1
|
Mongia P, Toyofuku N, Pan Z, Xu R, Kinoshita Y, Oki K, Takahashi H, Ogura Y, Hayashi T, Nakagawa T. Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere. Commun Biol 2023; 6:551. [PMID: 37237082 DOI: 10.1038/s42003-023-04925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rad51 maintains genome integrity, whereas Rad52 causes non-canonical homologous recombination leading to gross chromosomal rearrangements (GCRs). Here we find that fission yeast Srr1/Ber1 and Skb1/PRMT5 promote GCRs at centromeres. Genetic and physical analyses show that srr1 and skb1 mutations reduce isochromosome formation mediated by centromere inverted repeats. srr1 increases DNA damage sensitivity in rad51 cells but does not abolish checkpoint response, suggesting that Srr1 promotes Rad51-independent DNA repair. srr1 and rad52 additively, while skb1 and rad52 epistatically reduce GCRs. Unlike srr1 or rad52, skb1 does not increase damage sensitivity. Skb1 regulates cell morphology and cell cycle with Slf1 and Pom1, respectively, but neither Slf1 nor Pom1 causes GCRs. Mutating conserved residues in the arginine methyltransferase domain of Skb1 greatly reduces GCRs. These results suggest that, through arginine methylation, Skb1 forms aberrant DNA structures leading to Rad52-dependent GCRs. This study has uncovered roles for Srr1 and Skb1 in GCRs at centromeres.
Collapse
Affiliation(s)
- Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yakumo Kinoshita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keitaro Oki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
2
|
Savino M, Guida CC, Nardella M, Murgo E, Augello B, Merla G, De Cosmo S, Savino AF, Tarquini R, Cei F, Aucella F, Mazzoccoli G. Circadian Genes Expression Patterns in Disorders Due to Enzyme Deficiencies in the Heme Biosynthetic Pathway. Biomedicines 2022; 10:biomedicines10123198. [PMID: 36551954 PMCID: PMC9775071 DOI: 10.3390/biomedicines10123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Heme is a member of the porphyrins family of cyclic tetrapyrroles and influences various cell processes and signalling pathways. Enzyme deficiencies in the heme biosynthetic pathway provoke rare human inherited metabolic diseases called porphyrias. Protein levels and activity of enzymes involved in the heme biosynthetic pathway and especially 5'-Aminolevulinate Synthase 1 are featured by 24-h rhythmic oscillations driven by the biological clock. Heme biosynthesis and circadian pathways intermingle with mutual modulatory roles. Notably, heme is a ligand of important cogs of the molecular clockwork, which upon heme binding recruit co-repressors and inhibit the transcription of numerous genes enriching metabolic pathways and encoding functional proteins bringing on crucial cell processes. Herein, we assessed mRNA levels of circadian genes in patients suffering from porphyrias and found several modifications of core clock genes and clock-controlled genes expression, associated with metabolic and electrolytic changes. Overall, our results show an altered expression of circadian genes accompanying heme biosynthesis disorders and confirm the need to deepen the knowledge of the mechanisms through which the alteration of the circadian clock circuitry could take part in determining signs and symptoms of porphyria patients and then again could represent a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Maria Savino
- Interregional Reference Center for Porphyria, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Laboratory of Clinical Chemistry, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Claudio Carmine Guida
- Interregional Reference Center for Porphyria, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Department of Medical Sciences, Division of Nephrology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Nardella
- Interregional Reference Center for Porphyria, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Department of Medical Sciences, Division of Nephrology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80121 Naples, Italy
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Antonio Fernando Savino
- Laboratory of Clinical Chemistry, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, Regional Reference Center for Porphyria, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Cei
- Division of Internal Medicine I, Regional Reference Center for Porphyria, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Filippo Aucella
- Department of Medical Sciences, Division of Nephrology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
- Correspondence: ; Tel./Fax: +39-08-8241-0255
| |
Collapse
|
3
|
Wang S, Li F, Lin Y, Wu B. Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics 2020; 10:4168-4182. [PMID: 32226546 PMCID: PMC7086371 DOI: 10.7150/thno.43834] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
REV-ERBα (NR1D1) is a circadian clock component that functions as a transcriptional repressor. Due to its role in direct modulation of metabolic genes, REV-ERBα is regarded as an integrator of cell metabolism with circadian clock. Accordingly, REV-ERBα is first proposed as a drug target for treating sleep disorders and metabolic syndromes (e.g., dyslipidaemia, hyperglycaemia and obesity). Recent years of studies uncover a rather broad role of REV-ERBα in pathological conditions including local inflammatory diseases, heart failure and cancers. Moreover, REV-ERBα is involved in regulation of circadian drug metabolism that has implications in chronopharmacology. In the meantime, recent years have witnessed discovery of an array of new REV-ERBα ligands most of which have pharmacological activities in vivo. In this article, we review the regulatory role of REV-ERBα in various types of diseases and discuss the underlying mechanisms. We also describe the newly discovered ligands and the old ones together with their targeting potential. Despite well-established pharmacological effects of REV-ERBα ligands in animals (preclinical studies), no progress has been made regarding their translation to clinical trials. This implies certain challenges associated with drug development of REV-ERBα ligands. In particular, we discuss the potential challenges related to drug safety (or adverse effects) and bioavailability. For new drug development, it is advocated that REV-ERBα should be targeted to treat local diseases and a targeting drug should be locally distributed, avoiding the adverse effects on other tissues.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
Wang L, Hu Y, Hao Y, Li L, Zheng C, Zhao H, Niu M, Yin Y, Zhang Z, Zhang Y. Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy. J Control Release 2018; 286:74-84. [PMID: 30026078 DOI: 10.1016/j.jconrel.2018.07.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 01/10/2023]
Abstract
Combination therapy with multiple drugs or/and multiple assistant treatments has become a hot spot in cancer therapy. In this study, a new type of core-shell structured dual-drug delivery system based on poly (lactic-co-glycolic acid) (PLGA, inner cores) and hyaluronic acid (HA, outer shells) was constructed. Firstly, HA was conjugated to PLGA for preparation of HA-PLGA block copolymer. Secondly, 5-amino levulinic acid (ALA) was connected to PLGA through a pH-sensitive hydrazone bond for synthesization of PLGA-HBA-ALA. Finally, the core-shell structured nanoparticles (HA-PLGA@ART/ALA NPs) were constructed by self-assembled method for artemisinin (ART) loading in PLGA cores. In this co-delivery system, ALA and ART can be released in a manner of procedural controlled release. ALA was released from the NPs at first though the pH sensitive hydrazone bond cleavage in order to generate protoporphyrin IX (PpIX) for heme formation. And the increase of heme can effectively improve the curative effect of the subsequent released ART. Furthermore, this system has also shown obvious sonodynaimc activity which can be used for cancer sonodynamic combination therapy. The in vitro and in vivo anticancer results demonstrate that HA-PLGA@ART/ALA delivery system could provide a prospective comprehensive treatment strategy for cancer therapy.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Yujie Hu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China; The 7(th) People's Hospital of Zhengzhou, 450006, PR China
| | - Yongwei Hao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Li Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Cuixia Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Hongjuan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China
| | - Yanyan Yin
- College of Basic Medicine, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China.
| | - Yun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China; Collaborative Innovation Centre of New Drug Research and Safety Evaluation, Henan Province, 100 Kexue Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A, Haque MM, Garee G, Dans PD, Hannibal L, Reddi AR, Stuehr DJ. Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem 2018; 293:14557-14568. [PMID: 30012884 DOI: 10.1074/jbc.ra118.004169] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/05/2018] [Indexed: 11/06/2022] Open
Abstract
Cellular heme is thought to be distributed between a pool of sequestered heme that is tightly bound within hemeproteins and a labile heme pool required for signaling and transfer into proteins. A heme chaperone that can hold and allocate labile heme within cells has long been proposed but never been identified. Here, we show that the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills this role by acting as an essential repository and allocator of bioavailable heme to downstream protein targets. We identified a conserved histidine in GAPDH that is needed for its robust heme binding both in vitro and in mammalian cells. Substitution of this histidine, and the consequent decreases in GAPDH heme binding, antagonized heme delivery to both cytosolic and nuclear hemeprotein targets, including inducible nitric-oxide synthase (iNOS) in murine macrophages and the nuclear transcription factor Hap1 in yeast, even though this GAPDH variant caused cellular levels of labile heme to rise dramatically. We conclude that by virtue of its heme-binding property, GAPDH binds and chaperones labile heme to create a heme pool that is bioavailable to downstream proteins. Our finding solves a fundamental question in cell biology and provides a new foundation for exploring heme homeostasis in health and disease.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Anuradha Bharara Singh
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Ritu Chakravarti
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Osiris Martinez-Guzman
- the School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Arushi Saini
- the School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Mohammad Mahfuzul Haque
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Greer Garee
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Pablo D Dans
- the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Balidiri Reixac 10-12, Barcelona 08028, Spain, and
| | - Luciana Hannibal
- the Laboratory of Clinical Biochemistry and Metabolism, Center of Pediatrics, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Amit R Reddi
- the School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Dennis J Stuehr
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|