1
|
Wang Z, Wu Q, Shen W, Wan F, He J, Liu L, Tang S, Tan Z. Cooling redistributed endotoxin across different biofluids via modulating the ruminal microbiota and metabolome without altering quorum sensing signal levels in heat-stressed beef bulls. Anim Microbiome 2025; 7:38. [PMID: 40269989 PMCID: PMC12016233 DOI: 10.1186/s42523-025-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Cooling is one of the most common and economical methods to ameliorate heat stress (HS), and it has been discovered to alter the lipopolysaccharide (LPS) endotoxin level in ruminants. However, whether the endotoxin variation induced by cooling relates to the quorum sensing (QS) within the ruminal microflora remains unknown. The current study was consequently performed to examine whether cooling could influence the endotoxin distribution across different biofluids, ruminal microbiota, and ruminal metabolisms through affecting the QS of rumen microorganisms in beef cattle exposed to HS. Thirty-two Simmental bulls were used as experimental animals and randomly assigned to either the control (CON) group, or the mechanical ventilation and water spray (MVWS) treatment. The temperature-humidity index (THI) was recorded throughout this trial, and samples of the rumen liquid, blood, and urine were collected. RESULTS Cooling significantly lowered (P < 0.05) the temperature-humidity index (THI), ruminal endotoxin, and endotoxin concentration and excretion in urine, and significantly raised endotoxin level in blood (P < 0.05), but did not change the ruminal concentrations of QS signals including 3-OXO-C6-HSL and the AI-2 (P > 0.05). The linear discriminant analysis effect size (LEfSe) analysis revealed that Prevotellaceae, Rikenellaceae, Monoglobales and their affiliated members, as well as other bacterial taxa were significantly differently (P < 0.05) enriched between the two treatments. The Tax4Fun2 prediction suggested that QS function was upregulated in MVWS compared to CON. The metabolomic analysis indicated that cooling altered the ruminal metabolism profile and downregulated the pathways of lysine degradation, phenylalanine, tyrosine and tryptophan biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. The significant (P < 0.05) correlations of the differential bacteria and metabolites with endotoxin and QS molecules were also demonstrated through Spearman analysis. CONCLUSIONS Based on the results of this trial, it could be speculated that the cooling reshaped the endotoxin distribution across different biofluids through manipulating ruminal microbiota and metabolome, which might involve the participation of QS. Further investigations are warranted to disclose and verify the mechanisms for those correlations found in this study.
Collapse
Affiliation(s)
- Zuo Wang
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Qingyang Wu
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Weijun Shen
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
| | - Fachun Wan
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Jianhua He
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
3
|
Chen S, Kang J, Zhu H, Wang K, Han Z, Wang L, Liu J, Wu Y, He P, Tu Y, Li B. L-Theanine and Immunity: A Review. Molecules 2023; 28:molecules28093846. [PMID: 37175254 PMCID: PMC10179891 DOI: 10.3390/molecules28093846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.
Collapse
Affiliation(s)
- Shuna Chen
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Kang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Han
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Wang Z, Zhao Y, Lan X, He J, Wan F, Shen W, Tang S, Zhou C, Tan Z, Yang Y. Tannic acid supplementation in the diet of Holstein bulls: Impacts on production performance, physiological and immunological characteristics, and ruminal microbiota. Front Nutr 2022; 9:1066074. [PMID: 36466399 PMCID: PMC9709124 DOI: 10.3389/fnut.2022.1066074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This study was conducted to evaluate the influences of supplementing tannic acid (TA) at different doses on the production performance, physiological and immunological characteristics, and rumen bacterial microbiome of cattle. Forty-eight Holstein bulls were randomly allocated to four dietary treatments: the control (CON, basal diet), the low-dose TA treatment [TAL, 0.3% dry matter (DM)], the mid-dose TA treatment (TAM, 0.9% DM), and the high-dose TA treatment (TAH, 2.7% DM). This trial consisted of 7 days for adaptation and 90 days for data and sample collection, and samples of blood and rumen fluid were collected on 37, 67, and 97 d, respectively. The average daily gain was unaffected (P > 0.05), whilst the ruminal NH3-N was significantly decreased (P < 0.01) by TA supplementation. The 0.3% TA addition lowered (P < 0.05) the levels of ruminal isobutyrate, valerate, and tumor necrosis factor alpha (TNF-α), and tended to (P < 0.1) increase the gain to feed ratio. The digestibility of DM, organic matter (OM), and crude protein, and percentages of butyrate, isobutyrate, and valerate were lower (P < 0.05), while the acetate proportion and acetate to propionate ratio in both TAM and TAH were higher (P < 0.05) than the CON. Besides, the 0.9% TA inclusion lessened (P < 0.05) the concentrations of glucagon and TNF-α, but enhanced (P < 0.05) the interferon gamma (IFN-γ) level and Simpson index of ruminal bacteria. The 2.7% TA supplementation reduced (P < 0.05) the intake of DM and OM, and levels of malondialdehyde and thyroxine, while elevated (P < 0.05) the Shannon index of the rumen bacterial populations. Moreover, the relative abundances of the phyla Fibrobacteres and Lentisphaerae, the genera Fibrobacter and Bradyrhizobium, and the species Bradyrhizobium sp., Lachnospiraceae bacterium RM29, and Lachnospiraceae bacterium CG57 were highly significantly (q < 0.01) or significantly (q < 0.05) raised by adding 2.7% TA. Results suggested that the TA addition at 0.3% is more suitable for the cattle, based on the general comparison on the impacts of supplementing TA at different doses on all the measured parameters.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuan Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition and Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yanming Yang
- Jiurui Biology and Chemistry Co., Ltd., Zhangjiajie, Hunan, China
| |
Collapse
|
5
|
Wang Z, Yin L, Liu L, Lan X, He J, Wan F, Shen W, Tang S, Tan Z, Yang Y. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front Vet Sci 2022; 9:1004841. [PMID: 36187804 PMCID: PMC9516568 DOI: 10.3389/fvets.2022.1004841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The present study was performed to evaluate the impacts of tannic acid (TA) supplementation at different levels on the growth performance, physiological, oxidative and immunological metrics, and ruminal microflora of Xiangdong black goats. Twenty-four goats were randomly assigned to four dietary treatments: the control (CON, basal diet), the low-dose TA group [TAL, 0.3 % of dry matter (DM)], the mid-dose TA group (TAM, 0.6 % of DM), and the high-dose TA group (TAH, 0.9 % of DM). Results showed that the growth performance was unaffected (P > 0.05) by adding TA, whilst the 0.3 % and 0.6 % TA supplementation significantly decreased (P < 0.05) the apparent digestibility of crude protein (CP) and ruminal NH3-N concentration, and raised (P < 0.05) the level of total volatile fatty acid (TVFA) in rumen. The increments of alanine aminotransferase (ALT), triglyceride (TG), cortisol (CORT), total antioxidant capacity (T-AOC), interleukin (IL)-1β, IL-6, and serumamyloid A (SAA), and decrements of globulin (GLB), immunoglobulin G (IgG), cholinesterase (CHE), glutathione reductase (GR), creatinine (CRE), growth hormone (GH), high-density lipoprotein cholesterol (HDLC), and insulin-like growth factor 1 (IGF-1) to different extents by TA addition were observed. Although the Alpha and Beta diversity of rumen bacterial community remained unchanged by supplementing TA, the relative abundance of the predominant genus Prevotella_1 was significantly enriched (P < 0.05) in TAL. It could hence be concluded that the TA supplementation in the present trial generally decreased CP digestion and caused oxidative stress and inflammatory response without influencing growth performance and ruminal microbiota diversity. More research is needed to explore the premium dosage and mechanisms of effects for TA addition in the diet of goats.
Collapse
Affiliation(s)
- Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yanming Yang
- Jiurui Biology & Chemistry Co., Ltd., Zhangjiajie, China
| |
Collapse
|
6
|
Yang L, Zhang L, Zhang P, Zhou Y, Huang X, Yan Q, Tan Z, Tang S, Wan F. Alterations in nutrient digestibility and performance of heat-stressed dairy cows by dietary L-theanine supplementation. ANIMAL NUTRITION 2022; 11:350-358. [PMID: 36329682 PMCID: PMC9618971 DOI: 10.1016/j.aninu.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the effects of dietary L-theanine supplementation on apparent nutrient digestibility, milk yield, milk composition, and blood biochemical indices of dairy cows under heat stress. Thirty Chinese Holstein cows (19.84 ± 2.42 kg milk/d, 192.36 ± 40.77 d in milk and 2 ± 0.93 parities) were divided into 3 groups of 10 animals each. The control group was fed a basal total mixed ration (TMR) diet, while treatment 1 (LTA16) and treatment 2 (LTA32) groups were fed a basal TMR diet supplemented with L-theanine at 16 and 32 g/cow per day, respectively. The results showed that feeding the dairy cows with LTA16 treatment decreased (P < 0.05) their rectal temperature, whereas feeding with LTA32 treatment decreased (P < 0.05) their rumen fluid ammonia nitrogen content. In comparison to the control group, the supplementation of L-theanine had no significant effect (P > 0.05) on the dry matter intake, nutrient digestibility, total volatile fatty acid (TVFA) concentration and molar proportion of volatile fatty acid, milk yield, milk composition, feed efficiency and antioxidant capacity of the dairy cows. The triglyceride (TG) content of the LTA32 group was significantly greater (P = 0.014) than that of the control group. With the increase in L-theanine dosage, the serum cholesterol (CHOL) content significantly increased (P = 0.013). The serum albumin (ALB; P = 0.067), low-density lipoprotein cholesterol (LDL-C; P = 0.053), and high-density lipoprotein cholesterol (HDL-C; P = 0.067) contents showed an upward trend as L-theanine dosage increased. Ultimately, the results of this study show that supplementing dairy cow diet with L-theanine could decrease dairy cow rectal temperature, affect lipid metabolism, and potentially relieve the heat stress of dairy cows to some extent.
Collapse
Affiliation(s)
- Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lingmei Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Peihua Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuli Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Corresponding authors.
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Shandong Provincial Key Laboratory of Livestock and Poultry Disease Prevention and Breeding, Jinan, Shandong 250000, China
- Corresponding authors.
| |
Collapse
|
7
|
Xiong L, Zhang W, Zhao H, Tian Z, Ren M, Chen F, Guan W, Zhang S. Dietary Supplementation of Enzymatically Treated Artemisia annua L. Improves Lactation Performance, Alleviates Inflammatory Response of Sows Reared Under Heat Stress, and Promotes Gut Development in Preweaning Offspring. Front Vet Sci 2022; 9:843673. [PMID: 35400113 PMCID: PMC8990795 DOI: 10.3389/fvets.2022.843673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Artemisia annua L., which is known for its antimalarial compound artemisinin, has commonly been used for its anti-inflammatory and antibacterial functions. Enzymatically treating Artemisia annua L. can improve its bioavailability. The purpose of this study was to investigate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation in late gestation and lactation diets on sow performance, serum hormone, inflammatory cytokines, and immunoglobulin level of heat-stressed sows. A total of 135 multiparous sows (Large White × Landrace) on day 85 of gestation were selected and randomly distributed into 3 groups with 45 replicates per group. The control group was reared under standard conditions (temperature: 27.12 ± 0.18°C, THI (temperature-humidity index): 70.90 ± 0.80) and fed with basal diet. The heat stress (HS) and HS + EA groups were raised in heat-stressed conditions (temperature: 30.11 ± 0.16°C, THI: 72.70 ± 0.60) and fed with basal diets supplemented with 0 or 1.0 g/kg EA, respectively. This trial lasted for 50 consecutive days until day 21 of lactation. Compared with the control group, HS increased the concentrations of serum endotoxin and heat shock protein 70 (HSP-70), and inflammatory cytokines in serum, colostrum, and 14 day milk of sows. Meanwhile, the EA supplementation decreased levels of serum endotoxin, HSP-70, and inflammatory cytokines in both sows and offspring and increased serum triiodothyronine (T3) level and average daily feed intake (ADFI) of sows. In addition, EA significantly improved average daily gain (ADG) and altered intestinal morphology with an increased villus height in the duodenum and ileum of piglets. Collectively, EA supplementation at 1.0 g/kg in late gestation and lactation diets alleviated the adverse effects of HS, which were reflected by enhancing ADFI and decreasing endotoxin as well as inflammatory cytokine levels in the serum and colostrum of heat-stressed sows, while promoting ADG and gut development of their offspring.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - WenFei Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - ZheZhe Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University; Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - WuTai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- *Correspondence: WuTai Guan
| | - ShiHai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- ShiHai Zhang
| |
Collapse
|