1
|
Wu H, Song Z, Chen Q, Yan R, Zhao H, Li H. Disrupting reconsolidation by systemic inhibition of Thioredoxin-1 attenuates cocaine and morphine relapse. Biomed Pharmacother 2025; 186:118037. [PMID: 40199134 DOI: 10.1016/j.biopha.2025.118037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
The enduring nature of drug-associated memories is an essential factor contributing to the relapse. Drug-related cues can activate drug memories, making them enter reconsolidation, during which interventions can effectively disrupt these memories. Interventions targeting memory reconsolidation present a promising therapeutic strategy for addressing substance use disorders (SUDs). Oxidative stress can disrupt neural function and impair memory. Thioredoxin-1 (Trx-1) effectively alleviates oxidative stress and reduces inflammation levels. However, few studies have connected Trx-1 to drug memory or explored its specific role in reconsolidation. This research employed the conditioned place preference (CPP) model to investigate the effects of Trx-1 inhibitors on the reconsolidation of morphine- and cocaine-related memories. Results show that immediate administration of PX-12, a Trx-1 inhibitor, after retrieval significantly attenuated the reinstatement of cocaine and morphine CPP induced by both cues and the drug itself, with the effect lasting for at least 14 days. In contrast, the inhibition of Trx-1, either 6 hours following retrieval or in the absence of retrieval, does not influence drug-seeking behaviors associated with cocaine or morphine. Furthermore, Trx-1 inhibitor itself did not produce any preferences. In summary, our results indicate that Trx-1 activity is crucial for cocaine- and morphine-related memories, and that the Trx-1 inhibitor may serve as a potential treatment for drug abuse.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Science, Beijing, China
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qijun Chen
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
| | - Ruyu Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Zhao
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Skull Base Surgery and Neurooncology in Hunan Province, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Liu X, Dong X, Hu Y, Dong C, Wu S, Fang Y, Hu Y. TXN promotes tumorigenesis by activating the ERK1/2 and ERK5 signaling pathways regulating c-Myc in non-small cell lung cancer. Cell Signal 2024; 125:111517. [PMID: 39571701 DOI: 10.1016/j.cellsig.2024.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Lung cancer is the primary cause of cancer-related deaths worldwide, particularly for non-small cell lung cancer (NSCLC). However, the exact mechanism underlying tumor formation remains unclear. It is widely acknowledged that inflammation and oxidative stress occur in the tumor microenvironment, promoting cell malignant growth and metastasis. Thioredoxin-1 (TXN), the main regulator of oxidative stress, plays a significant role in the development of NSCLC. However, the specific tumor-promoting mechanism is still being investigated. This study aimed to examine the function and mechanism of TXN in NSCLC. The effects of knockdown or overexpression TXN on cell proliferation, invasion and apoptosis were evaluated by Cell Counting Kit-8, colony formation, wound healing, transwell, TUNEL staining, and flow cytometric assays. Western blotting was performed to analyze the regulation of TXN and downstream proteins suppressed by genes and pharmacology. TXN knockdown significantly suppressed cell proliferation, invasion and promoted apoptosis both in vitro and in vivo, whereas TXN overexpression reversed these malignant phenotypes. We found that TXN regulated c-Myc expression through ERK1/2 and ERK5 signaling pathways. Suppressing ERK1/2 led to the compensatory activation of ERK5, and simultaneously inhibiting ERK1/2 and ERK5 synergistically reduced c-Myc expression, further attenuating cell proliferation, invasion and enhanced apoptosis. Our results indicated tumor promotion of TXN in NSCLC and TXN regulated c-Myc in the interest of tumorigenesis through ERK1/2 and ERK5 signaling pathways. Targeting TXN and blocking the ERK1/2 and ERK5 pathways could potentially offer new therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Xiaoting Liu
- Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi Province, China
| | - Xilin Dong
- Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi Province, China.
| | - YiFan Hu
- Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi Province, China
| | - Cong Dong
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi Province, China
| | - Sanzhu Wu
- School of Computer Science, Xi'an Shiyou University, No. 18, East Section, Electronic Second Road, Xi'an 710065, Shaanxi Province, China
| | - Yanan Fang
- Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi Province, China
| | - Yaxin Hu
- Department of Respiratory, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
3
|
Sudhadevi T, Harijith A. Thioredoxin: an antioxidant, a therapeutic target and a possible biomarker. Pediatr Res 2024; 96:1117-1119. [PMID: 38942889 PMCID: PMC11521983 DOI: 10.1038/s41390-024-03370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Anantha Harijith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Haga M, Nagano N, Ozawa J, Tanaka K, Miyahara N, Fujimoto T, Ishii K, Namba F. The serum thioredoxin-1 levels are not associated with bronchopulmonary dysplasia and retinopathy of prematurity. Pediatr Res 2024; 96:1275-1282. [PMID: 38365875 PMCID: PMC11521992 DOI: 10.1038/s41390-024-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND We hypothesized that the serum TRX-1 in extremely preterm infants (EPIs) after birth was associated with the development of severe bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP). METHODS This single-centered retrospective study enrolled EPIs treated at our institution. Serum TRX-1 concentrations of the residual samples taken on admission, day 10-20 of life, and 36-40 weeks of postmenstrual age (PMA) were measured with an enzyme-linked immunosorbent assay. RESULTS The serum TRX-1 levels on admission were not different between the severe BPD (n = 46) and non-severe BPD groups (n = 67): [median (interquartile range) 147 (73.0-231) vs. 164 (80.5-248) ng/mL] (P = 0.57). These had no significant difference between the severe ROP (n = 47) and non-severe ROP groups (n = 66): [164 (71.3-237) vs. 150 (80.9-250) ng/mL] (P = 0.93). The TRX-1 levels at 10-20 days of life and 36-40 weeks of PMA also had no association with the development of severe BPD and ROP. CONCLUSION The serum TRX-1 levels after birth are not predictive of severe BPD and ROP. IMPACT Serum thioredoxin-1 levels in extremely preterm infants on the day of birth are lower than those in term or near-term infants hospitalized for transient tachypnea of the newborn. In extremely preterm infants, the serum thioredoxin-1 levels on the day of birth, at 10-20 days of life, and at postmenstrual age of 36-40 weeks were not associated with severe bronchopulmonary dysplasia and retinopathy of prematurity. The thioredoxin system is under development in extremely preterm infants; however, the serum thioredoxin-1 level is not predictive for severe bronchopulmonary dysplasia and retinopathy of prematurity.
Collapse
Affiliation(s)
- Mitsuhiro Haga
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan.
| | - Nobuhiko Nagano
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Ozawa
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kosuke Tanaka
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Naoyuki Miyahara
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Takeshi Fujimoto
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kuniya Ishii
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| |
Collapse
|
5
|
Long Y, Ang Y, Chen W, Wang Y, Shi M, Hu F, Zhou Q, Shi Y, Ge B, Peng Y, Yu W, Bao H, Li Q, Duan M, Gao J. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway. Free Radic Biol Med 2024; 218:132-148. [PMID: 38554812 DOI: 10.1016/j.freeradbiomed.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.
Collapse
Affiliation(s)
- Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yang Ang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Chen
- Department of Otolaryngology, Jinling College Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yujie Wang
- Department of Otolaryngology, Jinling College Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Min Shi
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fan Hu
- State Key Labortory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qingqing Zhou
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Baokui Ge
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Yigen Peng
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Wanyou Yu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210000, China
| | - Qian Li
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, 211100, China; Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210000, China.
| | - Manlin Duan
- Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China.
| | - Ju Gao
- Department of Anesthesiology, Yangzhou Clinical Medical College, Nanjing Medical University, Yangzhou, 225001, China; Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
6
|
Murata R, Watanabe H, Iwakiri R, Chikamatsu M, Satoh T, Noguchi I, Yasuda K, Nishinoiri A, Yoshitake T, Nosaki H, Maeda H, Maruyama T. Albumin-fused thioredoxin ameliorates high-fat diet-induced non-alcoholic steatohepatitis. Heliyon 2024; 10:e25485. [PMID: 38352801 PMCID: PMC10861950 DOI: 10.1016/j.heliyon.2024.e25485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The pathogenesis of non-alcoholic steatohepatitis (NASH) involves the simultaneous interaction of multiple factors such as lipid accumulation, oxidative stress, and inflammatory response. Here, the effect of human serum albumin (HSA) fused to thioredoxin (Trx) on NASH was investigated. Trx is known to have anti-oxidative, anti-inflammatory, and anti-apoptotic effects. However, Trx is a low molecular weight protein and is rapidly eliminated from the blood. To overcome the low availability of Trx, HSA-Trx fusion protein was produced and evaluated the therapeutic effect on high-fat diet (HFD)-induced NASH model mice. HSA-Trx administered before the formation of NASH pathology showed it to have a preventive effect. Specifically, HSA-Trx was found to prevent the pathological progression to NASH by suppressing lipid accumulation, liver injury markers, and liver fibrosis. When HSA-Trx was administered during the early stage of NASH there was a marked reduction in lipid accumulation, inflammation, and fibrosis in the liver, indicating that HSA-Trx ameliorates NASH pathology. The findings indicate that HSA-Trx influences multiple pathological factors, such as oxidative stress, inflammation, and apoptosis, to elicit a therapeutic benefit. HSA-Trx also inhibited palmitic acid-induced lipotoxicity in HepG2 cells. Taken together, these results indicate that HSA-Trx has potential as a therapeutic agent for NASH pathology.
Collapse
Affiliation(s)
- Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryotaro Iwakiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayuko Chikamatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Isamu Noguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kengo Yasuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Nishinoiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takuma Yoshitake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
7
|
Ichihara E, Hasegawa K, Kudo K, Tanimoto Y, Nouso K, Oda N, Mitsumune S, Yamada H, Takata I, Hagiya H, Mitsuhashi T, Taniguchi A, Toyooka S, Tsukahara K, Aokage T, Tsukahara H, Kiura K, Maeda Y. A randomized controlled trial of teprenone in terms of preventing worsening of COVID-19 infection. PLoS One 2023; 18:e0287501. [PMID: 37883347 PMCID: PMC10602324 DOI: 10.1371/journal.pone.0287501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Some COVID-19 patients develop life-threatening disease accompanied by severe pneumonitis. Teprenone induces expression of heat-shock proteins (HSPs) that protect against interstitial pneumonia in preclinical models. We explored whether teprenone prevented worsening of COVID-19 infections. METHODS This open-label, randomized, pilot phase 2 clinical trial was conducted at five institutions in Japan. We randomized patients hospitalized for COVID-19 with fever to teprenone or no-teprenone groups in a 1:1 ratio. We stratified patients by sex, age < and ≥ 70 years and the existence (or not) of complications (hypertension, diabetes, ischemic heart disease, chronic pulmonary disease and active cancer). No limitation was imposed on other COVID-19 treatments. The primary endpoint was the intubation rate. RESULTS One hundred patients were included, 51 in the teprenone and 49 in the no- teprenone groups. The intubation rate did not differ significantly between the two groups: 9.8% (5/51) vs. 2.0% (1/49) (sub-hazard ratio [SHR] 4.99, 95% confidence interval [CI]: 0.59-42.1; p = 0.140). The rates of intra-hospital mortality and intensive care unit (ICU) admission did not differ significantly between the two groups: intra-hospital mortality 3.9% (2/51) vs. 4.1% (2/49) (hazard ratio [HR] 0.78, 95%CI: 0.11-5.62; p = 0.809); ICU admission 11.8% (6/51) vs. 6.1% (3/49) (SHR 1.99, 95%CI: 0.51-7.80; p = 0.325). CONCLUSION Teprenone afforded no clinical benefit. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs061200002 (registered on 20/May/2020).
Collapse
Affiliation(s)
- Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichiro Kudo
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yasushi Tanimoto
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Naohiro Oda
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Sho Mitsumune
- Department of Respiratory Medicine, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Haruto Yamada
- Department of Infectious Disease, Okayama City Hospital, Okayama, Japan
| | - Ichiro Takata
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Jabbar S, Mathews P, Wang X, Sundaramoorthy P, Chu E, Piryani SO, Ding S, Shen X, Doan PL, Kang Y. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor. Exp Hematol Oncol 2022; 11:83. [PMID: 36316713 PMCID: PMC9624023 DOI: 10.1186/s40164-022-00329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.
Collapse
Affiliation(s)
- Shaima Jabbar
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
- Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Thomas C, Wurzer L, Malle E, Ristow M, Madreiter-Sokolowski CT. Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. FRONTIERS IN AGING 2022; 3:905261. [PMID: 35821802 PMCID: PMC9261327 DOI: 10.3389/fragi.2022.905261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.
Collapse
Affiliation(s)
- Carolin Thomas
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | - Lia Wurzer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael Ristow
- Laboratory of Energy Metabolism Institute of Translational Medicine Department of Health Sciences and Technology ETH Zurich, Schwerzenbach, Switzerland
| | | |
Collapse
|
10
|
TRX2/Rab35 Interaction Impairs Exosome Secretion by Inducing Rab35 Degradation. Int J Mol Sci 2022; 23:ijms23126557. [PMID: 35743001 PMCID: PMC9224307 DOI: 10.3390/ijms23126557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Given that exosomes mediate intercellular communication by delivering cellular components to recipient cells or tissue, they have the potential to be engineered to deliver therapeutic payloads. However, the regulatory mechanism of exosome secretion is poorly understood. In addition, mitochondrial components have been found in exosomes, suggesting communication between mitochondria and exosomes. However, the molecular mechanism of the mitochondria and vesicle interaction remains unclear. Here, we showed that mitochondrial thioredoxin 2 (TRX2) decreased exosome concentrations and inhibited HCT116 cell migration. Coimmunoprecipitation/mass spectrometry (Co-IP/MS) showed that TRX2 interacted with Rab35. TRX2 and Rab35 bound to each other at their N-terminal motifs and colocalized on mitochondria. Furthermore, TRX2 induced Rab35 degradation, resulting in impaired exosome secretion. Additionally, Rab35 mediated the suppressive effects of TRX2 on cell migration, and TRX2 suppressed cell migration through exosomes. Taken together, this study first found an interaction between TRX2 and Rab35. These results revealed a new role for TRX2 in the regulation of exosome secretion and cell migration and explained the upstream regulatory mechanism of Rab35. Furthermore, these findings also provide new molecular evidence for communication between mitochondria and vesicles.
Collapse
|
11
|
Oberacker T, Fritz P, Schanz M, Alscher MD, Ketteler M, Schricker S. Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants (Basel) 2022; 11:1124. [PMID: 35740021 PMCID: PMC9220040 DOI: 10.3390/antiox11061124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective method of renal replacement therapy, providing a high level of patient autonomy. Nevertheless, the long-term use of PD is limited due to deleterious effects of PD fluids to the structure and function of the peritoneal membrane leading to loss of dialysis efficacy. PD patients show excessive oxidative stress compared to controls or chronic kidney disease (CKD) patients not on dialysis. Therefore, defense systems against detrimental events play a pivotal role in the integrity of the peritoneal membrane. The thioredoxin-interacting-protein (TXNIP)/thioredoxin (TRX) system also plays a major role in maintaining the redox homeostasis. We hypothesized that the upregulation of TXNIP negatively influences TRX activity, resulting in enhanced oxidative DNA-damage in PD patients. Therefore, we collected plasma samples and human peritoneal biopsies of healthy controls and PD patients as well. Using ELISA-analysis and immunohistochemistry, we showed that PD patients had elevated TXNIP levels compared to healthy controls. Furthermore, we demonstrated that PD patients had a reduced TRX activity, thereby leading to increased oxidative DNA-damage. Hence, targeting the TXNIP/TRX system as well as the use of oxidative stress scavengers could become promising therapeutic approaches potentially applicable in clinical practice in order to sustain and improve peritoneal membrane function.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | - Peter Fritz
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Moritz Schanz
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Mark Dominik Alscher
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| | - Severin Schricker
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Auerbachstr. 110, 70376 Stuttgart, Germany; (P.F.); (M.S.); (M.D.A.); (M.K.); (S.S.)
| |
Collapse
|
12
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
13
|
Wang J, Zhou J, Wang C, Fukunaga A, Li S, Yodoi J, Tian H. Thioredoxin-1: A Promising Target for the Treatment of Allergic Diseases. Front Immunol 2022; 13:883116. [PMID: 35572600 PMCID: PMC9095844 DOI: 10.3389/fimmu.2022.883116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Thioredoxin-1 (Trx1) is an important regulator of cellular redox homeostasis that comprises a redox-active dithiol. Trx1 is induced in response to various stress conditions, such as oxidative damage, infection or inflammation, metabolic dysfunction, irradiation, and chemical exposure. It has shown excellent anti-inflammatory and immunomodulatory effects in the treatment of various human inflammatory disorders in animal models. This review focused on the protective roles and mechanisms of Trx1 in allergic diseases, such as allergic asthma, contact dermatitis, food allergies, allergic rhinitis, and drug allergies. Trx1 plays an important role in allergic diseases through processes, such as antioxidation, inhibiting macrophage migration inhibitory factor (MIF), regulating Th1/Th2 immune balance, modulating allergic inflammatory cells, and suppressing complement activation. The regulatory mechanism of Trx1 differs from that of glucocorticoids that regulates the inflammatory reactions associated with immune response suppression. Furthermore, Trx1 exerts a beneficial effect on glucocorticoid resistance of allergic inflammation by inhibiting the production and internalization of MIF. Our results suggest that Trx1 has the potential for future success in translational research.
Collapse
Affiliation(s)
- Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, China
- Department of Research and Development, Jiaozhimei Biotechnology (Shaoxing) Co., Ltd., Shaoxing, China
| |
Collapse
|
14
|
Genomic Evidence for the Recycling of Complex Organic Carbon by Novel
Thermoplasmatota
Clades in Deep-Sea Sediments. mSystems 2022; 7:e0007722. [PMID: 35430893 PMCID: PMC9239135 DOI: 10.1128/msystems.00077-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Thermoplasmatota have been widely reported in a variety of ecosystems, but their distribution and ecological role in marine sediments are still elusive. Here, we obtained four draft genomes affiliated with the former RBG-16-68-12 clade, which is now considered a new order, “Candidatus Yaplasmales,” of the Thermoplasmatota phylum in sediments from the South China Sea. The phylogenetic trees based on the 16S rRNA genes and draft genomes showed that “Ca. Yaplasmales” archaea are composed of three clades: A, B, and C. Among them, clades A and B are abundantly distributed (up to 10.86%) in the marine anoxic sediment layers (>10-cm depth) of six of eight cores from 1,200- to 3,400-m depths. Metabolic pathway reconstructions indicated that all clades of “Ca. Yaplasmales” have the capacity for alkane degradation by predicted alkyl-succinate synthase. Clade A of “Ca. Yaplasmales” might be mixotrophic microorganisms for the identification of the complete Wood-Ljungdahl pathway and putative genes involved in the degradation of aromatic and halogenated organic compounds. Clades B and C were likely heterotrophic, especially with the potential capacity of the spermidine/putrescine and aromatic compound degradation, as suggested by a significant negative correlation between the concentrations of aromatic compounds and the relative abundances of clade B. The sulfide-quinone oxidoreductase and pyrophosphate-energized membrane proton pump were encoded by all genomes of “Ca. Yaplasmales,” serving as adaptive strategies for energy production. These findings suggest that “Ca. Yaplasmales” might synergistically transform benthic pollutant and detrital organic matter, possibly playing a vital role in the marine and terrestrial sedimentary carbon cycle. IMPORTANCE Deep oceans receive large amounts of complex organic carbon and anthropogenic pollutants. The deep-sea sediments of the continental slopes serve as the biggest carbon sink on Earth. Particulate organic carbons and detrital proteins accumulate in the sediment. The microbially mediated recycling of complex organic carbon is still largely unknown, which is an important question for carbon budget in global oceans and maintenance of the deep-sea ecosystem. In this study, we report the prevalence (up to 10.86% of the microbial community) of archaea from a novel order of Thermoplasmatota, “Ca. Yaplasmales,” in six of eight cores from 1,200- to 3,400-m depths in the South China Sea. We provide genomic evidence of “Ca. Yaplasmales” in the anaerobic microbial degradation of alkanes, aliphatic and monoaromatic hydrocarbons, and halogenated organic compounds. Our study identifies the key archaeal players in anoxic marine sediments, which are probably critical in recycling the complex organic carbon in global oceans.
Collapse
|
15
|
Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics 2022; 14:pharmaceutics14030562. [PMID: 35335938 PMCID: PMC8953310 DOI: 10.3390/pharmaceutics14030562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Although the number of patients with heart failure is increasing, a sufficient treatment agent has not been established. Oxidative stress and inflammation play important roles in the development of myocardial remodeling. When thioredoxin (Trx), an endogenous anti-oxidative and inflammatory modulator with a molecular weight of 12 kDa, is exogenously administered, it disappears rapidly from the blood circulation. In this study, we prepared a long-acting Trx, by fusing human Trx (HSA-Trx) with human serum albumin (HSA) and evaluated its efficacy in treating drug-induced heart failure. Drug-induced cardiomyopathy was created by intraperitoneally administering doxorubicin (Dox) to mice three times per week. A decrease in heart weight, increased myocardial fibrosis and markers for myocardial damage that were observed in the Dox group were suppressed by HSA-Trx administration. HSA-Trx also suppressed the expression of atrogin-1 and myostatin, myocardial atrophy factors in addition to suppressing oxidative stress and inflammation. In the Dox group, a decreased expression of endogenous Trx in cardiac tissue and an increased expression of macrophage migration inhibitory factor were observed, but these changes were restored to normal levels by HSA-Trx administration. These findings suggest that HSA-Trx improves the pathological condition associated with Dox-induced cardiomyopathy by its anti-oxidative/anti-inflammatory and myocardial atrophy inhibitory action.
Collapse
|
16
|
Liu Y, Xue N, Zhang B, Lv H, Li S. Role of Thioredoxin-1 and its inducers in human health and diseases. Eur J Pharmacol 2022; 919:174756. [PMID: 35032486 DOI: 10.1016/j.ejphar.2022.174756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Thioredoxin-1 (Trx-1) is a small redox-active protein normally found in mammalian cells that responds to the changing redox environment by contributing electrons or regulating related proteins. There is growing evidence that Trx-1 has multiple functions, including cytoprotective, anti-apoptotic, antioxidant and anti-inflammatory effects. To date, researchers have found that Trx-1 deficiency leads to severe damage in various disease models, such as atherosclerosis, cerebral ischemia, diabetes and tumors. Conversely, activation of Trx-1 has a protective effect against these diseases. Accordingly, a variety of Trx-1 inducers have been widely used in the clinic with significant therapeutic value. In this paper, we summarize the pathogenesis of Trx-1 involvement in the above-mentioned diseases and describe the protective effects of Trx-1 inducers on them.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China
| | - Nianyu Xue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China
| | - Boxi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China.
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China.
| |
Collapse
|
17
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
18
|
Perween N, Pekhale K, Haval G, Mittal S, Ghaskadbi S, Ghaskadbi SS. Cloning and characterization of Thioredoxin 1 from the Cnidarian Hydra. J Biochem 2021; 171:41-51. [PMID: 34523686 DOI: 10.1093/jb/mvab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/11/2021] [Indexed: 11/14/2022] Open
Abstract
Thioredoxins, small disulphide-containing redox proteins, play an important role in the regulation of cellular thiol redox balance through their disulfide reductase activity. In this study, we have identified, cloned, purified and characterized thioredoxin 1 (HvTrx1) from the Cnidarian Hydra vulgaris Ind-Pune. Bioinformatics analysis revealed that HvTrx1 contains an evolutionarily conserved catalytic active site CGPC and shows a closer phylogenetic relationship with vertebrate Trx1. Optimum pH and temperature for enzyme activity of purified HvTrx1 was found to be pH 7.0 and 25 °C respectively. Enzyme activity decreased significantly at acidic or alkaline pH as well as at higher temperatures. HvTrx1 was found to be expressed ubiquitously in whole mount in situ hybridization. Treatment of Hydra with hydrogen peroxide (H2O2), a highly reactive oxidizing agent, led to a significant increase in gene expression and enzyme activity of Trx1. Further experiments using PX12, an inhibitor of Trx1, indicated that Trx1 plays an important role in regeneration in Hydra. Finally, by using growth assay in E. coli and wound healing assay in human colon cancer cells, we demonstrate that HvTrx1 is functionally active in both prokaryotic and eukaryotic heterologous systems.
Collapse
Affiliation(s)
- Nusrat Perween
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.,Department of Zoology, Abeda Inamdar Senior College, Pune 411001, India
| | - Komal Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Gauri Haval
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India.,Department of Zoology, Abasaheb Garware College, Pune 411004, India
| | - Smriti Mittal
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune 411004, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
19
|
Zavala MR, Díaz RG, Villa-Abrille MC, Pérez NG. Thioredoxin 1 (TRX1) Overexpression Cancels the Slow Force Response (SFR) Development. Front Cardiovasc Med 2021; 8:622583. [PMID: 33718450 PMCID: PMC7952880 DOI: 10.3389/fcvm.2021.622583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022] Open
Abstract
The stretch of cardiac muscle increases developed force in two phases. The first phase occurs immediately after stretch and is the expression of the Frank–Starling mechanism, while the second one or slow force response (SFR) occurs gradually and is due to an increase in the calcium transient amplitude. An important step in the chain of events leading to the SFR generation is the increased production of reactive oxygen species (ROS) leading to redox sensitive ERK1/2, p90RSK, and NHE1 phosphorylation/activation. Conversely, suppression of ROS production blunts the SFR. The purpose of this study was to explore whether overexpression of the ubiquitously expressed antioxidant molecule thioredoxin-1 (TRX1) affects the SFR development and NHE1 phosphorylation. We did not detect any change in basal phopho-ERK1/2, phopho-p90RSK, and NHE1 expression in mice with TRX1 overexpression compared to wild type (WT). Isolated papillary muscles from WT or TRX1-overexpressing mice were stretched from 92 to 98% of its maximal length. A prominent SFR was observed in WT mice that was completely canceled in TRX1 animals. Interestingly, myocardial stretch induced a significant increase in NHE1 phosphorylation in WT mice that was not detected in TRX1-overexpressing mice. These novel results suggest that magnification of cardiac antioxidant defense power by overexpression of TRX1 precludes NHE1 phosphorylation/activation after stretch, consequently blunting the SFR development.
Collapse
Affiliation(s)
- Maite R Zavala
- Fellow From Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina G Díaz
- Established Investigators of CONICET, Buenos Aires, Argentina
| | - María C Villa-Abrille
- Established Investigators of CONICET, Buenos Aires, Argentina.,Full Professors of Physiology, Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Néstor G Pérez
- Established Investigators of CONICET, Buenos Aires, Argentina.,Full Professors of Physiology, Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
20
|
Gimeno-Hernández R, Cantó A, Fernández-Carbonell A, Olivar T, Hernández-Rabaza V, Almansa I, Miranda M. Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Front Pharmacol 2021; 11:590572. [PMID: 33424600 PMCID: PMC7785808 DOI: 10.3389/fphar.2020.590572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited ocular disorder with no effective treatment. RP onset and progression trigger a cascade of retinal disorders that lead to the death of photoreceptors. After photoreceptors death, neuronal, glial and vascular remodeling can be observed in the retina. The purpose of this study was to study if thioredoxin (TRX) administration is able to decrease photoreceptor death in an animal model of RP (rd1 mouse), but also if it is able to modulate the retinal oxidative stress, glial and vascular changes that can be observed as the disease progresses. Wild type and rd1 mice received several doses of TRX. After treatment, animals were euthanized at postnatals days 11, 17, or 28. Glutathione (GSH) and other thiol compounds were determined by high performance liquid chromatography (HPLC). Glial fibrilary acidic protein (GFAP) and anti-ionized calcium binding adaptor molecule 1 (Iba1) were studied by immunohistochemistry. Vascular endothelial growth factor (VEGF) and hepatic growth factor (HGF) expression were determined by western blot. TRX administration significantly diminished cell death in rd1 mouse retinas and increased GSH retinal concentrations at postnatal day 11 (PN11). TRX was also able to reverse glial alterations at PN11 and PN17. No alterations were observed in retinal VEGF and HGF expression in rd1 mice. In conclusion, TRX treatment decreases photoreceptor death in the first stages of RP and this protective effect may be due in part to the GSH system activation and to a partially decrease in inflammation.
Collapse
Affiliation(s)
- Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Antolin Cantó
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Angel Fernández-Carbonell
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Vicente Hernández-Rabaza
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
21
|
Zhang C, Pang Y, Zhang Q, Huang G, Xu M, Tang B, Cheng Y, Yang X. Hemolymph transcriptome analysis of Chinese mitten crab (Eriocheir sinensis) with intact, left cheliped autotomy and bilateral eyestalk ablation. FISH & SHELLFISH IMMUNOLOGY 2018; 81:266-275. [PMID: 30010018 DOI: 10.1016/j.fsi.2018.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
In the pond culture of Eriocheir sinensis, high limb-autotomy seriously affects the quality and culture's economic efficiency. Based on our previous studies, limb autotomy can induce the changes of hematological immune response in E. sinensis hemolymph. Eyestalk ablation can accelerate the regeneration of limbs after autotomy. To detect the important functional genes related to the hematological molecular immunity of E. sinensis, we compared and analyzed the hemolymph transcriptome data of the intact crab, left cheliped autotomized crabs and bilateral eyestalk ablation crabs with high-throughput sequencing techniques. The results showed that the three groups obtained 62 172 414, 68 143 682, and 67 811 618 clean reads, respectively. A total of 9567 differentially expressed genes were obtained by multiple comparison of the three groups' libraries. Gene ontology (GO) functional classification analysis shows that the differential genes belong to 42 categories of biological process, cellular components and molecular function. The differentially expressed genes in the three libraries were enriched to 344 specific KEGG metabolic pathways by KEGG enrichment analysis, such as the up-regulated gene (dual oxidase (Duox), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHAQ)) in MAPK signaling pathway, the up-regulated gene (aldehyde dehydrogenase 1 (ALDH 1)) and down-regulated gene (UDP-glucuronosyltransferase 2 (UGT 2)) in metabolism of the xenobiotics by cytochrome P450 pathway, the down-regulated gene (actin gene (AG), heat shock protein 90 (HSP 90)) in fluid shear stress and atherosclerosis pathway. To verify the expression levels of DEGs identified by RNA-Seq, the above six hematological immune-related genes were selected for qRT-PCR validation, the qRT-PCR results were consistent with the DEGs results. Our research obtained abundant E. sinensis hemolymph transcriptome information by RNA-Seq, which provides multi-level information for the cloning of novel genes and the study of hemolymph molecular immunology mechanisms of E. sinensis.
Collapse
Affiliation(s)
- Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qian Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Genyong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Minjie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
22
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
23
|
Wilson RL, Selvaraju V, Lakshmanan R, Thirunavukkarasu M, Campbell J, McFadden DW, Maulik N. Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. J Surg Res 2017; 220:68-78. [PMID: 29180214 PMCID: PMC7904090 DOI: 10.1016/j.jss.2017.06.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sepsis is a leading cause of mortality among patients in intensive care units across the USA. Thioredoxin-1 (Trx-1) is an essential 12 kDa cytosolic protein that, apart from maintaining the cellular redox state, possesses multifunctional properties. In this study, we explored the possibility of controlling adverse myocardial depression by overexpression of Trx-1 in a mouse model of severe sepsis. METHODS Adult C57BL/6J and Trx-1Tg/+ mice were divided into wild-type sham (WTS), wild-type cecal ligation and puncture (WTCLP), Trx-1Tg/+sham (Trx-1Tg/+S), and Trx-1Tg/+CLP groups. Cardiac function was evaluated before surgery, 6 and 24 hours after CLP surgery. Immunohistochemical and Western blot analysis were performed after 24 hours in heart tissue sections. RESULTS Echocardiography analysis showed preserved cardiac function in the Trx-1Tg/+ CLP group compared with the WTCLP group. Similarly, Western blot analysis revealed increased expression of Trx-1, heme oxygenase-1 (HO-1), survivin (an inhibitor of apoptosis [IAP] protein family), and decreased expression of thioredoxin-interacting protein (TXNIP), caspase-3, and 3- nitrotyrosine in the Trx-1Tg/+CLP group compared with the WTCLP group. Immunohistochemical analysis showed reduced 4-hydroxynonenal, apoptosis, and vascular leakage in the cardiac tissue of Trx-1Tg/+CLP mice compared with mice in the WTCLP group. CONCLUSIONS Our results indicate that overexpression of Trx-1 attenuates cardiac dysfunction during CLP. The mechanism of action may involve reduction of oxidative stress, apoptosis, and vascular permeability through activation of Trx-1/HO-1 and anti-apoptotic protein survivin.
Collapse
Affiliation(s)
- Rickesha L Wilson
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut.
| | - Jacob Campbell
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut School of Medicine, Farmington, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
24
|
Yodoi J, Matsuo Y, Tian H, Masutani H, Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients 2017; 9:nu9101081. [PMID: 28961169 PMCID: PMC5691698 DOI: 10.3390/nu9101081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human thioredoxin (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, which is induced by biological stress due to oxidative damage, metabolic dysfunction, chemicals, infection/inflammation, irradiation, or hypoxia/ischemia-reperfusion. Our research has demonstrated that exogenous TRX is effective in a wide variety of inflammatory diseases, including viral pneumonia, acute lung injury, gastric injury, and dermatitis, as well as in the prevention and amelioration of food allergies. Preclinical and clinical studies using recombinant TRX (rhTRX) are now underway. We have also identified substances that induce the expression of TRX in the body, in vegetables and other plant ingredients. Skincare products are being developed that take advantage of the anti-inflammatory and anti-allergic action of TRX. Furthermore, we are currently engaged in the highly efficient production of pure rhTRX in several plants, such as lettuce, grain and rice.
Collapse
Affiliation(s)
- Junji Yodoi
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Hai Tian
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Department of Anatomy, Basic Medicine Science, Medical College, Shaoxing University, No 900 Cengnan Avenue, Shaoxing 312000, China.
| | - Hiroshi Masutani
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Takashi Inamoto
- Japan Biostress Research Promotion Alliance (JBPA), 1-6 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan.
- Terni Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| |
Collapse
|
25
|
Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4162465. [PMID: 28706574 PMCID: PMC5494587 DOI: 10.1155/2017/4162465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022]
Abstract
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.
Collapse
|
26
|
Abstract
Although substantial improvements have been made in majority of cardiac disorders, heart failure (HF) remains a major health problem, with both increasing incidence and prevalence over the past decades. For that reason, the number of potential biomarkers that could contribute to diagnosis and treatment of HF patients is, almost exponentially, increasing over the recent years. The biomarkers that are, at the moment, more or less ready for use in everyday clinical practice, reflect different pathophysiological processes present in HF. In this review, seven groups of biomarkers associated to myocardial stretch (mid-regional proatrial natriuretic peptide, MR-proANP), myocyte injury (high-sensitive troponins, hs-cTn; heart-type fatty acid-binding protein, H-FABP; glutathione transferase P1, GSTP1), matrix remodeling (galectin-3; soluble isoform of suppression of tumorigenicity 2, sST2), inflammation (growth differentiation factor-15, GDF-15), renal dysfunction (neutrophil gelatinase-associated lipocalin, NGAL; kidney injury molecule-1, KIM-1), neurohumoral activation (adrenomedullin, MR-proADM; copeptin), and oxidative stress (ceruloplasmin; myeloperoxidase, MPO; 8-hydroxy-2'-deoxyguanosine, 8-OHdG; thioredoxin 1, Trx1) in HF will be overviewed. It is important to note that clinical value of individual biomarkers within the single time points in both diagnosis and outcome prediction in HF is limited. Hence, the future of biomarker application in HF lies in the multimarker panel strategy, which would include specific combination of biomarkers that reflect different pathophysiological processes underlying HF.
Collapse
|
27
|
Plugis NM, Palanski BA, Weng CH, Albertelli M, Khosla C. Thioredoxin-1 Selectively Activates Transglutaminase 2 in the Extracellular Matrix of the Small Intestine: IMPLICATIONS FOR CELIAC DISEASE. J Biol Chem 2016; 292:2000-2008. [PMID: 28003361 DOI: 10.1074/jbc.m116.767988] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Transglutaminase 2 (TG2) catalyzes transamidation or deamidation of its substrates and is ordinarily maintained in a catalytically inactive state in the intestine and other organs. Aberrant TG2 activity is thought to play a role in celiac disease, suggesting that a better understanding of TG2 regulation could help to elucidate the mechanistic basis of this malady. Structural and biochemical analysis has led to the hypothesis that extracellular TG2 activation involves reduction of an allosteric disulfide bond by thioredoxin-1 (TRX), but cellular and in vivo evidence for this proposal is lacking. To test the physiological relevance of this hypothesis, we first showed that macrophages exposed to pro-inflammatory stimuli released TRX in sufficient quantities to activate their extracellular pools of TG2. By using the C35S mutant of TRX, which formed a metastable mixed disulfide bond with TG2, we demonstrated that these proteins specifically recognized each other in the extracellular matrix of fibroblasts. When injected into mice and visualized with antibodies, we observed the C35S TRX mutant bound to endogenous TG2 as its principal protein partner in the small intestine. Control experiments showed no labeling of TG2 knock-out mice. Intravenous administration of recombinant TRX in wild-type mice, but not TG2 knock-out mice, led to a rapid rise in intestinal transglutaminase activity in a manner that could be inhibited by small molecules targeting TG2 or TRX. Our findings support the potential pathophysiological relevance of TRX in celiac disease and establish the Cys370-Cys371 disulfide bond of TG2 as one of clearest examples of an allosteric disulfide bond in mammals.
Collapse
Affiliation(s)
- Nicholas M Plugis
- From the Department of Chemistry, Stanford University, Stanford, California 94305
| | - Brad A Palanski
- From the Department of Chemistry, Stanford University, Stanford, California 94305
| | - Chih-Hisang Weng
- From the Department of Chemistry, Stanford University, Stanford, California 94305; the School of Medicine, Stanford University, Stanford, California 94305; the Medical Science Training Program, Stanford University, Stanford, California 94305
| | - Megan Albertelli
- Department of Comparative Medicine, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- From the Department of Chemistry, Stanford University, Stanford, California 94305; Department of Chemical Engineering, Stanford University, Stanford, California 94305; Stanford ChEM-H, Stanford University, Stanford, California 94305.
| |
Collapse
|
28
|
Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis. J Parasitol Res 2016; 2016:8421597. [PMID: 27872753 PMCID: PMC5107843 DOI: 10.1155/2016/8421597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa.
Collapse
|
29
|
Human thioredoxin-1 attenuates the rate of lipopolysaccharide-induced preterm delivery in mice in association with its anti-inflammatory effect. Pediatr Res 2016; 80:433-9. [PMID: 27100048 DOI: 10.1038/pr.2016.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/03/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Maternal intrauterine infection/inflammation represents the major etiology of preterm delivery and the leading cause of neonatal mortality and morbidity. The aim of this study was to investigate the anti-inflammatory properties of thioredoxin-1 in vivo and its potential ability to attenuate the rate of inflammation-induced preterm delivery. METHODS Two intraperitoneal injections of lipopolysaccharide from Escherichia coli were administered in pregnant mice on gestational day 15, with a 3-h interval between the injections. From either 1 h before or 1 h after the first lipopolysaccharide injection, mice received three intravenous injections of either recombinant human thioredoxin-1, ovalbumin, or vehicle, with a 3-h interval between injections. RESULTS Intraperitoneal injection of lipopolysaccharide induced a rise of tumor necrosis factor-α, interferon-γ, monocyte chemotactic protein 1, and interleukin-6 in maternal serum levels and provoked preterm delivery. Recombinant human thoredoxin-1 prevented the rise in these proinflammatory cytokine levels. After the inflammatory challenge, placentas exhibited severe maternal vascular dilatation and congestion and a marked decidual neutrophil activation. These placental pathological findings were ameliorated by recombinant human thioredoxin-1, and the rate of inflammation-induced preterm delivery was attenuated. CONCLUSION Thioredoxin-1 may thus represent a novel effective treatment to delay inflammation-induced preterm delivery.
Collapse
|
30
|
D'Annunzio V, Perez V, Boveris A, Gelpi RJ, Poderoso JJ. Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res 2016; 109:24-31. [PMID: 26987940 DOI: 10.1016/j.phrs.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/12/2023]
Abstract
Thioredoxin is one of the most important cellular antioxidant systems known to date, and is responsible of maintaining the reduced state of the intracellular space. Trx-1 is a small cytosolic protein whose transcription is induced by stress. Therefore it is possible that this antioxidant plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode. However, in addition to its antioxidant properties, it is able to activate other cytoplasmic and nuclear mediators that confer cardioprotection. It is remarkable that Trx-1 also participates in myocardial protection mechanisms such as ischemic preconditioning and postconditioning, activating proteins related to cellular survival. In this sense, it has been shown that Trx-1 inhibition abolished the preconditioning cardioprotective effect, evidenced through apoptosis and infarct size. Furthermore, ischemic postconditioning preserves Trx-1 content at reperfusion, after ischemia. However, comorbidities such as aging can modify this powerful cellular defense leading to decrease cardioprotection. Even ischemic preconditioning and postconditioning protocols performed in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved, at least in part, avoiding the damage of Trx system.
Collapse
Affiliation(s)
- Veronica D'Annunzio
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Virginia Perez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Alberto Boveris
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina
| | - Ricardo J Gelpi
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina.
| | - Juan J Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| |
Collapse
|
31
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Jan YH, Heck DE, Casillas RP, Laskin DL, Laskin JD. Thioredoxin Cross-Linking by Nitrogen Mustard in Lung Epithelial Cells: Formation of Multimeric Thioredoxin/Thioredoxin Reductase Complexes and Inhibition of Disulfide Reduction. Chem Res Toxicol 2015; 28:2091-103. [PMID: 26451472 DOI: 10.1021/acs.chemrestox.5b00194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The thioredoxin (Trx) system, which consists of Trx and thioredoxin reductase (TrxR), is a major cellular disulfide reduction system important in antioxidant defense. TrxR is a target of mechlorethamine (methylbis(2-chloroethyl)amine; HN2), a bifunctional alkylating agent that covalently binds to selenocysteine/cysteine residues in the redox centers of the enzyme, leading to inactivation and toxicity. Mammalian Trx contains two catalytic cysteines; herein, we determined if HN2 also targets Trx. HN2 caused a time- and concentration-dependent inhibition of purified Trx and Trx in A549 lung epithelial cells. Three Trx cross-linked protein complexes were identified in both cytosolic and nuclear fractions of HN2-treated cells. LC-MS/MS of these complexes identified both Trx and TrxR, indicating that HN2 cross-linked TrxR and Trx. This is supported by our findings of a significant decrease of Trx/TrxR complexes in cytosolic TrxR knockdown cells after HN2 treatment. Using purified recombinant enzymes, the formation of protein cross-links and enzyme inhibition were found to be redox status-dependent; reduced Trx was more sensitive to HN2 inactivation than the oxidized enzyme, and Trx/TrxR cross-links were only observed using reduced enzyme. These data suggest that HN2 directly targets catalytic cysteine residues in Trx resulting in enzyme inactivation and protein complex formation. LC-MS/MS confirmed that HN2 directly alkylated cysteine residues on Trx, including Cys32 and Cys35 in the redox center of the enzyme. Inhibition of the Trx system by HN2 can disrupt cellular thiol-disulfide balance, contributing to vesicant-induced lung toxicity.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School , Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College , Valhalla, New York 10595, United States
| | | | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School , Piscataway, New Jersey 08854, United States
| |
Collapse
|
33
|
Abstract
Thioredoxin (Trx) is an inflammation-inducible small oxidoreductase protein ubiquitously expressed in all organisms. Trx acts both intracellularly and extracellularly and is involved in a wide range of physiological cellular responses. Inside the cell, Trx alleviates oxidative stress by scavenging reactive oxygen species (ROS), regulates a variety of redox-sensitive signaling pathways as well as ROS-independent genes, and exerts cytoprotective effects. Outside the cell, Trx acts as growth factors or cytokines and promotes cell growth and many other cellular responses. Trx is also implicated in tumorigenesis. Trx is a proto-oncogene and is overexpressed in many cancers and correlates with poor prognosis. Trx stimulates cancer cell survival, promotes tumor angiogenesis, and inhibits both spontaneous apoptosis and drug-induced apoptosis. Inhibitors targeting Trx pathway provide a promising therapeutic strategy for cancer prevention and intervention. More recently, data from our laboratory demonstrate an important role of Trx in expanding long-term repopulating hematopoietic stem cells. In this chapter, we first provide an overview of Trx including its isoforms, compartmentation, and functions. We then discuss the roles of Trx in hematologic malignancies. Finally, we summarize the most recent findings from our lab on the use of Trx to enhance hematopoietic reconstitution following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yubin Kang
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Current address: Division of Hematologic Malignancy and Cellular Therapy/Adult BMT, Department of Medicine, Duke University Medical Center, North Carolina, USA.
| |
Collapse
|
34
|
Peeters PM, Eurlings IMJ, Perkins TN, Wouters EF, Schins RPF, Borm PJA, Drommer W, Reynaert NL, Albrecht C. Silica-induced NLRP3 inflammasome activation in vitro and in rat lungs. Part Fibre Toxicol 2014; 11:58. [PMID: 25406505 PMCID: PMC4243278 DOI: 10.1186/s12989-014-0058-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
RATIONALE Mineral particles in the lung cause inflammation and silicosis. In myeloid and bronchial epithelial cells the inflammasome plays a role in responses to crystalline silica. Thioredoxin (TRX) and its inhibitory protein TRX-interacting protein link oxidative stress with inflammasome activation. We investigated inflammasome activation by crystalline silica polymorphs and modulation by TRX in vitro, as well as its localization and the importance of silica surface reactivity in rats. METHODS We exposed bronchial epithelial cells and differentiated macrophages to silica polymorphs quartz and cristobalite and measured caspase-1 activity as well as the release of IL-1β, bFGF and HMGB1; including after TRX overexpression or treatment with recombinant TRX. Rats were intratracheally instilled with vehicle control, Dörentruper quartz (DQ12) or DQ12 coated with polyvinylpyridine N-oxide. At days 3, 7, 28, 90, 180 and 360 five animals per treatment group were sacrificed. Hallmarks of silicosis were assessed with Haematoxylin-eosin and Sirius Red stainings. Caspase-1 activity in the bronchoalveolar lavage and caspase-1 and IL-1β localization in lung tissue were determined using Western blot and immunohistochemistry (IHC). RESULTS Silica polymorphs triggered secretion of IL-1β, bFGF and HMGB1 in a surface reactivity dependent manner. Inflammasome readouts linked with caspase-1 enzymatic activity were attenuated by TRX overexpression or treatment. At day 3 and 7 increased caspase-1 activity was detected in BALF of the DQ12 group and increased levels of caspase-1 and IL-1β were observed with IHC in the DQ12 group compared to controls. DQ12 exposure revealed silicotic nodules at 180 and 360 days. Particle surface modification markedly attenuated the grade of inflammation and lymphocyte influx and attenuated the level of inflammasome activation, indicating that the development of silicosis and inflammasome activation is determined by crystalline silica surface reactivity. CONCLUSION Our novel data indicate the pivotal role of surface reactivity of crystalline silica to activate the inflammasome in cultures of both epithelial cells and macrophages. Inhibitory capacity of the antioxidant TRX to inflammasome activation was evidenced. DQ12 quartz exposure induced acute and chronic functional activation of the inflammasome in the heterogeneous cell populations of the lung in associated with its crystalline surface reactivity.
Collapse
Affiliation(s)
- Paul M Peeters
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht University, Maastricht, The Netherlands. .,IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Irene M J Eurlings
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht University, Maastricht, The Netherlands.
| | - Timothy N Perkins
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht University, Maastricht, The Netherlands.
| | - Emiel F Wouters
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht University, Maastricht, The Netherlands.
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Paul J A Borm
- Bèta Sciences and Technology, Hogeschool Zuyd, Heerlen, The Netherlands.
| | | | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Centre+ (MUMC+), Maastricht University, Maastricht, The Netherlands.
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
35
|
Abstract
SIGNIFICANCE Fetal lung development takes place in hypoxia meaning that premature birth is hyperoxia for the prematurely born infant. The most common respiratory morbidity afflicting premature infants is bronchopulmonary dysplasia (BPD). Pathophysiologically, BPD represents the impact of injury, including O2 toxicity, to the immature developing lung that causes arrested lung development. RECENT ADVANCES The thioredoxin (Trx) system, which is predominantly expressed in pulmonary epithelia in the newborn lung, acts as an antioxidant system; however, it is increasingly recognized as a key redox regulator of signal transduction and gene expression via thiol-disulfide exchange reactions. CRITICAL ISSUES This review focuses on the contribution of Trx family proteins toward normal and aberrant lung development, in particular, the roles of the Trx system in hyperoxic responses of alveolar epithelial cells, aberrant lung development in animal models of BPD, O2-dependent signaling processes, and possible therapeutic efficacy in preventing O2-mediated lung injury. FUTURE DIRECTIONS The significant contribution of the Trx system toward redox regulation of key developmental pathways necessary for proper lung development suggests that therapeutic strategies focused on preserving pulmonary Trx function could significantly improve the outcomes of prematurely born human infants.
Collapse
Affiliation(s)
- Trent E Tipple
- 1 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
36
|
Liu M, Wang Y, Zheng L, Zheng W, Dong K, Chen S, Zhang B, Li Z. Fasudil reversed MCT-induced and chronic hypoxia-induced pulmonary hypertension by attenuating oxidative stress and inhibiting the expression of Trx1 and HIF-1α. Respir Physiol Neurobiol 2014; 201:38-46. [PMID: 24973470 DOI: 10.1016/j.resp.2014.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
Antioxidant therapy attenuates pulmonary hypertension (PH). In the present study, we tested the antioxidant effects of fasudil against PH in rats. Monocrotaline (MCT)-induced and chronic hypoxia-induced PH models of rats were established, and the haemodynamic and pathomorphologic results of three different doses of fasudil (10 mg/kg, 30 mg/kg, and 75 mg/kg per day) were subsequently compared with those of bosentan (30 mg/kg per day). Additionally, the protein expressions of thioredoxin-1 (Trx1) and hypoxia inducible factor-1α (HIF-1α), the content of superoxide dismutase (SOD), and the levels of hydrogen peroxide (H2O2), malonyldialdehyde (MDA), and hydroxy radical (·OH) were investigated. Fasudil effectively reduced the right ventricular systolic pressure (RVSP) and alleviated right ventricle (RV) hypertrophy, as well as the histological changes in the pulmonary arterioles. Moreover, fasudil markedly lessened the expression of Trx1 and HIF-1α, up-regulated the concentration of SOD, and lowered the levels of H2O2, MDA, and ·OH. In conclusion, fasudil is a notably attractive potential therapy for PH.
Collapse
Affiliation(s)
- Manling Liu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanxia Wang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Lianhe Zheng
- Centre of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Wansong Zheng
- Department of Information, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Kai Dong
- Tianjin Chase Sun Pharmaceutical Co., Ltd., Tianjin 301700, PR China
| | - Shuai Chen
- Tianjin Chase Sun Pharmaceutical Co., Ltd., Tianjin 301700, PR China
| | - Bo Zhang
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhichao Li
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
37
|
Ruan Z, Liu G, Guo Y, Zhou Y, Wang Q, Chang Y, Wang B, Zheng J, Zhang L. First report of a thioredoxin homologue in jellyfish: molecular cloning, expression and antioxidant activity of CcTrx1 from Cyanea capillata. PLoS One 2014; 9:e97509. [PMID: 24824597 PMCID: PMC4019632 DOI: 10.1371/journal.pone.0097509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/17/2014] [Indexed: 01/10/2023] Open
Abstract
Thioredoxins (Trx proteins) are a family of small, highly-conserved and ubiquitous proteins that play significant roles in the resistance of oxidative damage. In this study, a homologue of Trx was identified from the cDNA library of tentacle of the jellyfish Cyanea capillata and named CcTrx1. The full-length cDNA of CcTrx1 was 479 bp with a 312 bp open reading frame encoding 104 amino acids. Bioinformatics analysis revealed that the putative CcTrx1 protein harbored the evolutionarily-conserved Trx active site 31CGPC34 and shared a high similarity with Trx1 proteins from other organisms analyzed, indicating that CcTrx1 is a new member of Trx1 sub-family. CcTrx1 mRNA was found to be constitutively expressed in tentacle, umbrella, oral arm and gonad, indicating a general role of CcTrx1 protein in various physiological processes. The recombinant CcTrx1 (rCcTrx1) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rCcTrx1 protein was demonstrated to possess the expected redox activity in enzymatic analysis and protection against oxidative damage of supercoiled DNA. These results indicate that CcTrx1 may function as an important antioxidant in C. capillata. To our knowledge, this is the first Trx protein characterized from jellyfish species.
Collapse
Affiliation(s)
- Zengliang Ruan
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Guoyan Liu
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yufeng Guo
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yonghong Zhou
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Qianqian Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yinlong Chang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Beilei Wang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jiemin Zheng
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
38
|
Katsumi H, Nishikawa M, Nishiyama K, Hirosaki R, Nagamine N, Okamoto H, Mizuguchi H, Kusamori K, Yasui H, Yamashita F, Hashida M, Sakane T, Yamamoto A. Development of PEGylated serum albumin with multiple reduced thiols as a long-circulating scavenger of reactive oxygen species for the treatment of fulminant hepatic failure in mice. Free Radic Biol Med 2014; 69:318-23. [PMID: 24509159 DOI: 10.1016/j.freeradbiomed.2014.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are involved in the pathophysiology of fulminant hepatic failure. Therefore, we developed polyethylene glycol-conjugated bovine serum albumin with multiple reduced thiols (PEG-BSA-SH) for the treatment of fulminant hepatic failure. As a long-circulating ROS scavenger, PEG-BSA-SH effectively scavenged highly reactive oxygen species and hydrogen peroxide in buffer solution. PEG-BSA-SH showed a long circulation time in the plasma after intravenous injection into mice. Fulminant hepatic failure was induced by intraperitoneal injection of lipopolysaccharide and D-galactosamine (LPS/D-GalN) into mice. The LPS/D-GalN-induced elevation of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels was significantly inhibited by a bolus intravenous injection of PEG-BSA-SH. Furthermore, the changes in hepatic lipid peroxide and hepatic blood flow were effectively suppressed by PEG-BSA-SH. In contrast, L-cysteine, glutathione, and dithiothreitol, three traditional reduced thiols, had no statistically significant effects on the serum levels of ALT or AST. These findings indicate that PEG-BSA-SH is a promising ROS scavenger and useful in the treatment of fulminant hepatic failure.
Collapse
Affiliation(s)
- Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazushi Nishiyama
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Rikiya Hirosaki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Narumi Nagamine
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Haruka Okamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hironori Mizuguchi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kosuke Kusamori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiyasu Sakane
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
39
|
Abstract
Thioredoxin-1 (Trx1) is an antioxidant enzyme with a protective role in the removal of oxidative stress. We investigated the mechanism by which the redox modulator Trx1 affects base excision repair (BER) activity to understand the protective role of Trx1. We constructed a Trx1 knockdown system to demonstrate the specific mechanism of Trx1 shRNA cells compared with that in the wild type cells, leading to increased cellular susceptibility to a sublethal dose of BER-inducible toxicant, nitrosomethylurea (NMU). In addition, we observed a modulatory role of Trx1 in the BER pathway via the p53 downstream gene, growth arrest, and DNA-damage-inducible protein 45 α (Gadd45a). The protein level and function of p53, a Trx1 downstream gene, coincidently decreased in the Trx1 shRNA cells. Futhermore, Trx1 shRNA cells showed decreased Gadd45a expression and interaction of Gadd45a with apurinic/apyrimidinic endonuclease 1 (APE1) as well as APE activity. In conclusion, Trx1 might cooperate in the control of APE1 function by modulating the p53-mediated BER via the protein-protein interaction between Gadd45a and APE1, providing insight into the novel role of redox factor Trx1 in modulation of BER.
Collapse
|
40
|
Cai X, Yodoi J, Seal S, McGinnis JF. Nanoceria and thioredoxin regulate a common antioxidative gene network in tubby mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:829-36. [PMID: 24664777 DOI: 10.1007/978-1-4614-3209-8_104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress is a node common to the causes and effects of various ocular diseases. We have shown that thioredoxin has neuroprotective effects on tubby photoreceptors. We also demonstrated that nanoceria (cerium oxide nanoparticles), which are direct antioxidants, have long-term effects on prevention of retinal degeneration in tubby mice. Here, using commercially available PCR array plates, we surveyed the regulation in expression of 89 oxidative stress-associated genes in the eyes of P12 tubby mice which are either intravitreally injected with nanoceria or in which the Trx gene is overexpressed. Our data demonstrate that nanoceria and Trx regulate the same group of genes associated with antioxidative stress and antioxidant defense.
Collapse
Affiliation(s)
- Xue Cai
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, 73104, Oklahoma City, OK, USA,
| | | | | | | |
Collapse
|
41
|
Tanabe N, Hoshino Y, Marumo S, Kiyokawa H, Sato S, Kinose D, Uno K, Muro S, Hirai T, Yodoi J, Mishima M. Thioredoxin-1 protects against neutrophilic inflammation and emphysema progression in a mouse model of chronic obstructive pulmonary disease exacerbation. PLoS One 2013; 8:e79016. [PMID: 24244404 PMCID: PMC3823967 DOI: 10.1371/journal.pone.0079016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/16/2013] [Indexed: 02/02/2023] Open
Abstract
Background Exacerbations of chronic obstructive pulmonary disease (COPD) are characterized by acute enhancement of airway neutrophilic inflammation under oxidative stress and can be involved in emphysema progression. However, pharmacotherapy against the neutrophilic inflammation and emphysema progression associated with exacerbation has not been established. Thioredoxin-1 has anti-oxidative and anti-inflammatory properties and it can ameliorate neutrophilic inflammation through anti-chemotactic effects and prevent cigarette smoke (CS)-induced emphysema. We aimed to determine whether thioredoxin-1 can suppress neutrophilic inflammation and emphysema progression in a mouse model of COPD exacerbation and if so, to reveal the underlying mechanisms. Results Mice were exposed to CS and then challenged with polyinosine-polycytidylic acid [poly(I:C)], an agonist for virus-induced innate immunity. Airway neutrophilic inflammation, oxidative stress and lung apoptosis were enhanced in smoke-sensitive C57Bl/6, but not in smoke-resistant NZW mice. Exposure to CS and poly(I:C) challenge accelerated emphysema progression in C57Bl/6 mice. Thioredoxin-1 suppressed neutrophilic inflammation and emphysema progression. Poly(I:C) caused early neutrophilic inflammation through keratinocyte-derived chemokine and granulocyte-macrophage colony-stimulating factor (GM-CSF) release in the lung exposed to CS. Late neutrophilic inflammation was caused by persistent GM-CSF release, which thioredoxin-1 ameliorated. Thioredoxin-1 enhanced pulmonary mRNA expression of MAP kinase phosphatase 1 (MKP-1), and the suppressive effects of thioredoxin-1 on prolonged GM-CSF release and late neutrophilic inflammation disappeared by inhibiting MKP-1. Conclusion Using a mouse model of COPD exacerbation, we demonstrated that thioredoxin-1 ameliorated neutrophilic inflammation by suppressing GM-CSF release, which prevented emphysema progression. Our findings deepen understanding of the mechanisms underlying the regulation of neutrophilic inflammation by thioredoxin-1 and indicate that thioredoxin-1 could have potential as a drug to counteract COPD exacerbation.
Collapse
Affiliation(s)
- Naoya Tanabe
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuma Hoshino
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Satoshi Marumo
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirofumi Kiyokawa
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Sato
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Kinose
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | - Shigeo Muro
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Yodoi
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Center for Cell Signaling Research and Department of Bioinspired Science, Ewha Womans University, Seoul, Korea
| | - Michiaki Mishima
- Departments of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
43
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
44
|
An N, Janech MG, Bland AM, Lazarchick J, Arthur JM, Kang Y. Proteomic analysis of murine bone marrow niche microenvironment identifies thioredoxin as a novel agent for radioprotection and for enhancing donor cell reconstitution. Exp Hematol 2013; 41:944-56. [PMID: 23994289 DOI: 10.1016/j.exphem.2013.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 12/21/2022]
Abstract
Hematopoiesis is regulated by the bone marrow (BM) niche microenvironment. We recently found that posttransplant administration of AMD3100 (a specific and reversible CXCR4 antagonist) enhanced donor cell engraftment and promoted recovery of all donor cell lineages in a congeneic mouse transplant model. We hypothesized that AMD3100 enhances donor cell reconstitution in part by modulating the levels and constitution of soluble factors in the niche microenvironment. In the current study, the effects of the BM extracellular fluid (supernatant) from AMD3100-treated transplant recipient mice on colony-forming units (CFUs) were examined. A semiquantitative, mass spectrometry-based proteomics approach was used to screen for differentially expressed proteins between the BM supernatants of PBS-treated transplant mice and AMD3100-treated transplant mice. A total of 178 proteins were identified in the BM supernatants. Thioredoxin was among the 32 proteins that displayed greater than a twofold increase in spectral counts in the BM supernatant of AMD3100-treated transplant mice. We found that thioredoxin increased CFUs in a dose-dependent manner. Thioredoxin improved hematopoiesis in irradiated mice and protected mice from radiation-related death. Furthermore, ex vivo exposure to thioredoxin for 24 hours enhanced the long-term repopulation of hematopoietic stem cells. Additionally, combined posttransplant administration of thioredoxin and AMD3100 improved hematologic recovery in primary and secondary transplant recipient mice. Our studies demonstrated that factors in the BM niche microenvironment play a critical role in hematopoiesis. Identifying these factors provides clues on potential novel targets that can be used to enhance hematologic recovery in hematopoietic stem cell transplan`tation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lucas R, Czikora I, Sridhar S, Zemskov EA, Oseghale A, Circo S, Cederbaum SD, Chakraborty T, Fulton DJ, Caldwell RW, Romero MJ. Arginase 1: an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury. Front Immunol 2013; 4:228. [PMID: 23966993 PMCID: PMC3736115 DOI: 10.3389/fimmu.2013.00228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022] Open
Abstract
The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA ; Division of Pulmonary Medicine, Medical College of Georgia, Georgia Regents University , Augusta, GA , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Matsuo Y, Yodoi J. Extracellular thioredoxin: A therapeutic tool to combat inflammation. Cytokine Growth Factor Rev 2013; 24:345-53. [DOI: 10.1016/j.cytogfr.2013.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
|
47
|
Matsuo Y, Irie K, Kiyonari H, Okuyama H, Nakamura H, Son A, Lopez-Ramos DA, Tian H, Oka SI, Okawa K, Kizaka-Kondoh S, Masutani H, Yodoi J. The protective role of the transmembrane thioredoxin-related protein TMX in inflammatory liver injury. Antioxid Redox Signal 2013; 18:1263-72. [PMID: 22924822 PMCID: PMC3584524 DOI: 10.1089/ars.2011.4430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Accumulating evidence indicates that oxidative stress is associated with inflammation, and the cellular redox status can determine the sensitivity and the final outcome in response to inflammatory stimuli. To control the redox balance, mammalian cells contain a variety of oxidoreductases belonging to the thioredoxin superfamily. The large number of these enzymes suggests a complex mechanism of redox regulation in mammals, but the precise function of each family member awaits further investigations. RESULTS We generated mice deficient in transmembrane thioredoxin-related protein (TMX), a transmembrane oxidoreductase in the endoplasmic reticulum (ER). When exposed to lipopolysaccharide (LPS) and d-(+)-galactosamine (GalN) to induce inflammatory liver injury, mutant mice were highly susceptible to the toxicants and developed severe liver damage. LPS-induced production of inflammatory mediators was equivalent in both wild-type and TMX(-/-) mice, whereas neutralization of the proinflammatory cytokine tumor necrosis factor-α suppressed the toxic effects of LPS/GalN in the mutant mice. Liver transcriptional profiles revealed enhanced activation of the p53-signaling pathway in the TMX(-/-) mice after LPS/GalN treatment. Furthermore, TMX deficiency also caused increased sensitivity to thioacetamide, which exerts its hepatotoxicity through the generation of reactive oxygen species. INNOVATION The present study is the first to address the role of the oxidoreductase TMX in inflammatory liver injury. The phenotype of mice deficient in TMX suggests a functional link between redox regulation in the ER and susceptibility to oxidative tissue damage. CONCLUSION We conclude that TMX plays a major role in host defense under the type of inflammatory conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Redox-active protein thioredoxin-1 administration ameliorates influenza A virus (H1N1)-induced acute lung injury in mice. Crit Care Med 2013; 41:171-81. [PMID: 23222257 DOI: 10.1097/ccm.0b013e3182676352] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Influenza virus infections can cause severe acute lung injury leading to significant morbidity and mortality. Thioredoxin-1 is a redox-active defensive protein induced in response to stress conditions. Animal experiments have revealed that thioredoxin-1 has protective effects against various severe disorders. This study was undertaken to evaluate the protective effects of recombinant human thioredoxin-1 administration on influenza A virus (H1N1)-induced acute lung injury in mice. DESIGN Prospective animal trial. SETTING Research laboratory. SUBJECTS Nine-week-old male C57BL/6 mice inoculated with H1N1. INTERVENTION The mice were divided into a vehicle-treated group and recombinant human thioredoxin-1-treated group. For survival rate analysis, the vehicle or recombinant human thioredoxin-1 was administered intraperitoneally every second day from day -1 to day 13. For lung lavage and pathological analyses, vehicle or recombinant human thioredoxin-1 was administered intraperitoneally on days -1, 1, and 3. MEASUREMENTS AND MAIN RESULTS Lung lavage and pathological analyses were performed at 24, 72, and 120 hrs after inoculation. The recombinant human thioredoxin-1 treatment significantly improved the survival rate of H1N1-inoculated mice, although the treatment did not affect virus propagation in the lung. The treatment significantly attenuated the histological changes and neutrophil infiltration in the lung of H1N1-inoculated mice. The treatment significantly attenuated the production of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 1 in the lung and oxidative stress enhancement, which were observed in H1N1-inoculated mice. H1N1 induced expressions of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 1 in murine lung epithelial cells MLE-12, which were inhibited by the addition of recombinant human thioredoxin-1. The recombinant human thioredoxin-1 treatment started 30 mins after H1N1 inoculation also significantly improved the survival of the mice. CONCLUSIONS Exogenous administration of recombinant human thioredoxin-1 significantly improved the survival rate and attenuated lung histological changes in the murine model of influenza pneumonia. The protective mechanism of thioredoxin-1 might be explained by its potent antioxidative and anti-inflammatory actions. Consequently, recombinant human thioredoxin-1 might be a possible pharmacological strategy for severe influenza virus infection in humans.
Collapse
|
49
|
Sengupta R, Holmgren A. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 2013; 18:259-69. [PMID: 22702224 DOI: 10.1089/ars.2012.4716] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) regulates a diverse range of cellular processes, including vasodilation, neurotransmission, and antimicrobial and anti-tumor activities. S-nitrosylation with the formation of S-nitrosothiols (RSNOs) is an important feature of NO signaling regulating protein function. In mammalian cells, glutathione (GSH), S-nitrosoglutathione reductase (GSNOR), and thioredoxin (Trx) have been identified as the major protein denitrosylases. RECENT ADVANCES Human cytosolic/nuclear Trx1 in the disulfide form can be nitrosylated at Cys73 and transnitrosylate target proteins, including caspase 3. Thus, similar to GSH, which by forming S-nitrosoglutathione (GSNO) can transnitrosylate proteins, Trx can either denitrosylate or nitrosylate proteins depending on its oxidation state. CRITICAL ISSUES In this review, we discuss the regulation of cellular processes by reversible S-nitrosylation and Trx-mediated cellular homeostasis of RSNOs and S-nitrosoproteins. FUTURE DIRECTIONS Functions of RSNOs in vivo and their pharmacological uses have not yet been fully studied. Further investigations on the role of Trx systems in relation to biologically relevant RSNOs, their functions, and the mechanisms of denitrosylation will facilitate the development of drugs and therapies. Antioxid. Redox Signal. 18, 259-269.
Collapse
Affiliation(s)
- Rajib Sengupta
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
50
|
Nakatsukasa Y, Tsukahara H, Tabuchi K, Tabuchi M, Magami T, Yamada M, Fujii Y, Yashiro M, Tsuge M, Morishima T. Thioredoxin-1 and oxidative stress status in pregnant women at early third trimester of pregnancy: relation to maternal and neonatal characteristics. J Clin Biochem Nutr 2012; 52:27-31. [PMID: 23341694 PMCID: PMC3541415 DOI: 10.3164/jcbn.12-71] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/06/2012] [Indexed: 11/22/2022] Open
Abstract
This study examined the clinical and biological importance of thioredoxin-1, a redox-active defensive protein that controls multiple biological functions, in pregnant women. We measured serum concentrations of thioredoxin-1, total hydroperoxides, and redox potential in 60 pregnant women at the early third trimester: gestational age of 27-29 weeks. The thioredoxin-1 concentration (mean ± SD) was 90 ± 42 ng/ml. Total hydroperoxides was 471 ± 105 U.CARR (1 U.CARR = 0.08 mg/dl H(2)O(2)). Redox potential was 2142 ± 273 µmol/l. The total hydroperoxides: redox potential ratio (oxidative stress index) was 0.23 ± 0.08. Thioredoxin-1, total hydroperoxides, and oxidative stress index were higher and redox potential was lower than in blood of healthy adults. Total hydroperoxides and redox potential were mutually correlated significantly and negatively. Thioredoxin-1 correlated significantly and negatively and redox potential correlated significantly and positively with body weight and body mass index. Thioredoxin-1 and redox potential correlated significantly and positively with uric acid and albumin, respectively. Thioredoxin-1 and oxidative stress index correlated significantly and negatively and redox potential significantly and positively with neonatal birth weight. These results suggest that high concentrations of thioredoxin-1 are linked to high oxidative stress status in pregnant women and that neonatal birth weight is affected by the maternal oxidative condition during later pregnancy.
Collapse
Affiliation(s)
- Yoko Nakatsukasa
- Departments of Pediatrics, Perineito Hahatokono Hospital for Mothers and Children, Okayama 703-8263, Japan ; Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|