1
|
Kumar Yadav R, Qi B, Wen J, Gang X, Banerjee S. Kallmann syndrome: Diagnostics and management. Clin Chim Acta 2025; 565:119994. [PMID: 39384129 DOI: 10.1016/j.cca.2024.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Kallmann syndrome is a genetic disorder characterized by delayed or absence of puberty and a reduced or absent sense of smell (anosmia). Kallmann syndrome is a form of hypogonadotropic hypogonadism due to lack of the production of sex hormones which is associated with development of secondary sexual characteristics. Kallmann Syndrome is a genetically heterogeneous disorder, characterized by the combination of hypogonadotropic hypogonadism (a deficiency in sex hormone production) and anosmia. Germline mutations in KAL1 gene causes deficiency in GnRH hormone followed by low level of circulating gonadotropin and testosterone which finally leads to the failure of puberty (development of secondary sexual characters). Kallmann Syndrome can be inherited in several manners including X-linked recessive (e.g., mutations within KAL1) and autosomal dominant and recessive forms. Germline mutation in KAL1 gene was identified among 8% of patients with Kallmann Syndrome. A review of the recent literature done reveals numerous clinical manifestations in Kallmann Syndrome patients with the KAL1 mutation, including microgenitalia, impotence, reduced libido, infertility, unilateral renal agenesis, and synkinesia. Genetic molecular diagnostics through prenatal diagnosis and preimplantation genetic testing are most significant way to reduce the risk of Kallmann syndrome in next generation. Complication associated with Kallmann syndrome can be prevented by early diagnosis, diet supplementation and medical therapy. Goal of therapeutic intervention is to the development of secondary sexual characteristics, build and sustain bone density as well as muscle mass and restore fertility. This review aims to explore the genetic diagnosis and management strategies for Kallmann Syndrome, particularly focusing on KAL1 gene mutations.
Collapse
Affiliation(s)
- Rajiv Kumar Yadav
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; Department of Endocrinology (Internal Medicine), First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xiaokun Gang
- Department of Endocrinology (Internal Medicine), First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Jiang R, Qiu X, Han X, Ma Z. A novel mutation in ANOS1 in a Chinese family with Kallmann syndrome: Case report. Clin Case Rep 2024; 12:e8860. [PMID: 38736573 PMCID: PMC11082082 DOI: 10.1002/ccr3.8860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 05/14/2024] Open
Abstract
We reported a novel variant in Kallmann syndrome. It not only determines the clinical importance of whole exome sequencing for identification of genetic pathogenic variants, but also enriches the ANOS1 genetic spectrum of CHH patients in Chinese population.
Collapse
Affiliation(s)
- Rong Jiang
- Endocrinology DepartmentThe Affiliated Suzhou Hospital of Nanjing University Medical SchoolSuzhouJiangsuChina
| | - Xueting Qiu
- Endocrinology DepartmentThe Affiliated Suzhou Hospital of Nanjing University Medical SchoolSuzhouJiangsuChina
| | - Xingfa Han
- Endocrinology DepartmentThe Affiliated Suzhou Hospital of Nanjing University Medical SchoolSuzhouJiangsuChina
| | - Zhimin Ma
- Endocrinology DepartmentThe Affiliated Suzhou Hospital of Nanjing University Medical SchoolSuzhouJiangsuChina
| |
Collapse
|
3
|
Akintoye SO, Adisa AO, Okwuosa CU, Mupparapu M. Craniofacial disorders and dysplasias: Molecular, clinical, and management perspectives. Bone Rep 2024; 20:101747. [PMID: 38566929 PMCID: PMC10985038 DOI: 10.1016/j.bonr.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
There is a wide spectrum of craniofacial bone disorders and dysplasias because embryological development of the craniofacial region is complex. Classification of craniofacial bone disorders and dysplasias is also complex because they exhibit complex clinical, pathological, and molecular heterogeneity. Most craniofacial disorders and dysplasias are rare but they present an array of phenotypes that functionally impact the orofacial complex. Management of craniofacial disorders is a multidisciplinary approach that involves the collaborative efforts of multiple professionals. This review provides an overview of the complexity of craniofacial disorders and dysplasias from molecular, clinical, and management perspectives.
Collapse
Affiliation(s)
- Sunday O. Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Akinyele O. Adisa
- University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Chukwubuzor U. Okwuosa
- Department of Oral Pathology & Oral Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Mel Mupparapu
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
4
|
Vezzoli V, Hrvat F, Goggi G, Federici S, Cangiano B, Quinton R, Persani L, Bonomi M. Genetic architecture of self-limited delayed puberty and congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 2023; 13:1069741. [PMID: 36726466 PMCID: PMC9884699 DOI: 10.3389/fendo.2022.1069741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
Distinguishing between self limited delayed puberty (SLDP) and congenital hypogonadotropic hypogonadism (CHH) may be tricky as they share clinical and biochemical characteristics. and appear to lie within the same clinical spectrum. However, one is classically transient (SDLP) while the second is typically a lifetime condition (CHH). The natural history and long-term outcomes of these two conditions differ significantly and thus command distinctive approaches and management. Because the first presentation of SDLP and CHH is very similar (delayed puberty with low LH and FSH and low sex hormones), the scientific community is scrambling to identify diagnostic tests that can allow a correct differential diagnosis among these two conditions, without having to rely on the presence or absence of phenotypic red flags for CHH that clinicians anyway seem to find hard to process. Despite the heterogeneity of genetic defects so far reported in DP, genetic analysis through next-generation sequencing technology (NGS) had the potential to contribute to the differential diagnostic process between SLDP and CHH. In this review we will provide an up-to-date overview of the genetic architecture of these two conditions and debate the benefits and the bias of performing genetic analysis seeking to effectively differentiate between these two conditions.
Collapse
Affiliation(s)
- Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Faris Hrvat
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giovanni Goggi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Federici
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, Newcastle-upon-Tyne, United Kingdom
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, United Kingdom
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Martin M, Karenberg A, Fangerau H. „… keinerlei Bedenken gegen die Entlassungen“: die Vertreibung von Neurowissenschaftlerinnen und Neurowissenschaftlern aus Berlin. DER NERVENARZT 2022; 93:62-79. [DOI: 10.1007/s00115-022-01315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/06/2022]
|
6
|
Choi MR, Jin YB, Kim HN, Lee H, Chai YG, Lee SR, Kim DJ. Differential Gene Expression in the Hippocampi of Nonhuman Primates Chronically Exposed to Methamphetamine, Cocaine, or Heroin. Psychiatry Investig 2022; 19:538-550. [PMID: 35903056 PMCID: PMC9334808 DOI: 10.30773/pi.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Methamphetamine (MA), cocaine, and heroin cause severe public health problems as well as impairments in neural plasticity and cognitive function in the hippocampus. This study aimed to identify the genes differentially expressed in the hippocampi of cynomolgus monkeys in response to these drugs. METHODS After the monkeys were chronically exposed to MA, cocaine, and heroin, we performed large-scale gene expression profiling of the hippocampus using RNA-Seq technology and functional annotation of genes differentially expressed. Some genes selected from RNA-Seq analysis data were validated with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). And the expression changes of ADAM10 protein were assessed using immunohistochemistry. RESULTS The changes in genes related to axonal guidance (PTPRP and KAL1), the cell cycle (TLK2), and the regulation of potassium ions (DPP10) in the drug-treated groups compared to the control group were confirmed using RT-qPCR. Comparative analysis of all groups showed that among genes related to synaptic long-term potentiation, CREBBP and GRIN3A were downregulated in both the MA- and heroin-treated groups compared to the control group. In particular, the mRNA and protein expression levels of ADAM10 were decreased in the MA-treated group but increased in the cocaine-treated group compared to the control group. CONCLUSION These results provide insights into the genes that are upregulated and downregulated in the hippocampus by the chronic administration of MA, cocaine, or heroin and basic information for developing novel drugs for the treatment of hippocampal impairments caused by drug abuse.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Na Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Heejin Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Mkaouar R, Abdallah LCB, Naouali C, Lahbib S, Turki Z, Elouej S, Bouyacoub Y, Somai M, Mcelreavey K, Bashamboo A, Abdelhak S, Messaoud O. Oligogenic Inheritance Underlying Incomplete Penetrance of PROKR2 Mutations in Hypogonadotropic Hypogonadism. Front Genet 2021; 12:665174. [PMID: 34539727 PMCID: PMC8446458 DOI: 10.3389/fgene.2021.665174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
The role of the prokineticin 2 pathway in human reproduction, olfactory bulb morphogenesis, and gonadotropin-releasing hormone secretion is well established. Recent studies have highlighted the implication of di/oligogenic inheritance in this disorder. In the present study, we aimed to identify the genetic mechanisms that could explain incomplete penetrance in hypogonadotropic hypogonadism (HH). This study involved two unrelated Tunisian patients with HH, which was triggered by identifying a homozygous p.(Pro290Ser) mutation in the PROKR2 gene in a girl (HH1) with Kallmann syndrome (KS). The functional effect of this variant has previously been well demonstrated. Unexpectedly, her unaffected father (HH1P) and brother (HH1F) also carried this genetic variation at a homozygous state. In the second family, we identified a heterozygous p.(Lys205del) mutation in PROKR2, both in a male patient with normosmic idiopathic IHH (HH12) and his asymptomatic mother. Whole-exome sequencing in the three HH1 family members allowed the identification of additional variants in the prioritized genes. We then carried out digenic combination predictions using the oligogenic resource for variant analysis (ORVAL) software. For HH1, we found the highest number of disease-causing variant pairs. Notably, a CCDC141 variant (c.2803C > T) was involved in 18 pathogenic digenic combinations. The CCDC141 variant acts in an autosomal recessive inheritance mode, based on the digenic effect prediction data. For the second patient (HH12), prediction by ORVAL allowed the identification of an interesting pathogenic digenic combination between DUSP6 and SEMA7A genes, predicted as “dual molecular diagnosis.” The SEMA7A variant p.(Glu436Lys) is novel and predicted as a VUS by Varsome. Sanger validation revealed the absence of this variant in the healthy mother. We hypothesize that disease expression in HH12 could be induced by the digenic transmission of the SEMA7A and DUSP6 variants or a monogenic inheritance involving only the SEMA7A VUS if further functional assays allow its reclassification into pathogenic. Our findings confirm that homozygous loss-of-function genetic variations are insufficient to cause KS, and that oligogenism is most likely the main transmission mode involved in Congenital Hypogonadotropic Hypogonadism.
Collapse
Affiliation(s)
- Rahma Mkaouar
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia.,Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | - Chokri Naouali
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Saida Lahbib
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Zinet Turki
- Département d'Endocrinologie et de Technologie Alimentaire, Institut de Nutrition, Tunis, Tunisia
| | - Sahar Elouej
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Yosra Bouyacoub
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Maali Somai
- Département d'Endocrinologie et de Technologie Alimentaire, Institut de Nutrition, Tunis, Tunisia
| | | | - Anu Bashamboo
- Génétique du Développement Humain, Institut Pasteur, Paris, France
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
8
|
A Novel Noncanonical Splicing Mutation of ANOS1 Gene in Siblings with Kallmann Syndrome Identified by Whole-Exome Sequencing. Reprod Sci 2021; 29:475-479. [PMID: 34231177 DOI: 10.1007/s43032-021-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
Kallmann syndrome (KS) is a rare genetic disorder that is characterized by idiopathic hypogonadotropic hypogonadism associated with anosmia. Genetic variants in ANOS1 gene are the most common mutations associated with X-linked recessive form of KS. Canonical ± 1 or 2 splice site variants in ANOS1 have been described to be responsible for KS. Here, we identified a novel noncanonical splice site variant (c.1062+4T>C) in ANOS1 gene in two siblings with KS by whole-exome sequencing (WES). Sanger sequencing showed this mutation was inherited from their mother, whose brother was a KS patient as well. Through the functional assay in vitro, we found that this mutation resulted in a 50-bp deletion of exon 7, which caused frameshift mutation leading to a premature termination of translation and a truncated anosmin-1 protein. Our results revealed that this noncanonical splice site variant is involved in KS. Thus, it is suggested that we should pay attention to the noncanonical splice site variants when using molecular genetic diagnostics of KS.
Collapse
|
9
|
Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison? Biomolecules 2021; 11:biom11020191. [PMID: 33573025 PMCID: PMC7911486 DOI: 10.3390/biom11020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023] Open
Abstract
Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.
Collapse
|
10
|
Li L, Wang R, Yu Y, Zhang H, Jiang Y, Yang X, Liu R. CHD7 missense variants and clinical characteristics of Chinese males with infertility. Mol Genet Genomic Med 2020; 8:e1372. [PMID: 32573075 PMCID: PMC7503206 DOI: 10.1002/mgg3.1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 11/19/2022] Open
Abstract
Background Isolated hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS) are rare genetic diseases that cause male infertility. The chromodomain helicase DNA‐binding protein 7 (CHD7) gene is commonly associated with KS and IHH. We speculated that CHD7 variants may be associated with male infertility. Methods Two hundred males with azoospermia and 120 with oligozoospermia were recruited. The patients underwent clinical examination and reproductive hormone testing. A panel of genes including CHD7 and others related to spermatogenic failure was sequenced by targeted‐gene exome sequencing. Results Three patients with severe oligozoospermia had CHD7 variants (a detection rate of 0.94% (3/320)). After prediction software analysis, two of the variants c.3464G>A (p.R1155H) and c.4516G>A (p.G1506S) were predicted to be likely pathogenic. Although predicted to be benign, the variants of c.2824A>G (p.T942A) located in the chromodomain 2 could not be excluded as disease causing. The patients with variants had small testicular volumes. In particular, the testes of the patient with a p.G1506S variant varied in size (left, 8 ml; right, 4.5 ml). Two patients (patients 31 and 120) had low E2 levels and two (patients 83 and 120) had low T levels. Ultimately, these variants were classified as “variants of unknown significant” that may be associated with male infertility. Conclusions There may be a relationship between the CHD7 gene missense variants and male infertility. These variants are easier to find in patients with azoospermia and severe oligospermia whose testosterone levels are decreased.
Collapse
Affiliation(s)
- Leilei Li
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| | - Ruixue Wang
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| | - Yang Yu
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| | - Hongguo Zhang
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| | - Yuting Jiang
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| | - Xiao Yang
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| | - Ruizhi Liu
- Centre for Reproductive Medicine and Prenatal DiagnosisFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
11
|
Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet 2020; 140:135-154. [DOI: 10.1007/s00439-020-02112-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
|
12
|
Festa A, Umano GR, Miraglia del Giudice E, Grandone A. Genetic Evaluation of Patients With Delayed Puberty and Congenital Hypogonadotropic Hypogonadism: Is it Worthy of Consideration? Front Endocrinol (Lausanne) 2020; 11:253. [PMID: 32508745 PMCID: PMC7248176 DOI: 10.3389/fendo.2020.00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Delayed puberty is a common reason of pediatric endocrinological consultation. It is often a self-limited (or constitutional) condition with a strong familial basis. The type of inheritance is variable but most commonly autosomal dominant. Despite this strong genetic determinant, mutations in genes implicated in the regulation of hypothalamic-pituitary-gonadal axis have rarely been identified in cases of self-limited delayed puberty and often in relatives of patients with congenital hypogonadotropic hypogonadism (i.e., FGFR1 and GNRHR genes). However, recently, next-generation sequencing analysis has led to the discovery of new genes (i.e., IGSF10, HS6ST1, FTO, and EAP1) that are implicated in determining isolated self-limited delayed puberty in some families. Despite the heterogeneity of genetic defects resulting in delayed puberty, genetic testing may become a useful diagnostic tool for the correct classification and management of patients with delayed puberty. This article will discuss the benefits and the limitations of genetic testing execution in cases of delayed puberty.
Collapse
|
13
|
Neocleous V, Fanis P, Toumba M, Tanteles GA, Schiza M, Cinarli F, Nicolaides NC, Oulas A, Spyrou GM, Mantzoros CS, Vlachakis D, Skordis N, Phylactou LA. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front Endocrinol (Lausanne) 2020; 11:626. [PMID: 32982993 PMCID: PMC7485345 DOI: 10.3389/fendo.2020.00626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, IASIS Hospital, Paphos, Cyprus
| | - George A. Tanteles
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Melpo Schiza
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Feride Cinarli
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nicolas C. Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Childrens Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George's, University of London Medical School at the University of Nicosia, Nicosia, Cyprus
- *Correspondence: Nicos Skordis
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Leonidas A. Phylactou
| |
Collapse
|
14
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Wen J, Pan L, Xu X, Wang J, Hu C. Clinical data and genetic mutation in Kallmann syndrome with CHARGE syndrome: Case report and pedigree analysis. Medicine (Baltimore) 2018; 97:e11284. [PMID: 29979396 PMCID: PMC6076089 DOI: 10.1097/md.0000000000011284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
RATIONALE This study aimed to investigate the genetic mutation characteristics of Kallmann syndrome (KS) with CHARGE syndrome through the clinical features and genetic analysis of a pediatric patient with KS in one pedigree. PATIENT CONCERNS Developmental disorders with olfactory abnormalities, developmental lag, heart malformations, external genital malformations. DIAGNOSES KS combined with some clinical characteristics of CHARGE syndrome. Molecular genetic analysis found that mutation occurred in the CHD7 gene. INTERVENTIONS One pediatric patient's clinical data were collected and genomic DNA extracted from the peripheral blood. Nextgeneration gene sequencing technology was used to detect pathogenic genes, and the Sanger method was applied to perform pedigree verification for the detected suspicious pathogenic mutations. OUTCOMES Gene detection revealed there to be a heterozygous mutation in the CHD7 gene of the patient, which was a missense mutation c.6571G > A (p.E2191K). The father's genotype was wild type, whereas it was the mutant type for the mother and younger brother. The distribution frequency of this mutation was zero in the dbSNP database, Hapmap, 1000 genomes database, and ExAC. Neither the mother nor the younger brother showed any clinical feature of KS or CHARGE syndrome. LESSONS This study reports 1 case of KS with some clinical features of CHARGE syndrome as determined via clinical and genetic analysis, and found a new mutation in the CHD7 gene, suggesting that KS has an incomplete penetrance. Meanwhile, data suggested that mutation in the CHD7 gene could be detected in the setting of incomplete clinical manifestations of CHARGE syndrome, or without the usually believed manifestations of combined deafness as well as morphological abnormalities of the ear, providing new evidence for the differential diagnosis of KS with CHARGE syndrome in the future.
Collapse
Affiliation(s)
- Jie Wen
- Department of Pediatric Orthopedics, the Children's Hospital of Fudan University, Shanghai
- Department of Pediatric Orthopedics
| | - Li Pan
- Children's Medical Center
| | | | - Jiang Wang
- Department of Pediatric General Surgury, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chen Hu
- Department of Pediatric Orthopedics
| |
Collapse
|
16
|
Hinreiner S, Wieczorek D, Mueller D, Roedl T, Thiel G, Grasshoff U, Chaoui R, Hehr U. Further evidence for complex inheritance of holoprosencephaly: Lessons learned from pre- and postnatal diagnostic testing in Germany. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2018; 178:198-205. [PMID: 30182445 DOI: 10.1002/ajmg.c.31625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023]
Abstract
Holoprosencephaly (HPE) has been defined as a distinct clinical entity with characteristic facial gestalt, which may-or may not-be associated with the true brain malformation observed postmortem in autopsy or in pre- or postnatal imaging. Affected families mainly show autosomal dominant inheritance with markedly reduced penetrance and extremely broad clinical variability even between mutation carriers within the same families. We here present advances in prenatal imaging over the last years, increasing the proportion of individuals with HPE identified prenatally including milder HPE forms and more frequently allowing to detect more severe forms already in early gestation. We report the results of diagnostic genetic testing of 344 unrelated patients for HPE at our lab in Germany since the year 2000, which currently with the application of next generation sequencing (NGS) panel sequencing identifies causal mutations for about 31% (12/38) of unrelated individuals with normal chromosomes when compared to about 15% (46/306) using conventional Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA). More comprehensive genetic testing by our in house NGS panel sequencing of 10 HPE associated genes (MiSeq™ and NextSeq™500, Illumina, Inc., San Diego, CA) not only allowed to include genes with smaller contribution to the phenotype, but may also unravel additional low frequency or more common genetic variants potentially contributing to the observed large intrafamiliar variability and may ultimately guide our understanding of the individual clinical manifestation of this complex developmental disorder.
Collapse
Affiliation(s)
| | - Dagmar Wieczorek
- Medical Faculty, Institute of Human Genetics, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Dietmar Mueller
- Department of Medical Genetics, Children's Hospital Chemnitz, Chemnitz, Germany
| | - Tanja Roedl
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Gundula Thiel
- Center for Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J. GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 2018; 178:R55-R80. [PMID: 29330225 DOI: 10.1530/eje-17-0749] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare, related diseases that prevent normal pubertal development and cause infertility in affected men and women. However, the infertility carries a good prognosis as increasing numbers of patients with CHH/KS are now able to have children through medically assisted procreation. These are genetic diseases that can be transmitted to patients' offspring. Importantly, patients and their families should be informed of this risk and given genetic counseling. CHH and KS are phenotypically and genetically heterogeneous diseases in which the risk of transmission largely depends on the gene(s) responsible(s). Inheritance may be classically Mendelian yet more complex; oligogenic modes of transmission have also been described. The prevalence of oligogenicity has risen dramatically since the advent of massively parallel next-generation sequencing (NGS) in which tens, hundreds or thousands of genes are sequenced at the same time. NGS is medically and economically more efficient and more rapid than traditional Sanger sequencing and is increasingly being used in medical practice. Thus, it seems plausible that oligogenic forms of CHH/KS will be increasingly identified making genetic counseling even more complex. In this context, the main challenge will be to differentiate true oligogenism from situations when several rare variants that do not have a clear phenotypic effect are identified by chance. This review aims to summarize the genetics of CHH/KS and to discuss the challenges of oligogenic transmission and also its role in incomplete penetrance and variable expressivity in a perspective of genetic counseling.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - Bruno Francou
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| |
Collapse
|
18
|
Ufartes R, Schwenty-Lara J, Freese L, Neuhofer C, Möller J, Wehner P, van Ravenswaaij-Arts CMA, Wong MTY, Schanze I, Tzschach A, Bartsch O, Borchers A, Pauli S. Sema3a plays a role in the pathogenesis of CHARGE syndrome. Hum Mol Genet 2018; 27:1343-1352. [DOI: 10.1093/hmg/ddy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/02/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Luisa Freese
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christiane Neuhofer
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Janika Möller
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Peter Wehner
- Department of Developmental Biochemistry, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Conny M A van Ravenswaaij-Arts
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Monica T Y Wong
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Ina Schanze
- Institute of Human Genetics, University Medical Center Magdeburg, 39120 Magdeburg, Germany
| | - Andreas Tzschach
- TU Dresden, Faculty of Medicine Carl Gustav Carus, Institute for Clinical Genetics, 01307 Dresden, Germany
| | - Oliver Bartsch
- Institute of Human Genetics, Johannes Gutenberg University Mainz, University Medical Centre, 55131 Mainz, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
19
|
Manto M, Hampe CS. Endocrine disorders and the cerebellum: from neurodevelopmental injury to late-onset ataxia. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:353-368. [PMID: 29891071 DOI: 10.1016/b978-0-444-64189-2.00023-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hormonal disorders are a source of cerebellar ataxia in both children and adults. Normal development of the cerebellum is critically dependent on thyroid hormone, which crosses both the blood-brain barrier and the blood-cerebrospinal fluid barrier thanks to specific transporters, including monocarboxylate transporter 8 and the organic anion-transporting polypeptide 1C1. In particular, growth and dendritic arborization of Purkinje neurons, synaptogenesis, and myelination are dependent on thyroid hormone. Disturbances of thyroid hormone may also impact on cerebellar ataxias of other origin, decompensating or aggravating the pre-existing ataxia manifesting with motor ataxia, oculomotor ataxia, and/or Schmahmann syndrome. Parathyroid disorders are associated with a genuine cerebellar syndrome, but symptoms may be subtle. The main conditions combining diabetes and cerebellar ataxia are Friedreich ataxia, ataxia associated with anti-GAD antibodies, autoimmune polyglandular syndromes, aceruloplasminemia, and cerebellar ataxia associated with hypogonadism (especially Holmes ataxia/Boucher-Neuhäuser syndrome). The general workup of cerebellar disorders should include the evaluation of hormonal status, including thyroid-stimulating hormone and free thyroxine levels, and hormonal replacement should be considered depending on the laboratory results. Cerebellar deficits may be reversible in some cases.
Collapse
Affiliation(s)
- Mario Manto
- Neurology Service, CHU-Charleroi, Charleroi, Belgium; Neuroscience Service, Université de Mons, Mons, Belgium.
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, United States
| |
Collapse
|
20
|
Lopategui DM, Griswold AJ, Arora H, Clavijo RI, Tekin M, Ramasamy R. A rare ANOS1
variant in siblings with Kallmann syndrome identified by whole exome sequencing. Andrology 2017; 6:53-57. [DOI: 10.1111/andr.12432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022]
Affiliation(s)
- D. M. Lopategui
- Clinical and Translational Science Institute; University of Miami; Miami FL USA
| | - A. J. Griswold
- John P Hussman Institute for Human Genomics; University of Miami; Miami FL USA
| | - H. Arora
- Department of Urology; University of Miami; Miami FL USA
| | - R. I. Clavijo
- Department of Urology; University of Miami; Miami FL USA
| | - M. Tekin
- John P Hussman Institute for Human Genomics; University of Miami; Miami FL USA
| | - R. Ramasamy
- Department of Urology; University of Miami; Miami FL USA
| |
Collapse
|
21
|
Taroc EZM, Prasad A, Lin JM, Forni PE. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs. Biol Open 2017; 6:1552-1568. [PMID: 28970231 PMCID: PMC5665474 DOI: 10.1242/bio.029074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gonadotropin-releasing hormone-1 (GnRH-1) neurons (GnRH-1 ns) migrate from the developing olfactory pit into the hypothalamus during embryonic development. Migration of the GnRH-1 neurons is required for mammalian reproduction as these cells control release of gonadotropins from the anterior pituitary gland. Disturbances in GnRH-1 ns migration, GnRH-1 synthesis, secretion or signaling lead to varying degrees of hypogonadotropic hypogonadism (HH), which impairs pubertal onset and fertility. HH associated with congenital olfactory defects is clinically defined as Kallmann Syndrome (KS). The association of olfactory defects with HH in KS suggested a potential direct relationship between defective olfactory axonal routing, lack of olfactory bulbs (OBs) and aberrant GnRH-1 ns migration. However, it has never been experimentally proven that the formation of axonal connections of the olfactory/vomeronasal neurons to their functional targets are necessary for the migration of GnRH-1 ns to the hypothalamus. Loss-of-function of the Arx-1 homeobox gene leads to the lack of proper formation of the OBs with abnormal axonal termination of olfactory sensory neurons (
Yoshihara et al., 2005). Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons. Summary: Our work reveals that correct olfactory bulb development is not required for GnRH-1 neuronal migration. This study challenges the idea that GnRH-1 neuronal migration to the hypothalamus relies on correct routing of the olfactory and vomeronasal neurons and supports the existence of the TN in mammals.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Aparna Prasad
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
22
|
Tunsuriyawong P, Pongpirul K, Chaisam T, Prajuabpansri P. Olfactory bulb agenesis with normal sexual hormones. BMJ Case Rep 2017; 2017:bcr-2017-221899. [PMID: 29025782 DOI: 10.1136/bcr-2017-221899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
An 18-year-old Caucasian man presented with a lack of sense of surrounding smell. The problem was first noticed when a family member discussed the smell of the food, which he had no idea what it was. The patient had normal development and sexual function, no history of trauma, surgery, chemical exposure or infection. Physical examination revealed no significant abnormalities. Smell threshold test using phenyl-ethyl-alcohol revealed bilateral anosmia. MRI showed bilateral aplastic olfactory bulbs and tracts associated with absent cortical growth of the olfactory sulci and asymmetrical gyrus rectus. Circulating hormones including cortisol, growth hormone, insulin-like growth factor 1, adrenocorticotropic hormone, thyroid hormones, follicle-stimulating hormone, luteinizing hormone, prolactin and testosterone were within normal ranges. Doppler ultrasound showed normal testis with bilateral supratesticular varicoceles. Given the loss of warning smell sensation, counselling for daily living precautions especially those related to gas, fire and rotten food was given.
Collapse
Affiliation(s)
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Tagann Chaisam
- Neuroscience Center, Bumrungrad International Hospital, Bangkok, Thailand
| | | |
Collapse
|
23
|
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, Martens J, Ngai J, Duffy VB. Anosmia-A Clinical Review. Chem Senses 2017; 42:513-523. [PMID: 28531300 PMCID: PMC5863566 DOI: 10.1093/chemse/bjx025] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anosmia and hyposmia, the inability or decreased ability to smell, is estimated to afflict 3-20% of the population. Risk of olfactory dysfunction increases with old age and may also result from chronic sinonasal diseases, severe head trauma, and upper respiratory infections, or neurodegenerative diseases. These disorders impair the ability to sense warning odors in foods and the environment, as well as hinder the quality of life related to social interactions, eating, and feelings of well-being. This article reports and extends on a clinical update commencing at the 2016 Association for Chemoreception Sciences annual meeting. Included were reports from: a patient perspective on losing the sense of smell with information on Fifth Sense, a nonprofit advocacy organization for patients with olfactory disorders; an otolaryngologist's review of clinical evaluation, diagnosis, and management/treatment of anosmia; and researchers' review of recent advances in potential anosmia treatments from fundamental science, in animal, cellular, or genetic models. As limited evidence-based treatments exist for anosmia, dissemination of information on anosmia-related health risks is needed. This could include feasible and useful screening measures for olfactory dysfunction, appropriate clinical evaluation, and patient counseling to avoid harm as well as manage health and quality of life with anosmia.
Collapse
Affiliation(s)
- Sanne Boesveldt
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | - Elbrich M Postma
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
- Smell and Taste Centre, Hospital Gelderse Vallei, PO Box 9025, 6710 HN Ede, The Netherlands
| | - Duncan Boak
- Fifth Sense, Sanderum House, 38 Oakley Road, Chino OX39 4TW, UK
| | - Antje Welge-Luessen
- Department of Otorhinolaryngology, University Hospital Basel, Petersgraben 4CH-4031 Basel, Switzerland
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
- Department of Neuroscience, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jeffrey Martens
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Ngai
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Valerie B Duffy
- Department of Allied Health Sciences, University of Connecticut, 358 Mansfield Road, Box U-101 Storrs, CT 06269-2101, USA
| |
Collapse
|
24
|
Pow S, Stahnisch FW. Franz Josef Kallmann (1897–1965). J Neurol 2017; 264:208-210. [DOI: 10.1007/s00415-016-8229-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022]
|
25
|
Lack of decussation of pyramids in Kallmann syndrome presenting with mirror movements. J Neurol Sci 2017; 372:220-222. [DOI: 10.1016/j.jns.2016.11.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
|
26
|
Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol 2016; 77:810-829. [PMID: 27706924 DOI: 10.1002/dneu.22455] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023]
Abstract
The corticospinal tract (CST) plays a major role in cortical control of spinal cord activity. In particular, it is the principal motor pathway for voluntary movements. Here, we discuss: (i) the anatomic evolution and development of the CST across mammalian species, focusing on its role in motor functions; (ii) the molecular mechanisms regulating corticospinal tract formation and guidance during mouse development; and (iii) human disorders associated with abnormal CST development. A comparison of CST anatomy and development across mammalian species first highlights important similarities. In particular, most CST axons cross the anatomical midline at the junction between the brainstem and spinal cord, forming the pyramidal decussation. Reorganization of the pattern of CST projections to the spinal cord during evolution led to improved motor skills. Studies of the molecular mechanisms involved in CST formation and guidance in mice have identified several factors that act synergistically to ensure proper formation of the CST at each step of development. Human CST developmental disorders can result in a reduction of the CST, or in guidance defects associated with abnormal CST anatomy. These latter disorders result in altered midline crossing at the pyramidal decussation or in the spinal cord, but spare the rest of the CST. Careful appraisal of clinical manifestations associated with CST malformations highlights the critical role of the CST in the lateralization of motor control. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 810-829, 2017.
Collapse
Affiliation(s)
- Quentin Welniarz
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Isabelle Dusart
- Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, F-75005, Paris, France
| | - Emmanuel Roze
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, F-75013, Paris, France.,Département des Maladies du Système Nerveux, AP-HP, Hôpital de la Salpêtrière, Paris, France
| |
Collapse
|
27
|
Bertrand-Delepine J, Leroy C, Rigot JM, Catteau-Jonard S, Dewailly D, Robin G. Stimulation de la spermatogenèse : pour qui ? Pourquoi ? Comment ? ACTA ACUST UNITED AC 2016; 44:505-16. [DOI: 10.1016/j.gyobfe.2016.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/23/2022]
|
28
|
Salama N. Kallmann syndrome and deafness: an uncommon combination: A case report and a literature review. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.8.541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Pow S, Stahnisch FW. Eugenics ideals, racial hygiene, and the emigration process of German-American neurogeneticist Franz Josef Kallmann (1897-1965). JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2016; 25:253-274. [PMID: 27388255 DOI: 10.1080/0964704x.2016.1187486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biological psychiatry in the early twentieth century was based on interrelated disciplines, such as neurology and experimental biology. Neuropsychiatrist Franz Josef Kallmann (1897-1965) was a product of this interdisciplinary background who showed an ability to adapt to different scientific contexts, first in the field of neuromorphology in Berlin, and later in New York. Nonetheless, having innovative ideas, as Kallmann did, could be an ambiguous advantage, since they could lead to incommensurable scientific views and marginalization in existing research programs. Kallmann followed his Dr. Med. degree (1919) with training periods at the Charité Medical School in Berlin under psychiatrist Karl Bonhoeffer (1868-1948). Subsequently, he collaborated with Ernst Ruedin (1874-1952), investigating sibling inheritance of schizophrenia and becoming a protagonist of genetic research on psychiatric conditions. In 1936, Kallmann was forced to immigrate to the USA where he published The Genetics of Schizophrenia (1938), based on data he had gathered from the district pathological institutes of Berlin's public health department. Kallmann resumed his role as an international player in biological psychiatry and genetics, becoming president (1952) of the American Society of Human Genetics and Director of the New York State Psychiatric Institute in 1955. While his work was well received by geneticists, the idea of genetic differences barely took hold in American psychiatry, largely because of émigré psychoanalysts who dominated American clinical psychiatry until the 1960s and established a philosophical direction in which genetics played no significant role, being regarded as dangerous in light of Nazi medical atrocities. After all, medical scientists in Nazi Germany had been among the social protagonists of racial hygiene which, under the aegis of Nazi philosophies, replaced medical genetics as the basis for the ideals and application of eugenics.
Collapse
Affiliation(s)
- Stephen Pow
- a Doctoral School of History , Central European University , Budapest , Hungary
| | - Frank W Stahnisch
- b Departments of Community Health Sciences and History , The University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
30
|
Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol 2016; 31:885-95. [PMID: 26293980 PMCID: PMC4761523 DOI: 10.1007/s00467-015-3151-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.
Collapse
|
31
|
Alkelai A, Olender T, Haffner-Krausz R, Tsoory MM, Boyko V, Tatarskyy P, Gross-Isseroff R, Milgrom R, Shushan S, Blau I, Cohn E, Beeri R, Levy-Lahad E, Pras E, Lancet D. A role for TENM1 mutations in congenital general anosmia. Clin Genet 2016; 90:211-9. [PMID: 27040985 DOI: 10.1111/cge.12782] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/26/2016] [Accepted: 03/27/2016] [Indexed: 02/01/2023]
Abstract
Congenital general anosmia (CGA) is a neurological disorder entailing a complete innate inability to sense odors. While the mechanisms underlying vertebrate olfaction have been studied in detail, there are still gaps in our understanding of the molecular genetic basis of innate olfactory disorders. Applying whole-exome sequencing to a family multiply affected with CGA, we identified three members with a rare X-linked missense mutation in the TENM1 (teneurin 1) gene (ENST00000422452:c.C4829T). In Drosophila melanogaster, TENM1 functions in synaptic-partner-matching between axons of olfactory sensory neurons and target projection neurons and is involved in synapse organization in the olfactory system. We used CRISPR-Cas9 system to generate a Tenm1 disrupted mouse model. Tenm1(-/-) and point-mutated Tenm1(A) (/A) adult mice were shown to have an altered ability to locate a buried food pellet. Tenm1(A) (/A) mice also displayed an altered ability to sense aversive odors. Results of our study, that describes a new Tenm1 mouse, agree with the hypothesis that TENM1 has a role in olfaction. However, additional studies should be done in larger CGA cohorts, to provide statistical evidence that loss-of-function mutations in TENM1 can solely cause the disease in our and other CGA cases.
Collapse
Affiliation(s)
- A Alkelai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - T Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - R Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - M M Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - V Boyko
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - P Tatarskyy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - R Gross-Isseroff
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - R Milgrom
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - S Shushan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - I Blau
- Department of Otolaryngology, Meir Medical Center, Kfar Saba, Israel
| | - E Cohn
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - R Beeri
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - E Levy-Lahad
- Department of Otolaryngology, Meir Medical Center, Kfar Saba, Israel
| | - E Pras
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Magnetic Resonance Imaging Findings in Kallmann Syndrome: 14 Cases and Review of the Literature. J Comput Assist Tomogr 2016; 40:39-42. [PMID: 26571055 DOI: 10.1097/rct.0000000000000334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE We sought to characterize the magnetic resonance imaging (MRI) findings in patients with Kallmann syndrome (KS). MATERIALS AND METHODS Fourteen patients with KS and a comparison group of 20 matched people with normal MRI were analyzed with optimized voxel-based morphometry. Coronal T1- and T2-weighted images from the anterior margin of the frontal sinus to the hypothalamus were obtained. The olfactory sulci, bulbs, and bundles were assessed as normal, hypoplastic, or absent. The pituitary gland was also evaluated. RESULTS Four of the 14 patients came from 1 family. Ten patients had low levels of GnRH and gonadal hormone, 11 had hyposmia, and 3 had anosmia. On MRI, the olfactory bulbs (OBs) and bundles were absent bilaterally in 8 patients. Two patients exhibited absence of the OBs and bundles on the left and hypoplasia on the right. Four patients displayed bilateral hypoplastic OBs and bundles. The olfactory sulci were absent in 5 and hypoplastic in 9 of these patients. The anterior pituitary was hypoplastic in 6 patients. CONCLUSIONS Kallmann syndrome has distinctive features on MRI. Magnetic resonance imaging may aid in the diagnosis of KS in patients with ambiguous clinical findings.
Collapse
|
33
|
Mouden C, Dubourg C, Carré W, Rose S, Quelin C, Akloul L, Hamdi-Rozé H, Viot G, Salhi H, Darnault P, Odent S, Dupé V, David V. Complex mode of inheritance in holoprosencephaly revealed by whole exome sequencing. Clin Genet 2016; 89:659-68. [DOI: 10.1111/cge.12722] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- C. Mouden
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - C. Dubourg
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| | - W. Carré
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| | - S. Rose
- UMR1085 Institut de Recherche sur la Santé, l'Environnement et le Travail; Université de Rennes 1; Rennes France
| | - C. Quelin
- Service de Génétique Clinique; C.H.U. de Rennes; Rennes France
| | - L. Akloul
- Service de Génétique Clinique; C.H.U. de Rennes; Rennes France
| | - H. Hamdi-Rozé
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| | - G. Viot
- Service de Génétique Médicale; Maternité Port Royal; Paris France
| | - H. Salhi
- Foetopathologie et Anatomie Pathologique Pédiatrique; Hôpital Cochin; Paris France
| | - P. Darnault
- Service de Radiologie et Imagerie Médicale; C.H.U. de Rennes; Rennes France
| | - S. Odent
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Service de Génétique Clinique; C.H.U. de Rennes; Rennes France
| | - V. Dupé
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - V. David
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Laboratoire de Génétique Moléculaire et Génomique; C.H.U. de Rennes; Rennes France
| |
Collapse
|
34
|
McCabe MJ, Hu Y, Gregory LC, Gaston-Massuet C, Alatzoglou KS, Saldanha JW, Gualtieri A, Thankamony A, Hughes I, Townshend S, Martinez-Barbera JP, Bouloux PM, Dattani MT. Novel application of luciferase assay for the in vitro functional assessment of KAL1 variants in three females with septo-optic dysplasia (SOD). Mol Cell Endocrinol 2015; 417:63-72. [PMID: 26375424 PMCID: PMC4646839 DOI: 10.1016/j.mce.2015.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/13/2023]
Abstract
KAL1 is implicated in 5% of Kallmann syndrome cases, a disorder which genotypically overlaps with septo-optic dysplasia (SOD). To date, a reporter-based assay to assess the functional consequences of KAL1 mutations is lacking. We aimed to develop a luciferase assay for novel application to functional assessment of rare KAL1 mutations detected in a screen of 422 patients with SOD. Quantitative analysis was performed using L6-myoblasts stably expressing FGFR1, transfected with a luciferase-reporter vector containing elements of the FGF-responsive osteocalcin promoter. The two variants assayed [p.K185N, p.P291T], were detected in three females with SOD (presenting with optic nerve hypoplasia, midline and pituitary defects). Our novel assay revealed significant decreases in transcriptional activity [p.K185N: 21% (p < 0.01); p.P291T: 40% (p < 0.001)]. Our luciferase-reporter assay, developed for assessment of KAL1 mutations, determined that two variants in females with hypopituitarism/SOD are loss-of-function; demonstrating that this assay is suitable for quantitative assessment of mutations in this gene.
Collapse
Affiliation(s)
- Mark J McCabe
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Youli Hu
- Centre for Neuroendocrinology, Royal Free Hospital and University College Medical School, University College London, London, UK; Department of Anaesthesiology, Nanjing Medical University First Affiliated Hospital, Jiangsu Province Hospital, Nanjing 210029, China
| | - Louise C Gregory
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Carles Gaston-Massuet
- Neural Development Unit, UCL Institute of Child Health, London, UK; Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Kyriaki S Alatzoglou
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - José W Saldanha
- Division of Mathematical Biology, National Institute for Medical Research, London, UK
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | - Ajay Thankamony
- University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Ieuan Hughes
- University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Sharron Townshend
- Princess Margaret Hospital for Children, Subiaco, Western Australia, Australia
| | | | - Pierre-Marc Bouloux
- Centre for Neuroendocrinology, Royal Free Hospital and University College Medical School, University College London, London, UK
| | - Mehul T Dattani
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK.
| |
Collapse
|
35
|
Boehm U, Bouloux PM, Dattani MT, de Roux N, Dodé C, Dunkel L, Dwyer AA, Giacobini P, Hardelin JP, Juul A, Maghnie M, Pitteloud N, Prevot V, Raivio T, Tena-Sempere M, Quinton R, Young J. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism--pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 2015; 11:547-64. [PMID: 26194704 DOI: 10.1038/nrendo.2015.112] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder caused by the deficient production, secretion or action of gonadotropin-releasing hormone (GnRH), which is the master hormone regulating the reproductive axis. CHH is clinically and genetically heterogeneous, with >25 different causal genes identified to date. Clinically, the disorder is characterized by an absence of puberty and infertility. The association of CHH with a defective sense of smell (anosmia or hyposmia), which is found in ∼50% of patients with CHH is termed Kallmann syndrome and results from incomplete embryonic migration of GnRH-synthesizing neurons. CHH can be challenging to diagnose, particularly when attempting to differentiate it from constitutional delay of puberty. A timely diagnosis and treatment to induce puberty can be beneficial for sexual, bone and metabolic health, and might help minimize some of the psychological effects of CHH. In most cases, fertility can be induced using specialized treatment regimens and several predictors of outcome have been identified. Patients typically require lifelong treatment, yet ∼10-20% of patients exhibit a spontaneous recovery of reproductive function. This Consensus Statement summarizes approaches for the diagnosis and treatment of CHH and discusses important unanswered questions in the field.
Collapse
Affiliation(s)
- Ulrich Boehm
- University of Saarland School of Medicine, Germany
| | | | | | | | | | | | - Andrew A Dwyer
- Endocrinology, Diabetes and Metabolism Sevice of the Centre Hospitalier Universitaire Vaudois (CHUV), du Bugnon 46, Lausanne 1011, Switzerland
| | | | | | | | | | - Nelly Pitteloud
- Endocrinology, Diabetes and Metabolism Sevice of the Centre Hospitalier Universitaire Vaudois (CHUV), du Bugnon 46, Lausanne 1011, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Cogez J, Branger P, Li L, de La Sayette V, Viader F. Lesioni isolate dei nervi cranici. Neurologia 2015. [DOI: 10.1016/s1634-7072(15)72176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Gu WJ, Zhang Q, Wang YQ, Yang GQ, Hong TP, Zhu DL, Yang JK, Ning G, Jin N, Chen K, Zang L, Wang AP, Du J, Wang XL, Yang LJ, Ba JM, Lv ZH, Dou JT, Mu YM. Mutation analyses in pedigrees and sporadic cases of ethnic Han Chinese Kallmann syndrome patients. Exp Biol Med (Maywood) 2015; 240:1480-9. [PMID: 26031747 DOI: 10.1177/1535370215587531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/09/2015] [Indexed: 11/16/2022] Open
Abstract
Kallmann syndrome, a form of idiopathic hypogonadotropic hypogonadism, is characterized by developmental abnormalities of the reproductive system and abnormal olfaction. Despite association of certain genes with idiopathic hypogonadotropic hypogonadism, the genetic inheritance and expression are complex and incompletely known. In the present study, seven Kallmann syndrome pedigrees in an ethnic Han Chinese population were screened for genetic mutations. The exons and intron-exon boundaries of 19 idiopathic hypogonadotropic hypogonadism (idiopathic hypogonadotropic hypogonadism)-related genes in seven Chinese Kallmann syndrome pedigrees were sequenced. Detected mutations were also tested in 70 sporadic Kallmann syndrome cases and 200 Chinese healthy controls. In pedigrees 1, 2, and 7, the secondary sex characteristics were poorly developed and the patients' sense of smell was severely or completely lost. We detected a genetic mutation in five of the seven pedigrees: homozygous KAL1 p.R191ter (pedigree 1); homozygous KAL1 p.C13ter (pedigree 2; a novel mutation); heterozygous FGFR1 p.R250W (pedigree 3); and homozygous PROKR2 p.Y113H (pedigrees 4 and 5). No genetic change of the assayed genes was detected in pedigrees 6 and 7. Among the 70 sporadic cases, we detected one homozygous and one heterozygous PROKR2 p.Y113H mutation. This mutation was also detected heterozygously in 2/200 normal controls and its pathogenicity is likely questionable. The genetics and genotype-phenotype relationships in Kallmann syndrome are complicated. Classical monogenic inheritance does not explain the full range of genetic inheritance of Kallmann syndrome patients. Because of stochastic nature of genetic mutations, exome analyses of Kallmann syndrome patients may provide novel insights.
Collapse
Affiliation(s)
- Wei-Jun Gu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Zhang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying-Qian Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Guo-Qing Yang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tian-Pei Hong
- Department of Endocrinology, Peking University the Third Hospital, Beijing 100191, China
| | - Da-Long Zhu
- Department of Endocrinology, Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing 210008, China
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Guang Ning
- Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Nan Jin
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Kang Chen
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Zang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - An-Ping Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jin Du
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xian-Ling Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Juan Yang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Ming Ba
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhao-Hui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Tao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi-Ming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
38
|
Abstract
Many neurological disorders are characterised by structural changes in neuronal connections, ranging from presymptomatic synaptic changes to the loss or rewiring of entire axon bundles. The molecular mechanisms that underlie this perturbed connectivity are poorly understood, but recent studies suggest a role for axon guidance proteins. Axon guidance proteins guide growing axons during development and control structural plasticity of synaptic connections in adults. Changes in expression or function of these proteins might induce pathological changes in neural circuits that predispose to, or cause, neurological diseases. For some neurological disorders, such as midline crossing disorders, investigators have identified causative mutations in genes for axon guidance. However, for most other disorders, evidence is correlative and further studies are needed to confirm the pathological role of defects in proteins for axon guidance. Importantly, further insight into how dysregulation of axon guidance proteins causes disease will help the development of therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Eljo Y Van Battum
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sara Brignani
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
39
|
El Husny AS, Raiol-Moraes M, Fernandes-Caldato MC, Ribeiro-Dos-Santos A. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome. Appl Clin Genet 2014; 7:177-82. [PMID: 25328414 PMCID: PMC4196791 DOI: 10.2147/tacg.s64280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease.
Collapse
Affiliation(s)
| | - Milene Raiol-Moraes
- Laboratory of Human and Medical Genetics, Federal University of Pará, Brazil
| | - Milena Coelho Fernandes-Caldato
- João de Barros Barreto University Hospital, Federal University of Pará, Brazil ; University Center of Pará, CESUPA, Belém, Pará, Brazil
| | | |
Collapse
|
40
|
Izumi Y, Suzuki E, Kanzaki S, Yatsuga S, Kinjo S, Igarashi M, Maruyama T, Sano S, Horikawa R, Sato N, Nakabayashi K, Hata K, Umezawa A, Ogata T, Yoshimura Y, Fukami M. Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropic hypogonadism. Fertil Steril 2014; 102:1130-1136.e3. [DOI: 10.1016/j.fertnstert.2014.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
|
41
|
Tata B, Huijbregts L, Jacquier S, Csaba Z, Genin E, Meyer V, Leka S, Dupont J, Charles P, Chevenne D, Carel JC, Léger J, de Roux N. Haploinsufficiency of Dmxl2, encoding a synaptic protein, causes infertility associated with a loss of GnRH neurons in mouse. PLoS Biol 2014; 12:e1001952. [PMID: 25248098 PMCID: PMC4172557 DOI: 10.1371/journal.pbio.1001952] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022] Open
Abstract
Characterization of the genetic defects causing gonadotropic deficiency has made a major contribution to elucidation of the fundamental role of Kisspeptins and Neurokinin B in puberty onset and reproduction. The absence of puberty may also reveal neurodevelopmental disorders caused by molecular defects in various cellular pathways. Investigations of these neurodevelopmental disorders may provide information about the neuronal processes controlling puberty onset and reproductive capacity. We describe here a new syndrome observed in three brothers, which involves gonadotropic axis deficiency, central hypothyroidism, peripheral demyelinating sensorimotor polyneuropathy, mental retardation, and profound hypoglycemia, progressing to nonautoimmune insulin-dependent diabetes mellitus. High-throughput sequencing revealed a homozygous in-frame deletion of 15 nucleotides in DMXL2 in all three affected patients. This homozygous deletion was associated with lower DMXL2 mRNA levels in the blood lymphocytes of the patients. DMXL2 encodes the synaptic protein rabconnectin-3α, which has been identified as a putative scaffold protein for Rab3-GAP and Rab3-GEP, two regulators of the GTPase Rab3a. We found that rabconnectin-3α was expressed in exocytosis vesicles in gonadotropin-releasing hormone (GnRH) axonal extremities in the median eminence of the hypothalamus. It was also specifically expressed in cells expressing luteinizing hormone (LH) and follicle-stimulating hormone (FSH) within the pituitary. The conditional heterozygous deletion of Dmxl2 from mouse neurons delayed puberty and resulted in very low fertility. This reproductive phenotype was associated with a lower number of GnRH neurons in the hypothalamus of adult mice. Finally, Dmxl2 knockdown in an insulin-secreting cell line showed that rabconnectin-3α controlled the constitutive and glucose-induced secretion of insulin. In conclusion, this study shows that low levels of DMXL2 expression cause a complex neurological phenotype, with abnormal glucose metabolism and gonadotropic axis deficiency due to a loss of GnRH neurons. Our findings identify rabconectin-3α as a key controller of neuronal and endocrine homeostatic processes.
Collapse
Affiliation(s)
- Brooke Tata
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Lukas Huijbregts
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | - Joelle Dupont
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Perrine Charles
- Genetics Department and Inserm US975, Université Pierre et Marie Curie, Hôpital la Pitié-Salpêtrière, Paris, France
| | - Didier Chevenne
- AP-HP, Laboratoire de Biochimie, Hôpital Robert Debré, Paris, France
| | - Jean-Claude Carel
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- AP-HP, Service d'Endocrinologie Diabétologie Pédiatrique et Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Robert Debré, Paris, France
| | - Juliane Léger
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- AP-HP, Service d'Endocrinologie Diabétologie Pédiatrique et Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Hôpital Robert Debré, Paris, France
| | - Nicolas de Roux
- Inserm, U1141, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- AP-HP, Laboratoire de Biochimie, Hôpital Robert Debré, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Tickotsky N, Moskovitz M. Renal agenesis in Kallmann syndrome: a network approach. Ann Hum Genet 2014; 78:424-33. [PMID: 25227403 DOI: 10.1111/ahg.12079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/19/2014] [Indexed: 01/18/2023]
Abstract
Kallmann syndrome (KS) is defined by the combination of isolated hypogonadotrophic hypogonadism (IHH) and anosmia, with renal agenesis occurring in 30% of KS cases with KAL1 gene mutations. Unlike other KS-related disorders, renal agenesis cannot be directly associated with mutations in the KAL1 gene. We hypothesized that protein interaction networks may suggest a link between genes currently known to be associated with KS on the one hand and those associated with renal agenesis on the other hand. We created a STRING protein interaction network from KS-related genes and renal-agenesis-associated genes and analyzed it with Cytoscape 3.0.1 network software. The STRING protein interaction network provided a conceptual framework for current knowledge on the subject of renal morphogenesis in Kallmann syndrome. In addition, STRING and Cytoscape 3.0.1 software identified new potential KS renal-aplasia-associated genes (PAX2, BMP4, and SOX10). The use of protein-protein interaction networks and network analysis tools provided interesting insights and possible directions for future studies on the subject of renal aplasia in Kallmann syndrome.
Collapse
Affiliation(s)
| | - Moti Moskovitz
- Department of Pediatric Dentistry, Hebrew University, Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
43
|
Trabado S, Lamothe S, Maione L, Bouvattier C, Sarfati J, Brailly-Tabard S, Young J. Congenital hypogonadotropic hypogonadism and Kallmann syndrome as models for studying hormonal regulation of human testicular endocrine functions. ANNALES D'ENDOCRINOLOGIE 2014; 75:79-87. [PMID: 24815726 DOI: 10.1016/j.ando.2014.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Men with Kallmann syndrome (KS) and those with congenital isolated hypogonadotropic hypogonadism with normal olfaction share a chronic, usually profound deficit, in FSH and LH, the two pituitary gonadotropins. Many studies indicate that this gonadotropin deficiency is already present during fetal life, thus explaining the micropenis, cryptorchidism and marked testicular hypotrophy already present at birth. In addition, neonatal activation of gonadotropin secretion is compromised in boys with severe CHH/Kallmann, preventing the first phase of postnatal testicular activation. Finally, CHH is characterized by the persistence, in the vast majority of cases, of gonadotropin deficiency at the time of puberty and during adulthood. This prevents the normal pubertal testicular reactivation required for physiological sex steroid and testicular peptide production, and for spermatogenesis. CHH/KS thus represents a pathological paradigm that can help to unravel, in vivo, the role of each gonadotropin in human testicular exocrine and endocrine functions at different stages of development. Recombinant gonadotropins with pure LH or FSH activity have been used to stimulate Leydig's cells and Sertoli's cells, respectively, and thereby to clarify their paracrine interaction in vivo. The effects of these pharmacological probes can be assessed by measuring the changes they provoke in circulating testicular hormone concentrations. This review discusses the impact of chronic gonadotropin deficiency on the endocrine functions of the interstitial compartment, which contains testosterone-, estradiol- and INSL3-secreting Leydig's cells. It also examines the regulation of inhibin B and anti-Mullerian hormone (AMH) secretion in the seminiferous tubules, and the insights provided by studies of human testicular stimulation with recombinant gonadotropins, used either individually or in combination.
Collapse
Affiliation(s)
- Séverine Trabado
- Inserm U693, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Laboratoire d'hormonologie et génétique, hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, France
| | - Sophie Lamothe
- Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Luigi Maione
- Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Département d'endocrinologie pédiatrique, hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Julie Sarfati
- Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Sylvie Brailly-Tabard
- Inserm U693, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Laboratoire d'hormonologie et génétique, hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, France
| | - Jacques Young
- Inserm U693, université Paris-Sud, 94275 Le Kremlin-Bicêtre, France; Service d'endocrinologie et des maladies de la reproduction, Hôpital Bicêtre, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France.
| |
Collapse
|
44
|
Ghervan C, Young J. [Congenital hypogonadotropic hypogonadism and Kallmann syndrome in males]. Presse Med 2014; 43:152-61. [PMID: 24456696 DOI: 10.1016/j.lpm.2013.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/20/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are a group of rare disorders responsible for complete or partial pubertal failure due to lack or insufficient secretion of the pituitary gonadotropins LH and FSH. The underlying neuroendocrine abnormalities are classically divided into two main groups: molecular defects of the gonadotrope cascade leading to isolated normosmic CHH (nCHH), and developmental abnormalities affecting the hypothalamic location of GnRH neurons, but also olfactory bulbs and tracts morphogenesis and responsible for KS. Identification of genetic abnormalities related to CHH/KS has provided major insights into the pathways critical for the development, maturation and function of the gonadotrope axis. In patients affected by nCHH, particularly in familial cases, genetic alterations affecting GnRH secretion (mutations in GNRH1, GPR54/KISS1R and TAC3 and TACR3) or the GnRH sensitivity of gonadotropic cells (GNRHR) have been found. Mutations in KAL1, FGFR1/FGF8/FGF17, PROK2/PROKR2, NELF, CHD7, HS6ST1, WDR11, SEMA3A, SOX10, IL17RD2, DUSP6, SPRY4, and FLRT3 have been associated with KS but sometimes also with its milder hyposmic/normosmic CHH clinical variant. A number of observations, particularly in sporadic cases, suggest that CHH/KS is not always a monogenic mendelian disease as previously thought but rather a digenic or potentially oligogenic condition. Before the age of 18 years, the main differential diagnosis of isolated nCHH is the relatively frequent constitutional delay of growth and puberty (CDGP). However, in male patients with pubertal delay and low gonadotropin levels, the presence of micropenis and/or cryptorchidism argues strongly in favor of CHH and against CDGP. CHH/KS are not always congenital life-long disorders as initially thought, because in nearly 10 % of patients the disease seems not permanent, as evidenced by partial recovery of the pulsatile activity of the hypothalamic-pituitary-gonadal axis after discontinuation of treatment in adulthood (the so-called reversible CHH/KS). The clinical and hormonal diagnosis and the therapeutic management as well as the genetic counseling of these patients will be discussed here based on the experience acquired in our department during the past 30 years, from monitoring more than 400 patients with these rare conditions.
Collapse
Affiliation(s)
- Cristina Ghervan
- University of Medicine and Pharmacy Iuliu Hatieganu, Endocrinology department, Cluj-Napoca, Roumanie
| | - Jacques Young
- Assistance publique-hôpitaux de Paris (AP-HP), hôpital de Bicêtre, université Paris SUD, service d'endocrinologie et des maladies de la reproduction, Inserm U693, 94275 Le Kremlin-Bicêtre, France.
| |
Collapse
|
45
|
Samuels ME, Hasselmann C, Deal CL, Deladoey J, Vliet GV. Whole-exome sequencing: opportunities in pediatric endocrinology. Per Med 2014; 11:63-78. [PMID: 29751389 DOI: 10.2217/pme.13.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pediatric endocrinology services see a wide variety of patients with diverse clinical symptoms, including disorders of growth, metabolism, bone and sexual development. Molecular diagnosis plays an important role in this branch of medicine. Traditional PCR-based Sanger sequencing is a mainstay format for molecular testing in pediatric cases despite its relatively high cost, but the large number of gene defects associated with the various endocrine disorders renders gene-by-gene testing increasingly unattractive. Using new high-throughput sequencing technologies, whole genomes, whole exomes or candidate-gene panels (targeted gene sequencing) can now be cost-effectively sequenced for endocrine patients. Based on our own recent experiences with exome sequencing in a research context, we describe the general clinical ascertainment of relevant pediatric endocrine patients, compare different formats for next-generation sequencing and provide examples. Our view is that protocols involving next-generation sequencing should now be considered as an appropriate component of routine clinical diagnosis for relevant patients.
Collapse
Affiliation(s)
- Mark E Samuels
- Endocrinology Service, Department of Pediatrics, Université de Montréal & Centre de Recherche du CHU Ste-Justine, Montreal, QC, Canada.,Department of Medicine, Centre de Recherche du CHU Ste-Justine, Montreal, QC, Canada.
| | - Caroline Hasselmann
- Endocrinology Service, Department of Pediatrics, Université de Montréal & Centre de Recherche du CHU Ste-Justine, Montreal, QC, Canada
| | - Cheri L Deal
- Endocrinology Service, Department of Pediatrics, Université de Montréal & Centre de Recherche du CHU Ste-Justine, Montreal, QC, Canada
| | - Johnny Deladoey
- Endocrinology Service, Department of Pediatrics, Université de Montréal & Centre de Recherche du CHU Ste-Justine, Montreal, QC, Canada
| | - Guy Van Vliet
- Endocrinology Service, Department of Pediatrics, Université de Montréal & Centre de Recherche du CHU Ste-Justine, Montreal, QC, Canada
| |
Collapse
|
46
|
Vizeneux A, Hilfiger A, Bouligand J, Pouillot M, Brailly-Tabard S, Bashamboo A, McElreavey K, Brauner R. Congenital hypogonadotropic hypogonadism during childhood: presentation and genetic analyses in 46 boys. PLoS One 2013; 8:e77827. [PMID: 24204987 PMCID: PMC3812007 DOI: 10.1371/journal.pone.0077827] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The majority of the patients reported with mutations in isolated hypogonadotropic hypogonadism (HH) are adults. We analysed the presentation and the plasma inhibin B and anti-müllerian hormone (AMH) concentrations during childhood and adolescence, and compared them to the genetic results. METHODS This was a retrospective, single-center study of 46 boys with HH. RESULTS Fourteen (30.4%) had Kallmann syndrome (KS), 4 (8.7%) had CHARGE syndrome and 28 (60.9%) had HH without olfaction deficit nor olfactive bulb hypoplasia. Eighteen (39%) had an associated malformation or syndromes. At diagnosis, 22 (47.8%) boys were aged <one year, 9 (19%) 1-11 and 15 (32.6%) 11-17.6 years. They presented with micropenis (n = 32, 69.6%, including all those <one year), cryptorchidism (n = 32, 69.6%, unilateral in 8, bilateral in 24), and/or pubertal delay (n = 11). The plasma inhibin B concentrations were normal in 8 (3 KS including one CHARGE and 5 other HH), at the lower limit of the normal in 6 and decreased in 13 (48%) boys. The AMH concentrations were normal in 15 (6 KS including one CHARGE and 9 other HH) and decreased in 12 (44%) boys. In addition to the CHD7 gene mutations in 4 patients with CHARGE, mutations were found in 5/26 other boys analysed including one in KAL1 gene with STS, 2 in FGFR1 gene, one in PROKR2 gene and one in GnRHR gene. CONCLUSIONS The presence of micropenis in neonate, particularly if associated with cryptorchidism, is an indication to look for gonadotropin deficiency isolated or associated with other hypothalamic-pituitary deficiencies. Inhibin B and AMH concentrations are suggestive if low, but they may be normal. Despite the high frequency of the associated malformations and excluding the patients with CHARGE or ichtyosis, the 4 patients with mutations had no family history or malformation. This suggests that many other genes are involved.
Collapse
Affiliation(s)
- Audrey Vizeneux
- Université Paris Descartes and Fondation Ophtalmologique Adolphe de Rothschild, Pediatric Endocrinology Unit, Paris, France
| | - Aude Hilfiger
- Université Paris Descartes and Fondation Ophtalmologique Adolphe de Rothschild, Pediatric Endocrinology Unit, Paris, France
| | - Jérôme Bouligand
- Université Paris Sud and Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de génétique moléculaire, pharmacogénétique, hormonologie, Le Kremlin Bicêtre, France
| | - Monique Pouillot
- Université Paris Descartes and Fondation Ophtalmologique Adolphe de Rothschild, Pediatric Endocrinology Unit, Paris, France
| | - Sylvie Brailly-Tabard
- Université Paris Sud and Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de génétique moléculaire, pharmacogénétique, hormonologie, Le Kremlin Bicêtre, France
| | - Anu Bashamboo
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Raja Brauner
- Université Paris Descartes and Fondation Ophtalmologique Adolphe de Rothschild, Pediatric Endocrinology Unit, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Laroche E, Bricaire L, Christin-Maitre S. Diagnostic et prise en charge d’une aménorrhée chez l’adolescente. Arch Pediatr 2013; 20:817-22. [PMID: 23727374 DOI: 10.1016/j.arcped.2013.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022]
Affiliation(s)
- E Laroche
- Service d'endocrinologie, hôpital Saint-Antoine, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France.
| | | | | |
Collapse
|
48
|
Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, Tosca L, Sarfati J, Brioude F, Esteva B, Briand-Suleau A, Brisset S, Goossens M, Tachdjian G, Guiochon-Mantel A. SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod 2012; 27:1460-5. [PMID: 22416012 DOI: 10.1093/humrep/des022] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Kallmann syndrome (KS) is a genetic disorder associating pubertal failure with congenitally absent or impaired sense of smell. KS is related to defective neuronal development affecting both the migration of olfactory nerve endings and GnRH neurons. The discovery of several genetic mutations responsible for KS led to the identification of signaling pathways involved in these processes, but the mutations so far identified account for only 30% of cases of KS. Here, we attempted to identify new genes responsible for KS by using a pan-genomic approach. METHODS From a cohort of 120 KS patients, we selected 48 propositi with no mutations in known KS genes. They were analyzed by comparative genomic hybridization array, using Agilent 105K oligonucleotide chips with a mean resolution of 50 kb. RESULTS One propositus was found to have a heterozygous deletion of 213 kb at locus 7q21.11, confirmed by real-time qPCR, deleting 11 of the 17 SEMA3A exons. This deletion cosegregated in the propositus' family with the KS phenotype, that was transmitted in autosomal dominant fashion and was not associated with other neurological or non-neurological clinical disorders. SEMA3A codes for semaphorin 3A, a protein that interacts with neuropilins. Mice lacking semaphorin 3A expression have been showed to have a Kallmann-like phenotype. CONCLUSIONS SEMA3A is therefore a new gene whose loss-of-function is involved in KS. These findings validate the specific role of semaphorin 3A in the development of the olfactory system and in neuronal control of puberty in humans.
Collapse
Affiliation(s)
- Jacques Young
- UMR-S693, Univ Paris-Sud, Le Kremlin Bicêtre, F-94276, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The term "congenital hypogonadotropic hypogonadism" (CHH) refers to a group of disorders featuring complete or partial pubertal failure due to insufficient secretion of the pituitary gonadotropins LH and FSH. Many boys (or their parents) will seek medical consultation because of partial or absent virilization after 14 yr of age. Small testes are very frequent, but height is generally normal. Laboratory diagnosis of hypogonadotropic hypogonadism is relatively simple, with very low circulating total testosterone and low to low-normal gonadotropin and inhibin B levels. This hormone profile rules out a primary testicular disorder. Before diagnosing CHH, however, it is necessary to rule out a pituitary tumor or pituitary infiltration by imaging studies, juvenile hemochromatosis, and a systemic disorder that, by undermining nutritional status, could affect gonadotropin secretion and pubertal development. Anterior pituitary function must be thoroughly investigated to rule out a more complex endocrine disorder with multiple hormone deficiencies and thus to conclude that the hypogonadotropic hypogonadism is isolated. The most likely differential diagnosis before age 18 yr is constitutional delay of puberty. Apart from non-Kallmann syndromic forms, which are often diagnosed during childhood, the two main forms of CHH seen by endocrinologists are Kallmann syndrome, in which CHH is associated with impaired sense of smell, and isolated CHH with normal olfaction. Anosmia can be easily diagnosed by questioning the patient, whereas olfactometry is necessary to determine reliably whether olfaction is normal or partially defective. This step is important before embarking on a search for genetic mutations, which will also be useful for genetic counseling. The choice of a particular hormone replacement therapy protocol aimed at virilizing the patient will depend on age at diagnosis and local practices.
Collapse
Affiliation(s)
- Jacques Young
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S693, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France.
| |
Collapse
|
50
|
Chen CKM, Chan NL, Wang AHJ. The many blades of the β-propeller proteins: conserved but versatile. Trends Biochem Sci 2011; 36:553-61. [PMID: 21924917 DOI: 10.1016/j.tibs.2011.07.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
The β-propeller is a highly symmetrical structure with 4-10 repeats of a four-stranded antiparallel β-sheet motif. Although β-propeller proteins with different blade numbers all adopt disc-like shapes, they are involved in a diverse set of functions, and defects in this family of proteins have been associated with human diseases. However, it has remained ambiguous how variations in blade number could alter the function of β-propellers. In addition to the regularly arranged β-propeller topology, a recently discovered β-pinwheel propeller has been found. Here, we review the structural and functional diversity of β-propeller proteins, including β-pinwheels, as well as recent advances in the typical and atypical propeller structures.
Collapse
Affiliation(s)
- Cammy K-M Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | | | |
Collapse
|