1
|
Harkin C, Smith KW, MacKay CL, Moore T, Brockbank S, Ruddock M, Cobice DF. Spatial localization of β-unsaturated aldehyde markers in murine diabetic kidney tissue by mass spectrometry imaging. Anal Bioanal Chem 2022; 414:6657-6670. [PMID: 35881173 PMCID: PMC9411223 DOI: 10.1007/s00216-022-04229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Limitations in current diagnosis and screening methods have sparked a search for more specific and conclusive biomarkers. Hyperglycemic conditions generate a plethora of harmful molecules in circulation and within tissues. Oxidative stress generates reactive α-dicarbonyls and β-unsaturated hydroxyhexenals, which react with proteins to form advanced glycation end products. Mass spectrometry imaging (MSI) enables the detection and spatial localization of molecules in biological tissue sections. Here, for the first time, the localization and semiquantitative analysis of “reactive aldehydes” (RAs) 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) in the kidney tissues of a diabetic mouse model is presented. Ionization efficiency was enhanced through on-tissue chemical derivatization (OTCD) using Girard’s reagent T (GT), forming positively charged hydrazone derivatives. MSI analysis was performed using matrix-assisted laser desorption ionization (MALDI) coupled with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR). RA levels were elevated in diabetic kidney tissues compared to lean controls and localized throughout the kidney sections at a spatial resolution of 100 µm. This was confirmed by liquid extraction surface analysis–MSI (LESA-MSI) and liquid chromatography–mass spectrometry (LC–MS). This method identified β-unsaturated aldehydes as “potential” biomarkers of DN and demonstrated the capability of OTCD-MSI for detection and localization of poorly ionizable molecules by adapting existing chemical derivatization methods. Untargeted exploratory distribution analysis of some precursor lipids was also assessed using MALDI-FT-ICR-MSI.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Karl W Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310-4005, USA.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - C Logan MacKay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EastChem School of Chemistry, University of Edinburgh, Edinburgh, Scotland, UK
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Mark Ruddock
- Randox Laboratories Ltd, 55 The Diamond Rd, Crumlin, UK
| | - Diego F Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
2
|
Recent advances and trends in sample preparation and chemical modification for glycan analysis. J Pharm Biomed Anal 2022; 207:114424. [PMID: 34653745 DOI: 10.1016/j.jpba.2021.114424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Growing significance of glycosylation in protein functions has accelerated the development of methodologies for detection, identification, and characterization of protein glycosylation. In the past decade, glycobiology research has been advanced by innovative techniques with further progression in the post-genome era. Although significant technical progress has been made in terms of analytical throughput, comprehensiveness, and sensitivity, most methods for glycosylation analysis still require laborious and time-consuming sample preparation tasks. Additionally, sample preparation methods that are focused on specific glycan(s) require an in-depth understanding of various issues in glycobiology. In this review, modern sample preparation and chemical modification methods for the structural and quantitative glycan analyses together with the challenges and advantages of recent sample preparation methods are summarized. The techniques presented herein can facilitate the exploration of biomarkers, understanding of unknown glycan functions, and development of biopharmaceuticals.
Collapse
|
3
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Kim KJ, Kim YW, Park HG, Hwang CH, Park IY, Choi KY, Yang YH, Kim YH, Kim YG. A MALDI-MS-based quantitative glycoprofiling method on a 96-well plate platform. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Jang KS, Nani RR, Kalli A, Levin S, Müller A, Hess S, Reisman SE, Clemons WM. A cationic cysteine-hydrazide as an enrichment tool for the mass spectrometric characterization of bacterial free oligosaccharides. Anal Bioanal Chem 2015; 407:6181-90. [PMID: 26100547 PMCID: PMC4539134 DOI: 10.1007/s00216-015-8798-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
In Campylobacterales and related ε-proteobacteria with N-linked glycosylation (NLG) pathways, free oligosaccharides (fOS) are released into the periplasmic space from lipid-linked precursors by the bacterial oligosaccharyltransferase (PglB). This hydrolysis results in the same molecular structure as the oligosaccharide that is transferred to a protein to be glycosylated. This allowed for the general elucidation of the fOS-branched structures and monosaccharides from a number of species using standard enrichment and mass spectrometry methods. To aid characterization of fOS, hydrazide chemistry has often been used for chemical modification of the reducing part of oligosaccharides resulting in better selectivity and sensitivity in mass spectrometry; however, the removal of the unreacted reagents used for the modification often causes the loss of the sample. Here, we develop a more robust method for fOS purification and characterize glycostructures using complementary tandem mass spectrometry (MS/MS) analysis. A cationic cysteine hydrazide derivative was synthesized to selectively isolate fOS from periplasmic fractions of bacteria. The cysteine hydrazide nicotinamide (Cyhn) probe possesses both thiol and cationic moieties. The former enables reversible conjugation to a thiol-activated solid support, while the latter improves the ionization signal during MS analysis. This enrichment was validated on the well-studied Campylobacter jejuni by identifying fOS from the periplasmic extracts. Using complementary MS/MS analysis, we approximated data of a known structure of the fOS from Campylobacter concisus. This versatile enrichment technique allows for the exploration of a diversity of protein glycosylation pathways.
Collapse
Affiliation(s)
- Kyoung-Soon Jang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Biomedical Omics Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 363-883, South Korea
| | - Roger R. Nani
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Anastasia Kalli
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Sergiy Levin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Axel Müller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Tao S, Orlando R. A novel method for relative quantitation of N-glycans by isotopic labeling using ¹⁸O-water. J Biomol Tech 2015; 25:111-7. [PMID: 25365792 DOI: 10.7171/jbt.14-2504-003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quantitation is an essential aspect of comprehensive glycomics study. Here, a novel isotopic-labeling method is described for N-glycan quantitation using (18)O-water. The incorporation of the (18)O-labeling into the reducing end of N-glycans is simply and efficiently achieved during peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F release. This process provides a 2-Da mass difference compared with the N-glycans released in (16)O-water. A mathematical calculation method was also developed to determine the (18)O/(16)O ratios from isotopic peaks. Application of this method to several standard glycoprotein mixtures and human serum demonstrated that this method can facilitate the relative quantitation of N-glycans over a linear dynamic range of two orders, with high accuracy and reproducibility.
Collapse
Affiliation(s)
- Shujuan Tao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
7
|
A MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) for total N-glycan analysis. Biotechnol Lett 2015; 37:2019-25. [PMID: 26063621 DOI: 10.1007/s10529-015-1881-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To develop a sensitive and quantitative method for monitoring the abnormal glycosylation of clinical and biopharmaceutical products. RESULTS MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) was proposed for sensitive and quantitative analysis of total N-glycans. The derivatization reactions (i.e., amidation of sialic acid and incorporation of a positive charge moiety into the reducing end) dramatically increased the linearity (R(2) > 0.99) and sensitivity (limit of detection is 0.5 pmol/glycoprotein) relative to underivatized glycans. In addition, the analytical strategy was chromatographic purification-free and non-laborious process accessible to the high-throughput analyses. We used MALDI-QTaG to analyze the N-glycans of α-fetoprotein (AFP) purified from normal cord blood and HCC cell line (Huh7 cells). The total percentages of core-fucosylated AFP N-glycans from Huh7 cells and normal cord blood were 98 and 18%, respectively. CONCLUSIONS This MALDI-MS-based glycomics technology has wide applications in many clinical and bioengineering fields requiring sensitive, quantitative and fast N-glycosylation validation.
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
9
|
Kim KJ, Kim YW, Kim YG, Park HM, Jin JM, Hwan Kim Y, Yang YH, Kyu Lee J, Chung J, Lee SG, Saghatelian A. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG). Biotechnol Prog 2015; 31:840-8. [DOI: 10.1002/btpr.2078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Kyoung-Jin Kim
- Dept. of Chemical Engineering; Soongsil University; Seoul 156-743 Republic of Korea
| | - Yoon-Woo Kim
- Dept. of Chemical Engineering; Soongsil University; Seoul 156-743 Republic of Korea
| | - Yun-Gon Kim
- Dept. of Chemical Engineering; Soongsil University; Seoul 156-743 Republic of Korea
| | - Hae-Min Park
- School of Chemical and Biological Engineering; Seoul National University; Seoul 151-742 Republic of Korea
| | - Jang Mi Jin
- Div. of Mass Spectrometry Research; Korea Basic Science Institute; Ochang 363-883 Republic of Korea
- Dept. of Bio-Analytical Science; University of Science and Technology; Daejeon 305-764 Republic of Korea
| | - Young Hwan Kim
- Div. of Mass Spectrometry Research; Korea Basic Science Institute; Ochang 363-883 Republic of Korea
- Dept. of Bio-Analytical Science; University of Science and Technology; Daejeon 305-764 Republic of Korea
| | - Yung-Hun Yang
- Dept. of Microbial Engineering, College of Engineering; Konkuk University; Seoul 143-701 Republic of Korea
| | - Jun Kyu Lee
- Dept. of Internal Medicine; Dongguk University Ilsan Hospital, College of Medicine, Dongguk University; Goyang 401-773 Si Republic of Korea
| | - Junho Chung
- Dept. of Biochemistry and Molecular Biology and Cancer Research Institute; Seoul National University College of Medicine; Seoul 110-799 Republic of Korea
| | - Sun-Gu Lee
- School of Chemical and Biomolecular Engineering; Pusan National University; Pusan 609-735 Republic of Korea
| | - Alan Saghatelian
- Clayton Foundations Laboratories for Peptide Biology; Salk Institute; La Jolla CA 92037
| |
Collapse
|
10
|
Park HM, Kim YW, Kim KJ, Kim YJ, Yang YH, Jin JM, Kim YH, Kim BG, Shim H, Kim YG. Comparative N-linked glycan analysis of wild-type and α1,3-galactosyltransferase gene knock-out pig fibroblasts using mass spectrometry approaches. Mol Cells 2015; 38:65-74. [PMID: 25518929 PMCID: PMC4314127 DOI: 10.14348/molcells.2015.2240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023] Open
Abstract
Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (α-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.
Collapse
Affiliation(s)
- Hae-Min Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Yoon-Woo Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743,
Korea
| | - Kyoung-Jin Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743,
Korea
| | - Young June Kim
- Department of Nanobiomedical Science and BK21+ NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714,
Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul 143-701,
Korea
| | - Jang Mi Jin
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 363-883,
Korea
| | - Young Hwan Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 363-883,
Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 305-764,
Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Hosup Shim
- Department of Nanobiomedical Science and BK21+ NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714,
Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743,
Korea
| |
Collapse
|
11
|
Wang C, Wu Z, Yuan J, Wang B, Zhang P, Zhang Y, Wang Z, Huang L. Simplified Quantitative Glycomics Using the Stable Isotope Label Girard’s Reagent P by Electrospray Ionization Mass Spectrometry. J Proteome Res 2013; 13:372-84. [DOI: 10.1021/pr4010647] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chengjian Wang
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| | - Zhiyu Wu
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| | - Jiangbei Yuan
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| | - Bo Wang
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| | - Ping Zhang
- Chemistry
and Chemical Engineering School, Xianyang Normal University, Xianyang 712000, China
| | - Ying Zhang
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| | - Zhongfu Wang
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| | - Linjuan Huang
- Educational
Ministry Key Laboratory of Resource Biology and Biotechnology in Western
China, College of Life Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
12
|
Alley WR, Mann BF, Novotny MV. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 2013; 113:2668-732. [PMID: 23531120 PMCID: PMC3992972 DOI: 10.1021/cr3003714] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- William R. Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Benjamin F. Mann
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States
- National Center for Glycomics and Glycoproteomics, Indiana University, Bloomington, Indiana, United States
- Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
13
|
Mechref Y, Hu Y, Desantos-Garcia JL, Hussein A, Tang H. Quantitative glycomics strategies. Mol Cell Proteomics 2013; 12:874-884. [PMID: 23325767 PMCID: PMC3617334 DOI: 10.1074/mcp.r112.026310] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/14/2013] [Indexed: 12/23/2022] Open
Abstract
The correlations between protein glycosylation and many biological processes and diseases are increasing the demand for quantitative glycomics strategies enabling sensitive monitoring of changes in the abundance and structure of glycans. This is currently attained through multiple strategies employing several analytical techniques such as capillary electrophoresis, liquid chromatography, and mass spectrometry. The detection and quantification of glycans often involve labeling with ionic and/or hydrophobic reagents. This step is needed in order to enhance detection in spectroscopic and mass spectrometric measurements. Recently, labeling with stable isotopic reagents has also been presented as a very viable strategy enabling relative quantitation. The different strategies available for reliable and sensitive quantitative glycomics are herein described and discussed.
Collapse
Affiliation(s)
- Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | | | | | | | | |
Collapse
|
14
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Palmisano G, Larsen MR, Packer NH, Thaysen-Andersen M. Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Adv 2013. [DOI: 10.1039/c3ra42969e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
16
|
Strum JS, Kim J, Wu S, De Leoz MLA, Peacock K, Grimm R, German JB, Mills DA, Lebrilla CB. Identification and accurate quantitation of biological oligosaccharide mixtures. Anal Chem 2012; 84:7793-801. [PMID: 22897719 DOI: 10.1021/ac301128s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Structure-specific characterization and quantitation is often required for effective functional studies of oligosaccharides. Inside the gut, HMOs are preferentially bound and catabolized by the beneficial bacteria. HMO utility by these bacteria employs structure-specific catabolism based on a number of glycosidases. Determining the activity of these enzymes requires accurate quantitation of a large number of structures. In this study, we describe a method for the quantitation of human milk oligosaccharide (HMO) structures employing LC/MS and isotopically labeled internal standards. Data analysis was accomplished with a newly developed software tool, LC/MS Searcher, that employs a reference structure library to process LC/MS data yielding structural identification with accurate quantitation. The method was used to obtain a meta-enzyme analysis of bacteria, the simultaneous characterization of all glycosidases employed by bacteria for the catabolism of milk oligosaccharides. Analysis of consumed HMO structures confirmed the utility of a β-1,3-galactosidase in Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis). In comparison, Bifidobacterium breve ATCC 15700 showed significantly less HMO catabolic activity compared to B. infantis.
Collapse
Affiliation(s)
- John S Strum
- Department of Chemistry, University of California, Davis, 95616, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Park JH, Wang Z, Jeong HJ, Park HH, Kim BG, Tan WS, Choi SS, Park TH. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Appl Microbiol Biotechnol 2012; 96:671-83. [DOI: 10.1007/s00253-012-4203-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
|
18
|
Jeong HJ, Kim YG, Yang YH, Kim BG. High-throughput quantitative analysis of total N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2012; 84:3453-60. [PMID: 22455307 DOI: 10.1021/ac203440c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accurate and reproducible quantification of glycans from protein drugs has become an important issue for quality control of therapeutic proteins in biopharmaceutical and biotechnology industries. Mass spectrometry is a promising tool for both qualitative and quantitative analysis of glycans owing to mass accuracy, efficiency, and reproducibility, but it has been of limited success in quantitative analysis for sialylated glycans in a high-throughput manner. Here, we present a solid-phase permethylation-based total N-glycan quantitative method that includes N-glycan releasing, purification, and derivatization on a 96-well plate platform. The solid-phase neutralization enabled us to perform reliable absolute quantification of the acidic N-glycans as well as neutral N-glycans from model glycoproteins (i.e., chicken ovalbumin and porcine thyroglobulin) by only using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, low-abundance sialylated N-glycans from human serum prostate specific antigen (PSA), an extremely valuable prostate cancer marker, were initially quantified, and their chemical compositions were proposed. Taken together, these results demonstrate that our all-inclusive glycan preparation method based on a 96-well plate platform may contribute to the precise and reliable qualitative and quantitative analysis of glycans.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- School of Chemical and Biological Engineering in College of Engineering, Seoul National University, Shillim-dong, Seoul, 151-742, Korea
| | | | | | | |
Collapse
|
19
|
Unterieser I, Cuers J, Voiges K, Enebro J, Mischnick P. Quantitative aspects in electrospray ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of malto-oligosaccharides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2201-2208. [PMID: 21710600 DOI: 10.1002/rcm.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry is widely applied in carbohydrate analysis, but still quantitative evaluation of data is critical due to different ionization efficiencies of the constituents in a mixture. Different size and chemical structure of the analytes cause their uneven distribution in droplets (electrospray ionization, ESI) or matrix spots (matrix-assisted laser desorption/ionization, MALDI). In addition, instrumental parameters affect final ion yields. In order to study and optimize the latter, an equimolar mixture of malto-oligosaccharides (DP1-6) was analyzed using varying target masses for ESI as well as different matrices and laser power for MALDI. The sodium adducts and derivatives for positive ion mode (hydrazones with Girard's T Reagent, GT) and negative ion mode (reductively aminated with o-aminobenzoic acid, oABA) were studied. Negatively charged oABA-labeled malto-oligosaccharides turned out to be unsuitable for quantification of the malto-oligomeric composition. Best agreement was achieved when applying target masses in the range of the highest homolog in the mixture in electrospray ionization ion trap (ESI-IT) (1-2% deviation with GT label or as Na(+) adducts). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gave best results when the laser power was adjusted significantly over the desorption/ionization threshold (1% deviation with GT label). Both parameters show significant influence on the determined oligomeric composition. Consequently, estimation and even quantitative determination of amounts of oligosaccharides in a mixture can be achieved when the analytes are labeled and the proper instrumental parameters are used.
Collapse
Affiliation(s)
- Inga Unterieser
- Technische Universität Braunschweig, Institut für Lebensmittelchemie, Schleinitzstr. 20, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
20
|
Abstract
Starch and cellulose are the most abundant and important representatives of renewable biomass. Since the mid-19th century their properties have been changed by chemical modification for commercial and scientific purposes, and there substituted polymers have found a wide range of applications. However, the inherent polydispersity and supramolecular organization of starch and cellulose cause the products resulting from their modification to display high complexity. Chemical composition analysis of these mixtures is therefore a challenging task. Detailed knowledge on substitution patterns is fundamental for understanding structure-property relationships in modified cellulose and starch, and thus also for the improvement of reproducibility and rational design of properties. Substitution patterns resulting from kinetically or thermodynamically controlled reactions show certain preferences for the three available hydroxyl functions in (1→4)-linked glucans. Spurlin, seventy years ago, was the first to describe this in an idealized model, and nowadays this model has been extended and related to the next hierarchical levels, namely, the substituent distribution in and over the polymer chains. This structural complexity, with its implications for data interpretation, and the analytical approaches developed for its investigation are outlined in this article. Strategies and methods for the determination of the average degree of substitution (DS), monomer composition, and substitution patterns at the polymer level are presented and discussed with respect to their limitations and interpretability. Nuclear magnetic resonance spectroscopy, chromatography, capillary electrophoresis, and modern mass spectrometry (MS), including tandem MS, are the main instrumental techniques employed, in combination with appropriate sample preparation by chemical and enzymatic methods.
Collapse
|
21
|
Rakus JF, Mahal LK. New technologies for glycomic analysis: toward a systematic understanding of the glycome. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:367-392. [PMID: 21456971 DOI: 10.1146/annurev-anchem-061010-113951] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrates are the most difficult class of biological molecules to study by high-throughput methods owing to the chemical similarities between the constituent monosaccharide building blocks, template-less biosynthesis, and the lack of clearly identifiable consensus sequences for the glycan modification of cohorts of glycoproteins. These molecules are crucial for a wide variety of cellular processes ranging from cell-cell communication to immunity, and they are altered in disease states such as cancer and inflammation. Thus, there has been a dedicated effort to develop glycan analysis into a high-throughput analytical field termed glycomics. Herein we highlight major advances in applying separation, mass spectrometry, and microarray methods to the fields of glycomics and glycoproteomics. These new analytical techniques are rapidly advancing our understanding of the importance of glycosylation in biology and disease.
Collapse
Affiliation(s)
- John F Rakus
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
22
|
Mass Spectrometric Characterization of Oligo- and Polysaccharides and Their Derivatives. MASS SPECTROMETRY OF POLYMERS – NEW TECHNIQUES 2011. [DOI: 10.1007/12_2011_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Labeling of oligosaccharides for quantitative mass spectrometry. Carbohydr Res 2011; 346:68-75. [DOI: 10.1016/j.carres.2010.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/26/2010] [Accepted: 11/01/2010] [Indexed: 11/21/2022]
|
24
|
Thuy TT, Inganäs M, Thorsén G. High-throughput profiling of N-linked oligosaccharides in therapeutic antibodies using a microfluidic CD platform and MALDI-MS. Anal Bioanal Chem 2010; 399:1601-11. [DOI: 10.1007/s00216-010-4469-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/10/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|
25
|
Vangala K, Yanney M, Hsiao CT, Wu WW, Shen RF, Zou S, Sygula A, Zhang D. Sensitive carbohydrate detection using surface enhanced Raman tagging. Anal Chem 2010; 82:10164-71. [PMID: 21082777 PMCID: PMC3010869 DOI: 10.1021/ac102284x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose, and glucuronic acid). SERS detection limits obtained with a 633 nm HeNe laser were ∼1 nM in concentration for all the RT-carbohydrate conjugates and ∼10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 μM. Ratiometric SERS quantification using isotope-substituted SERS internal references allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ∼3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol, achieved with a linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence, and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique and then identified with ESI-MS techniques.
Collapse
Affiliation(s)
| | - Michael Yanney
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Cheng-Te Hsiao
- Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Wells W. Wu
- Proteomics and Analytical Biochemistry Unit, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Rong-Fong Shen
- Proteomics and Analytical Biochemistry Unit, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Sige Zou
- Laboratory of Experimental Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Andrzej Sygula
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
26
|
Gil GC, Iliff B, Cerny R, Velander WH, Van Cott KE. High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal Chem 2010; 82:6613-20. [PMID: 20586471 DOI: 10.1021/ac1011377] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability. However, quantification of sialylated glycans using MS is not as reliable because of the different ionization efficiency between neutral and acidic glycans. We report here that amidation in mild acidic conditions can be used to neutralize acidic N-glycans still attached to the protein. The resulting amidated N-glycans can then be released from the protein using PNGase F, and labeled with permanent charges on the reducing end to avoid any modification and the formation of metal adducts during MS analysis. The N-glycan modification, digestion, and desalting steps were performed using a single-pot method that can be done in microcentrifuge tubes or 96-well microfilter plates, enabling high throughput glycan analysis. Using this method we were able to perform quantitative MALDI-TOF MS of a recombinant human glycoprotein to determine changes in fucosylation and changes in sialylation that were in very good agreement with a normal phase HPLC oligosaccharide mapping method.
Collapse
Affiliation(s)
- Geun-Cheol Gil
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | | | |
Collapse
|
27
|
Vanderschaeghe D, Festjens N, Delanghe J, Callewaert N. Glycome profiling using modern glycomics technology: technical aspects and applications. Biol Chem 2010; 391:149-161. [PMID: 20128687 DOI: 10.1515/bc.2010.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycomics research has become indispensable in many research fields such as immunity, signal transduction and development. Moreover, changes in the glycosylation of proteins and lipids have been reported in several diseases including cancer. The analysis of a complex post-translational modification such as glycosylation depends on the availability or development of appropriate analytical technologies. The research goal determines the sensitivity, resolution and throughput requirements and guides the choice of a particular technology. This review highlights the evolution of glycan profiling tools in the past 5 years. We focus on capillary electrophoresis, liquid chromatography, mass spectrometry and lectin microarrays.
Collapse
Affiliation(s)
- Dieter Vanderschaeghe
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Nele Festjens
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Joris Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Nico Callewaert
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|