ICM, Paris, France; Movement Investigation and Therapeutics Team, F-75013, Paris, France; National Reference Center for Tourette Syndrome, Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, F-75013, Paris, France; Department of Neurophysiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, France.
| |
Collapse
|
30
|
Bearpark J, Mujong DP, Seri S, Cavanna AE. Headache in patients with Tourette syndrome: A systematic literature review. CEPHALALGIA REPORTS 2020. [DOI: 10.1177/2515816320915711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To systematically review the available literature on the prevalence and clinical characteristics of headache in patients with Tourette syndrome (TS), a neurodevelopmental condition characterized by the chronic presence of motor and vocal tics. Design: We conducted a systematic literature review of original studies using three clinical databases (Medline, EMBASE and PsycInfo), according to the standards outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Outcome measures included both tic severity and tic frequency. Results: Our systematic literature review identified six studies on the prevalence and characteristics of headache in patients with TS (data on paediatric patients were available from five studies and data on adult patients from four studies). The proportion of patients with TS who had a diagnosis of headache ranged from 29% to 62%. Migraine was the most commonly investigated headache disorder in this patient population. The findings of the reviewed studies showed that the prevalence of migraine in patients with TS ranges between 13% and 43% and is significantly higher compared to the two control groups ( p < 0.05). Discussion: The prevalence of headache in patients with TS could be higher than in the general population, with the most reliable data being available for migraine. Overall, the literature on the prevalence and characteristics of headache in TS is sparse and highly heterogeneous. Further research on the prevalence and clinical correlates of migraine, tension-type headache and other types of headache in patients with TS across the lifespan is needed to inform clinical practice aimed at improving health-related quality of life in patients with tics.
Collapse
Affiliation(s)
- Jack Bearpark
- Department of Neuropsychiatry, The Barberry National Centre for Mental Health, BSMHFT and University of Birmingham, Birmingham, UK
| | - Datapwa Pamilerin Mujong
- Department of Neuropsychiatry, The Barberry National Centre for Mental Health, BSMHFT and University of Birmingham, Birmingham, UK
| | - Stefano Seri
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Andrea Eugenio Cavanna
- Department of Neuropsychiatry, The Barberry National Centre for Mental Health, BSMHFT and University of Birmingham, Birmingham, UK
- School of Life and Health Sciences, Aston University, Birmingham, UK
- University College London and Institute of Neurology, London, UK
| |
Collapse
|
31
|
Abstract
The article represents a review of modern literature on tics and Tourette's syndrome in paediatric population and describes recent advances in neurogenetics, neuroanatomy and neurotransmitter heterogeneity of the disease pathogenesis. The analysis of the literature supports the plausibility of transformation of tics and Tourette's syndrome from psychiatric disorders into neurological disorders (according to ICD-11) based on recent data on neurophysiology and functional neuroanatomy. Neuroanatomy of motor behaviour is described as the most complex self-regulating neural network of thalamo-cortical loop, basal ganglia in combination with the limbic system, insular and cingulate cortex with involvement of hippocampus, subthalamic region and cerebellum. The evaluation of pharmaceutical treatment options has been carried out, including a review of successful local experience in treating tics in paediatric patients with hopantenic acid, topiramate and neuropeptides of cortexin.
Collapse
Affiliation(s)
- V P Zykov
- Russian Medical Academy for Continuing Professional Education, Moscow, Russia
| |
Collapse
|
32
|
Bamford NS, McVicar K. Localising movement disorders in childhood. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:917-928. [PMID: 31653548 DOI: 10.1016/s2352-4642(19)30330-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
The diagnosis and management of movement disorders in children can be improved by understanding the pathways, neurons, ion channels, and receptors involved in motor learning and control. In this Review, we use a localisation approach to examine the anatomy, physiology, and circuitry of the basal ganglia and highlight the mechanisms that underlie some of the major movement disorders in children. We review the connections between the basal ganglia and the thalamus and cortex, address the basic clinical definitions of movement disorders, and then place diseases within an anatomical or physiological framework that highlights basal ganglia function. We discuss how new pharmacological, behavioural, and electrophysiological approaches might benefit children with movement disorders by modifying synaptic function. A better understanding of the mechanisms underlying movement disorders allows improved diagnostic and treatment decisions.
Collapse
Affiliation(s)
- Nigel S Bamford
- Departments of Pediatrics and Neurology, Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| | - Kathryn McVicar
- Departments of Pediatrics and Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|