1
|
Duong TBN, Pham PQ, Tran AT, Bui DT, Pham ATT, Thi Nguyen TC, Nguyen LHT, Dieu Thi Ung T, Vu Hoang N, Pham NK. Correlation between organic residuals of green synthesized nanoparticles and resistive switching behavior. RSC Adv 2024; 14:36340-36350. [PMID: 39539536 PMCID: PMC11559395 DOI: 10.1039/d4ra04381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, ZnO nanoparticles (NPs) are synthesized using avocado seed extract and annealed at different annealing temperatures from 400 to 800 °C. The morphology of the nanoparticles changes from poly shapes at 400 °C to spherical ones at 800 °C, and particle sizes increase from ∼42 nm to ∼128 nm. The Ag/ZnO@400/FTO memory device exhibits stable resistive switching over 100 cycles and a resistance window of approximately 150. Also, the performance characteristics of ZnO@600 and ZnO@800-based devices are degraded gradually over operating cycles. The concentration of oxygen interstitials (Oi) in ZnO nanoparticles, which may originate from organic residues, decreases as the annealing temperature increases. These Oi ions reduced the energy barrier at the interfaces, facilitating electron transport under an external electric field. This study has demonstrated the close correlation between resistive switching characteristics and organic residuals in green synthesized nanoparticles.
Collapse
Affiliation(s)
- Trung Bao Ngoc Duong
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Biology and Biotechnology, University of Science Ho Chi Minh City Vietnam
- Center for Innovative Materials & Architectures Ho Chi Minh City Vietnam
| | - Phu-Quan Pham
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Anh Thuy Tran
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Dat Tan Bui
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Anh Tuan Thanh Pham
- Vietnam National University Ho Chi Minh City Vietnam
- Laboratory of Advanced Materials, University of Science Ho Chi Minh City Vietnam
| | - Tien Cam Thi Nguyen
- Vietnam National University Ho Chi Minh City Vietnam
- Laboratory of Advanced Materials, University of Science Ho Chi Minh City Vietnam
| | - Linh Ho Thuy Nguyen
- Vietnam National University Ho Chi Minh City Vietnam
- Center for Innovative Materials & Architectures Ho Chi Minh City Vietnam
| | - Thuy Dieu Thi Ung
- Institute of Material Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Nam Vu Hoang
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Ngoc Kim Pham
- Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Kalakonda P, Kathi R, Ligory MG, Dabbeta N, Madipoju N, Mynepally S, Morampudi V, Banne S, Mandal P, Savu RN, Khanam SJ, Banavoth M, Sudarsanam Eve NV, Podila BB. Argyreia nervosa-driven biosynthesis of Cu-Ag bimetallic nanoparticles from plant leaves extract unveils enhanced antibacterial properties. Bioprocess Biosyst Eng 2024; 47:1307-1319. [PMID: 38698218 DOI: 10.1007/s00449-024-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO3) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR). FTIR analysis reveals biofunctional groups and chemical bands, while SEM and XRD analyses provide morphological and structural details. To evaluate the antimicrobial properties of the Cu-Ag BMNPs, we conducted disc diffusion and minimum inhibitory concentration (MIC) assays against Escherichia coli (E. coli), with results compared to the standard gentamicin antibiotic. It is observed that the 2% and 5% CuO concentrations of AN Cu-Ag BMNPs exhibit substantial antibacterial activity in comparison to AN extract when tested on EPEC. Among these, the Cu-Ag BMNPs at a 2% concentration demonstrate higher antibacterial activity, potentially attributed to the enhanced dispersion of BMNPs facilitated by the lower CuO doping concentration. These two assays showcased the improved antimicrobial activity of Cu-Ag BMNPs, highlighting their synergistic effect, characterized by high MIC values and a broad zone of inhibition in the disc diffusion tests against E. coli. These results emphasize the significant antibacterial potential of the synthesized BMNPs, with a medicinal plant AN leaf extract playing a pivotal role in enhancing antibacterial activity.
Collapse
Affiliation(s)
- Parvathalu Kalakonda
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India.
| | - Rajitha Kathi
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | | | - Naveenkumar Dabbeta
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Naveenkumar Madipoju
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Soujanyalakshmi Mynepally
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
- .Joseph's Degree and PG College, Hyderabad, Telangana, 500001, India
| | - Vijay Morampudi
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sreenivas Banne
- Department of Chemistry and Biosciences, Rice University-BRC, Houston, TX, 77005, USA
| | - Pritam Mandal
- Department of Physics, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ramu Naidu Savu
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sarvani Jowhar Khanam
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Murali Banavoth
- Department of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Naina Vinodini Sudarsanam Eve
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| | - Bala Bhaskar Podila
- Department of Physics, Government City College, (A), Nayapul, Osmania University, Hyderabad, Telangana, 500002, India
| |
Collapse
|
3
|
Al-Garawi ZS, Al-Qaisi AHI, Al-Shamari KA, Öztürkkan FE, Necefoğlu H. The utility of Hibiscus sabdariffa L. to prepare metal oxides NPs for clinical application on osteoporosis supported by theoretical study. Bioprocess Biosyst Eng 2024; 47:753-766. [PMID: 38573334 DOI: 10.1007/s00449-024-03012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Green synthesis of metal oxides as a treatment for bone diseases is still exploring. Herein, MgO and Fe2O3 NPs were prepared from the extract of Hibiscus sabdariffa L. to study their effect on vit D3, Ca+2, and alkaline phosphatase enzyme ALP associated with osteoporosis. Computational chemistry was utilized to gain insight into the possible interactions. These oxides were characterized by X-ray diffraction, SEM, FTIR, and AFM. Results revealed that green synthesis of MgO and Fe2O3 NPs was successful with abundant. MgO NPs were in vitro applied on osteoporosis patients (n = 35) and showed a significant elevation of vit D3 and Ca+2 (0.0001 > p < 0.001) levels, compared to healthy volunteers (n = 25). Thus, Hibiscus sabdariffa L. is a good candidate to prepare MgO NPs, with a promising enhancing effect on vit D3 and Ca+2 in osteoporosis. In addition, interactions of Fe2O3 and MgO NPs with ALP were determined by molecular docking study.
Collapse
Affiliation(s)
- Zahraa S Al-Garawi
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, Iraq.
| | | | | | | | - Hacali Necefoğlu
- Department of Chemistry, Kafkas University, Kars, 36100, Türkiye
- International Scientific Research Centre, Baku State University, Baku, 1148, Azerbaijan
| |
Collapse
|
4
|
Sarani M, Darroudi M, Naderifar M, Akbarizadeh MR, Nobre MAL, Kruppke B, Khonakdar HA, Jazi ME. Biosynthesis of ZnO, Bi 2O 3 and ZnO-Bi 2O 3 bimetallic nanoparticles and their cytotoxic and antibacterial effects. ChemistryOpen 2024; 13:e202300176. [PMID: 38230849 PMCID: PMC11004456 DOI: 10.1002/open.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.
Collapse
Affiliation(s)
- Mina Sarani
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
| | - Majid Darroudi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Basic Medical SciencesNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahin Naderifar
- Faculty of Nursing and MidwiferyZabol University of Medical SciencesZabolIran
| | - Majid Reza Akbarizadeh
- Department of pediatricAmir Al Momenin HospitalZabol University of Medical SciencesZabolIran
| | - Marcos A. L. Nobre
- São Paulo State University (Unesp)School of Technology and SciencesPresidente PrudenteSP-19060-900Brazil
| | - Benjamin Kruppke
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteTehranIran
- Max Bergmann Center of BiomaterialsInstitute of Materials ScienceTechnische Universität Dresden01069DresdenGermany
| | - Mehdi Erfani Jazi
- Department of Chemistry and Center for Photochemical SciencesBowling Green State UniversityBowling GreenOH-43403USA
| |
Collapse
|
5
|
Azizi A, Ghasemirad M, Mortezagholi B, Movahed E, Aryanezhad SS, Makiya A, Ghodrati H, Nasiri K. Study of Cytotoxic and Antibacterial Activity of Ag- and Mg-Dual-Doped ZnO Nanoparticles. ChemistryOpen 2024; 13:e202300093. [PMID: 37955867 PMCID: PMC10924039 DOI: 10.1002/open.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
A non-laborious process for the fabrication of silver and magnesium dual doped zinc oxide nanoparticles (Ag/Mg-ZnO NP) is described. The wurtzite ZnO nano-structures and the dual doped NP were analyzed by PXRD. SEM data showed the hexagonal morphology of our product, while the gathered anti-bacterial outcomes towards Streptococcus mutans bacteria through micro-dilution technic affirmed the enhanced performance of doped NP compared to the native ones. Furthermore, we gauged the toxic impacts of synthesized pure and Ag/Mg-ZnO NP against a breast cancer (MDA-MB-231) cell line through an MTT trial, which highlighted the superiority of the doped when compared to the native nanoparticles. In light of these comparisons, the applicability of Ag/Mg-ZnO NP in dental and medical science is proposed.
Collapse
Affiliation(s)
- Aytan Azizi
- Department of Endodontics Dental SchoolQazvin university of medical sciencesshahid bahounar boulevard, P.O. Box: 3419759811QazvinIran
| | - Mohammad Ghasemirad
- Department of Periodontics Faculty of DentistryRafsanjan University of Medical SciencesKhalije Fars Blvd., Pasdaran street, P.O. Box: 1946853314RafsanjanIran
| | - Bardia Mortezagholi
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Emad Movahed
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Seyed Sasan Aryanezhad
- Oral and Maxillofacial Radiology, Private PracticeDaroost street, P.O. Box 1944614581TehranIran
| | - Ali Makiya
- Student Research Committee, Faculty of DentistryMashhad University of Medical ScienceMashhadIran
| | - Hoda Ghodrati
- Department of ProsthodonticsShahid Beheshti University of Medical SciencesDaneshjoo Blvd, Velenjak, St., P.O. Box 1983969411TehranIran
| | - Kamyar Nasiri
- Department of dentistryIslamic Azad University of Medical SciencesP.O. Box 19585-466TehranIran
| |
Collapse
|
6
|
Ibarra-Cervantes NF, Vázquez-Núñez E, Gómez-Solis C, Fernández-Luqueño F, Basurto-Islas G, Álvarez-Martínez J, Castro-Beltrán R. Green synthesis of ZnO nanoparticles from ball moss (Tillandsia recurvata) extracts: characterization and evaluation of their photocatalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13046-13062. [PMID: 38240974 DOI: 10.1007/s11356-024-31929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.
Collapse
Affiliation(s)
- Nayeli Fabiola Ibarra-Cervantes
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico
| | - Edgar Vázquez-Núñez
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias E Ingenierías, Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas Para La Sostenibilidad (NanoBioTS), Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, C.P. 37150, León, Guanajuato, Mexico.
| | | | - Fabian Fernández-Luqueño
- Sustainability of Natural Resources and Energy Program, C.P. 25900, Cinvestav-Saltillo, Coahuila, Mexico
| | | | | | | |
Collapse
|
7
|
Alsamhary K, Ameen F, Kha M. Biosynthesis cobalt-doped nickel nanoparticles and their toxicity against disease. Microsc Res Tech 2024; 87:272-278. [PMID: 37768275 DOI: 10.1002/jemt.24430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/03/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The nanostructures have the great potential for novel medical and drug delivery applications. In present paper a green approach for the preparation of pure nickel oxide (NiO) and 5% cobalt-doped NiO (Co╫NiO) nanoparticles (NPs) by using Prosopis fracta extract have been study. The product of Co╫NiO NPs was proved through the PXRD, Raman, UV-Vis, FESEM, and EDX analyses. The results of XRD, EDX, and UV-Visible spectra displayed well doped cobalt in NiO NP. The particle sizes of Co╫NiO NPs were observed to be about 80 nm. The MTT test results for the cytotoxicity of Co╫NiO NPs on breast cancer cells (MCF-7) affirmed the stronger impact of doped NiO-NPs on cancer cells compared to NiO NPs. Thus, it is indicated that the doping process on NiO NPs caused an increase in its inhibitory effect against MCF-7 cells. RESEARCH HIGHLIGHTS: Cobalt-doped NiO nanoparticles were prepared using ecofriendly synthesis method and their cytotoxicity studied against MCF-7 cells.
Collapse
Affiliation(s)
- Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mansour Kha
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, China
| |
Collapse
|
8
|
Shkoor M, Jalab R, Khaled M, Shawkat TS, Korashy HM, Saad M, Su HL, Bani-Yaseen AD. Experimental and theoretical investigations of the effect of bis-phenylurea-based aliphatic amine derivative as an efficient green corrosion inhibitor for carbon steel in HCl solution. Heliyon 2023; 9:e20254. [PMID: 37780763 PMCID: PMC10539979 DOI: 10.1016/j.heliyon.2023.e20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/26/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
A novel bis-phenylurea-based aliphatic amine (BPUA) was prepared via a facile synthetic route, and evaluated as a potential green organic corrosion inhibitor for carbon steel in 1.0 M HCl solutions. NMR spectroscopy experiments confirmed the preparation of the targeted structure. The corrosion inhibitory behavior of the prospective green compound was explored experimentally by electrochemical methods and theoretically by DFT-based quantum chemical calculations. Obtained results revealed an outstanding performance of BPUA, with efficiency of 95.1% at the inhibitor concentration of 50 mg L-1 at 25 °C. The novel compound has improved the steel resistivity and noticeably reduced the corrosion rate from 33 to 1.7 mils per year. Furthermore, the adsorption study elucidates that the mechanism of the corrosion inhibition activity obeys Langmuir isotherm with mixed physisorption/chemisorption modes for BPUA derivatives on the steel surface. Calculated Gibb's free energy of the adsorption process ranges from -35 to -37 kJ mol-1. The SEM morphology analysis validates the electrochemical measurements and substantiates the corrosion-inhibiting properties of BPUA. Additionally, the eco-toxicity assessment on human epithelial MCF-10A cells proved the environmental friendliness of the BPUA derivatives. Density functional theory (DFT) calculations correlated the inhibitor's chemical structure with the corresponding inhibitory behavior. Quantum descriptors disclosed the potentiality of BPUA adsorption onto the surface through the heteroatom-based functional groups and aromatic rings.
Collapse
Affiliation(s)
- Mohanad Shkoor
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rem Jalab
- Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mazen Khaled
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Tahseen S. Shawkat
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohamed Saad
- Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Haw-Lih Su
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Rd, Chiayi City, Taiwan
| | - Abdulilah Dawoud Bani-Yaseen
- Department of Chemistry & Earth Sciences, College of Arts & Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
9
|
Al-Enazi NM, Alsamhary K, Ameen F, Kha M. Plant extract-mediated synthesis Cobalt doping in zinc oxide nanoparticles and their in vitro cytotoxicity and antibacterial performance. Heliyon 2023; 9:e19659. [PMID: 37809416 PMCID: PMC10558898 DOI: 10.1016/j.heliyon.2023.e19659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
In this research, zinc oxide (ZnO) nanoparticles doped with different percentages of produced cobalt using the green synthesis method. ZnO nanoparticles showed good cellular and microbial toxicity due to their high surface-to-volume ratio. Adding cobalt metal to the nanostructure can lead to the appearance of a new feature. To investigate the effect of adding cobalt metal, synthesized ZnO nanoparticles containing 3 and 6% cobalt were synthesized using plant extract. The resulting nanostructures were characterized by a Raman spectroscopy, UV-Visible spectrometer, X-ray diffraction, and Field emission scanning electron microscopy. Ultimately, the synthesized samples' cytotoxicity and antimicrobial tests were performed. XRD confirmed the formation of a hexagonal wurtzite ZnO structure. XRD and electron imaging showed that doping resulted in a decrease in average crystal size. The results showed that with cobalt doping, the particle size decreased slightly. The cytotoxicity and antimicrobial effects results showed that in all three studies, cobalt doping leads to an increase in the toxicity of this nanostructure compared to non-doped nanoparticles.
Collapse
Affiliation(s)
- Nouf M. Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mansour Kha
- Antibacterial Materials R&D Centre, Huzhou Institute, Huzhou, Zhejiang, China
| |
Collapse
|
10
|
Rudayni HA, Rabie AM, Aladwani M, Alneghery LM, Abu-Taweel GM, Al Zoubi W, Allam AA, Abukhadra MR, Bellucci S. Biological Activities of Sargassum Algae Mediated ZnO and Co Doped ZnO Nanoparticles as Enhanced Antioxidant and Anti-Diabetic Agents. Molecules 2023; 28:3692. [PMID: 37175102 PMCID: PMC10180528 DOI: 10.3390/molecules28093692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Brown macroalgae (BMG) were used as carriers for ZnO (ZnO/BMG) and cobalt-doped ZnO (Co-ZnO/BMG) via facile microwave-assisted hydrothermal synthesis. The multifunctional structures of synthesized composites were evaluated as enhanced antioxidant and anti-diabetic agents based on the synergistic effects of ZnO, Co-ZnO, and BMG. BMG substrate incorporation and cobalt doping notably enhanced the bioactivity of the synthesized ZnO nanoparticles. As an antioxidant, the Co-ZnO/BMG composite exhibited highly effective scavenging properties for the common free reactive oxygen radicals (DPPH [89.6 ± 1.5%], nitric oxide [90.2 ± 1.3%], ABTS [87.7 ± 1.8%], and O2●- [46.7 ± 1.9%]) as compared to ascorbic acid. Additionally, its anti-diabetic activity was enhanced significantly and strongly inhibited essential oxidative enzymes (porcine α-amylase (90.6 ± 1.5%), crude α-amylase (84.3 ± 1.8%), pancreatic α-glucosidase (95.7 ± 1.4%), crude intestinal α-glucosidase (93.4 ± 1.8%), and amyloglucosidase (96.2 ± 1.4%)). Co-ZnO/BMG inhibitory activity was higher than that of miglitol, and in some cases, higher than or close to that of acarbose. Therefore, the synthetic Co-ZnO/BMG composite can be used as a commercial anti-diabetic and antioxidant agent, considering the cost and adverse side effects of current drugs. The results also demonstrate the impact of cobalt doping and BMG integration on the biological activity of ZnO.
Collapse
Affiliation(s)
- Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Abdelrahman M. Rabie
- Petrochemicals Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Malak Aladwani
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Lina M. Alneghery
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Gasem M. Abu-Taweel
- Department of Biology, College of Science, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
| | - Mostafa R. Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
| | - Stefano Bellucci
- INFN, Laboratori Nazionali di Frascati, E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
11
|
Khan A, Kamal T, Saad M, Ameen F, A Bhat S, Ahamad Khan M, Rahman F. Synthesis and antibacterial activity of nanoenhanced conjugate of Ag-doped ZnO nanorods with graphene oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122296. [PMID: 36610211 DOI: 10.1016/j.saa.2022.122296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
In this paper, we report a successful synthesis of ZnO nanorods using the microwave-assisted technique, solid-state reaction method was utilized for the preparation of Zn1-xAgxO (x = 0.05, 0.1), Hummer's modified method for graphene oxide (GO) along with the sonication method to prepare GO-based Ag-doped ZnO (Zn1-xAgxO/GO: x = 0.05, 0.1) nanocomposites. These nanorods and nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy for structural properties, scanning electron microscopy (SEM) along with energy dispersive X-ray (EDX) spectroscopy for morphological analysis, and UV-Vis spectroscopy for optical properties. XRD, FTIR, and Raman measurements substantiated that each sample is well crystallized in the single-phase polycrystalline wurtzite hexagonal structure of ZnO. The average crystallite size is found to be in decreasing order ranges 40 nm to 29 nm, respectively, along with a significant reduction in the optical bandgap. The SEM images showed a clear evidence of nanorods of ZnO, while the EDX spectra verified the presence of Zn, Ag, O, and C elements in the synthesized samples with their nominal percentage. Furthermore, the prepared nanocomposites effectively inhibited the growth ofStaphylococcus aureus and Escherichia coli. In comparison to pure ZnO nanorods, GO-based Ag-doped ZnO nanorods showed improved antibacterial activity against both S. aureus and E. coli.
Collapse
Affiliation(s)
- Afroz Khan
- Department of Physics, Aligarh Muslim University, Aligarh, UP 202002, India.
| | - Tausif Kamal
- Department of Physics, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Md Saad
- Department of Physics, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - S A Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, UP 202002, India
| | - F Rahman
- Department of Physics, Aligarh Muslim University, Aligarh, UP 202002, India
| |
Collapse
|
12
|
Yang P, Liang Y, Zhang D, Ge S, Li S, Liang X, Zhang J, Xi Y, Zhang Y, Liu W. Rebuildable Silver Nanoparticles Employed as Seeds for Synthesis of Pure Silver Nanopillars with Hexagonal Cross-Sections under Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1263. [PMID: 37049356 PMCID: PMC10097324 DOI: 10.3390/nano13071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Silver nanopillars with strong plasmonic effects are used for localized electromagnetic field enhancement and regulation and have wide potential applications in sensing, bioimaging, and surface-enhanced spectroscopy. Normally, the controlled synthesis of silver nanopillars is mainly achieved using heterometallic nanoparticles, including Au nanobipyramids and Pd decahedra, as seeds for inducing nanostructure growth. However, the seed materials are usually doped in silver nanopillar products. Herein, the synthesis of pure silver nanopillars with hexagonal cross-sections is achieved by employing rebuildable silver nanoparticles as seeds. An environmentally friendly, stable, and reproducible synthetic route for obtaining silver nanopillars is proposed using sodium dodecyl sulfate as the surface stabilizer. Furthermore, the seed particles induce the formation of regular structures at different temperatures, and, specifically, room temperature is beneficial for the growth of nanopillars. The availability of silver nanoparticle seeds using sodium alginate as a carrier at different temperatures was verified. A reproducible method was developed to synthesize pure silver nanopillars from silver nanoparticles at room temperature, which can provide a strategy for designing plasmonic nanostructures for chemical and biological applications.
Collapse
Affiliation(s)
- Pengfei Yang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| | - Yu Liang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Daxiao Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shaobo Ge
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| | - Shijie Li
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| | - Xichao Liang
- Research and Application of Regenerative Cellulose Fiber Key Laboratory of Sichuan Province, YiBin Grace Group Co., Ltd., Yibin 644000, China
| | - Jin Zhang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| | - Yingxue Xi
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| | - Yan Zhang
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| | - Weiguo Liu
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710032, China
| |
Collapse
|
13
|
Dağlıoğlu Y, Öztürk BY, Khatami M. Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microsc Res Tech 2023; 86:669-685. [PMID: 36883432 DOI: 10.1002/jemt.24306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Here, we reported the biosynthesis of silver nanoparticles (AgNPs) using Urtica dioica (nettle) leaf extract as green reducing and capping agents and investigate their anticancer and antibacterial, activity. The Nettle-mediated biosynthesized AgNPs was characterized by UV-Vis a spectrophotometer. Their size, shape and elemental analysis were determined with the using of SEM and TEM. The crystal structure was determined by XRD and the biomolecules responsible for the reduction of Ag+ were determined using FTIR analysis. Nettle-mediated biosynthesis AgNPs indicated strong antibacterial activity against pathogenic microorganisms. Again, the antioxidant activity of AgNPs is quite high when compared to ascorbic acid. Anticancer effect of AgNPs, IC50 dose was determined by XTT analysis using MCF-7 cell line and the IC50 value was found to be 0.243 ± 0.014 μg/mL (% w/v).
Collapse
Affiliation(s)
- Yeşim Dağlıoğlu
- Molecular Biology and Genetics, Department, Ordu University, Ordu, Turkey
| | - Betül Yılmaz Öztürk
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehrdad Khatami
- Department of Environment of Kerman, The Environmental Researches Center, Kerman, Iran
| |
Collapse
|
14
|
Hamidian K, Sarani M, Najafidoust A, kadkhodaei J, Sardashti-Birjandi A. Co-doped ZnO nanowires: Synthesis, photocatalytic performance, and cytotoxic activity against human brain glioblastoma cells. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Zahoor S, Sheraz S, Shams DF, Rehman G, Nayab S, Shah MIA, Ateeq M, Shah SK, Ahmad T, Shams S, Khan W. Biosynthesis and Anti-inflammatory Activity of Zinc Oxide Nanoparticles Using Leaf Extract of Senecio chrysanthemoides. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3280708. [PMID: 37082193 PMCID: PMC10113057 DOI: 10.1155/2023/3280708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Nanotechnology has recently appeared as an important study subject in modern material sciences. Greener synthesis of nanoparticles has gained the attention of many scientists because of its integral characteristics such as effectiveness, eco-friendly, and low cost. In the present study by following the green synthesis approach, zinc oxide nanoparticles (ZnO NPs) were formed for the very first time by using Senecio chrysanthemoides leaf extract as a reducing agent. The UV-Vis spectrophotometer was used to study the synthesized ZnO NPs, and the specific peak was found to be at 349 nm. The characteristic Fourier transform infrared (FTIR) peak was found to be at 449 cm-1 which displays the peak of ZnO molecules. The surface morphology of the ZnO NPs was determined via scanning electron microscopy (SEM). The energy-dispersive X-ray spectroscopy (EDX) study showed that the synthesized ZnO NPs are present at the weight percentage of 66.38%. The X-ray diffraction (XRD) spectrum confirmed the hexagonal phase wurtzite structure, with the average particle size of 31 nm, and demonstrated the crystalline structure of ZnO NPs. Additionally, to all these experiments, we compared the anti-inflammatory properties of biogenic ZnO NPs to a standard drug. Biosynthesized ZnO NPs have revealed an effective anti-inflammatory activity at a higher concentration (100 mL-1) and showed 73% inhibition in comparison with diclofenac sodium drug. Zinc oxide was shown to be compatible with diclofenac sodium, according to the results. The ZnO NPs produced using the greener synthesis process have the potential to be used in a broad range of fields and also used as a good anti-inflammatory agent.
Collapse
Affiliation(s)
- Sana Zahoor
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Sadia Sheraz
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Saira Nayab
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir (U), Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Said Karim Shah
- Department of Physics, Abdul Wali Khan University, Mardan, Pakistan
| | - Tanveer Ahmad
- Department of Physics, Abdul Wali Khan University, Mardan, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
16
|
M. Alahdal H, Ayad Abdullrezzaq S, Ibrahim M. Amin H, F. Alanazi S, Turki Jalil A, Khatami M, Mahmood Saleh M. Trace elements-based Auroshell gold@hematite nanostructure: Green synthesis and their hyperthermia therapy. IET Nanobiotechnol 2022; 17:22-31. [PMID: 36420828 PMCID: PMC9932437 DOI: 10.1049/nbt2.12107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach. Auroshell gold@hematite nanoparticles were synthesised and characterised with rosemary extract in one step and the green synthesised nanoparticles were characterised by X-ray powder diffraction, SEM, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Cytotoxicity of Auroshell iron@gold nanoparticles against normal HUVEC cells and glioblastoma cancer cells was evaluated by 2,5-diphenyl-2H-tetrazolium bromide method, water bath hyperthermia, and combined method of water bath hyperthermia and nano-therapy. Auroshell gold@hematite nanoparticles with minimal toxicity are safe against normal cells. The gold shell around the magnetic core of magnetite caused the environmental and cellular biocompatibility of these Auroshell nanoparticles. These magnetic nanoparticles with targeted control and transfer to the tumour tissue led to uniform heating of malignant tumours as the most efficient therapeutic agent.
Collapse
Affiliation(s)
- Hadil M. Alahdal
- Department of BiologyCollege of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | | | - Hawraz Ibrahim M. Amin
- Department of ChemistryCollege of ScienceSalahaddin University‐ErbilErbilIraq,Department of Medical Biochemical AnalysisCihan University‐ErbilErbilIraq
| | - Sitah F. Alanazi
- Department of PhysicsCollege of ScienceImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories TechniquesAl‐Mustaqbal University CollegeBabylon, HillaIraq
| | - Mehrdad Khatami
- Antibacterial Materials R&D CentreChina Metal New Materials (Huzhou) InstituteHuzhouZhejiangChina
| | - Marwan Mahmood Saleh
- Department of BiophysicsCollege of Applied SciencesUniversity of AnbarRamadiIraq,Medical Laboratory Technology DepartmentCollege of Medical TechnologyThe Islamic UniversityNajafIraq
| |
Collapse
|
17
|
Facile green synthesis, analysis, in vitro antidiabetic and antimicrobial activity of ZnO macropores. Bioprocess Biosyst Eng 2022; 45:1993-2006. [DOI: 10.1007/s00449-022-02803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
18
|
Shenoy RUK, Rama A, Govindan I, Naha A. The purview of doped nanoparticles: Insights into their biomedical applications. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Alhomaidi E, Jasim SA, Amin HIM, Lima Nobre MA, Khatami M, Jalil AT, Hussain Dilfy S. Biosynthesis of silver nanoparticles using Lawsonia inermis and their biomedical application. IET Nanobiotechnol 2022; 16:284-294. [PMID: 36039655 PMCID: PMC9469786 DOI: 10.1049/nbt2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Developing biosynthesis of silver nanoparticles (Ag‐NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag‐NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag‐NPs were investigated using UV‐visible spectroscopy, infrared spectroscopy, X‐ray diffraction (XRD), scanning, and transmission electron microscopy. The average size of Ag‐NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° are related to the FCC structure of Ag‐NPs. Cytotoxicity of synthesised nanoparticles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observations showed that the effect of cytotoxicity of nanoparticles on the studied cell line depended on concentration and time. The obtained IC50 was considered for cells at a dose of 250 μg/ml. Growth and survival rates decreased exponentially with the dose. Antimicrobial properties of Ag‐NPs synthesised with extract were investigated against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to calculate the minimum inhibitory concentration and the minimum bactericidal concentration of (MBC). The results showed that the synthesised Ag‐NPs and the plant extract have antimicrobial properties. The lowest concentration of Ag‐NPs that can inhibit the growth of bacterial strains was 25 μg/ml.
Collapse
Affiliation(s)
- Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq.,Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Marcos Augusto Lima Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, Sao Paulo, Brazil
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Saja Hussain Dilfy
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.,Department of Biology, College of Education for Pure Science, Wasit University, Iraq
| |
Collapse
|
20
|
Ehsan M, Raja NI, Mashwani ZUR, Zohra E, Abasi F, Ikram M, Mustafa N, Wattoo FH, Proćków J, Pérez de la Lastra JM. Effects of Phytogenically Synthesized Bimetallic Ag/ZnO Nanomaterials and Nitrogen-Based Fertilizers on Biochemical and Yield Attributes of Two Wheat Varieties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172894. [PMID: 36079932 PMCID: PMC9457894 DOI: 10.3390/nano12172894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 05/14/2023]
Abstract
Wheat is the most important staple food worldwide, but wheat cultivation faces challenges from high food demand. Fertilizers are already in use to cope with the demand; however, more unconventional techniques may be required to enhance the efficiency of wheat cultivation. Nanotechnology offers one potential technique for improving plant growth and production by providing stimulating agents to the crop. In this study, plant-derived Ag/ZnO nanomaterials were characterized using UV-Vis spectroscopy, SEM, EDX, FTIR, and XRD methods. Various concentrations of phytogenically synthesized Ag/ZnO nanomaterials (20, 40, 60, and 80 ppm) and nitrogen-based fertilizers (urea and ammonium sulphate 50 and 100 mg/L) were applied to wheat varieties (Galaxy-13 and Pak-13). The results obtained from this research showed that application of 60 ppm Ag/ZnO nanomaterials with nitrogenous fertilizers (50 and 100 mg/L) were more effective in improving biochemistry and increasing yield of wheat plants by reducing enzymatic and non-enzymatic antioxidants (proline content, soluble sugar content, malondialdehyde, total phenolic content, total flavonoid content, superoxide dismutase, peroxidase, and catalase); and significantly increasing the protein content, number of grains per pot, spike length, 100-grain weight, grain yield per pot, and harvest index of both wheat varieties, compared to untreated plants. These findings allow us to propose Ag/ZnO nanomaterial formulation as a promising growth- and productivity-improvement strategy for wheat cultivation.
Collapse
Affiliation(s)
- Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia Ur Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Efat Zohra
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Muhammad Ikram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Nilofar Mustafa
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Feroza Hamid Wattoo
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología (IPNA CSIC), 3-38206 San Cristóbal de la Laguna, Spain
- Correspondence: (M.E.); (E.Z.); (J.P.); (J.M.P.d.l.L.); Tel.: +34-922-474334 (J.P.d.l.L.)
| |
Collapse
|
21
|
Venkatappa MM, Udagani C, Hanumegowda SM, Pramod SN, Venkataramaiah S, Rangappa R, Achur R, Alataway A, Dewidar AZ, Al-Yafrsi M, A. Mahmoud E, Elansary HO, Sannaningaiah D. Effect of Biofunctional Green Synthesized MgO-Nanoparticles on Oxidative-Stress-Induced Tissue Damage and Thrombosis. Molecules 2022; 27:molecules27165162. [PMID: 36014400 PMCID: PMC9413574 DOI: 10.3390/molecules27165162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 μg/μL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Manjula M. Venkatappa
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| | - Chikkappa Udagani
- Department of Physics, University College of Science, Tumkur University, Tumkur 572103, India
| | | | | | - Shivakumar Venkataramaiah
- Centre for Bioscience and Innovation, Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, India
| | | | - Rajeshwara Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z. Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Al-Yafrsi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (H.O.E.); (D.S.); Tel.: +966-581216322 (H.O.E.); +91-9902838928 (D.S.)
| | - Devaraja Sannaningaiah
- Centre for Bioscience and Innovation, Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, India
- Correspondence: (H.O.E.); (D.S.); Tel.: +966-581216322 (H.O.E.); +91-9902838928 (D.S.)
| |
Collapse
|
22
|
Nguyen NT, Vo TLH. Fabrication of Silver Nanoparticles Using Cordyline fruticosa L. Leave Extract Endowing Silk Fibroin Modified Viscose Fabric with Durable Antibacterial Property. Polymers (Basel) 2022; 14:polym14122409. [PMID: 35745988 PMCID: PMC9230683 DOI: 10.3390/polym14122409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/28/2023] Open
Abstract
The current work presented a green synthetic route for the fabrication of silver nanoparticles obtained from aqueous solutions of silver nitrate using Cordyline fruticosa L. leaf extract (Col) as a reducing and capping agent for the first time. The bio-synthesized silver nanoparticles (AgCol) were investigated using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The obtained data demonstrated that AgCol in spherical shape with an average size of 28.5 nm were highly crystalline and well capped by phytocompounds from the Col extract. Moreover, the bio-synthesized AgCol also exhibited the effective antibacterial activities against six pathogenic bacteria, including Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella enterica (S. enterica), Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and Enterococcus faecalis (E. faecalis). The AgCol were applied as an antibacterial finishing agent for viscose fabric using a pad-dry curing technique. The AgCol-treated viscose fabrics exhibited a good synergistic antimicrobial activity against E. coli and S. aureus bacteria. Furthermore, the silk fibroin regenerated from Bombyx mori cocoon waste was utilized as an ecofriendly binder for the immobilization of AgCol on the viscose fabric. Thus, the antimicrobial efficacy of the AgCol and fibroin modified viscose fabric still reached 99.99% against the tested bacteria, even after 30 washing cycles. The colorimetric property, morphology, elemental composition, and distribution of AgCol on the treated fabrics were investigated using several analysis tools, including colorimetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic absorption spectroscopy (AAS), Kjeldahl, and FTIR. Because of the excellent antimicrobial efficiency and laundering durability, as well as the green synthesis method, the AgCol and fibroin modified viscose fabric could be utilized as an antibacterial material in sportswear and medical textile applications.
Collapse
Affiliation(s)
- Ngoc-Thang Nguyen
- Department of Textile Material and Chemical Processing, School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 11615, Vietnam
- Correspondence: ; Tel.: +84-904309930
| | - Thi-Lan-Huong Vo
- Department of Fibre and Textile Technology, Hanoi Industrial Textile Garment University, Hanoi 12411, Vietnam;
| |
Collapse
|
23
|
Darvish M, Nasrabadi N, Fotovat F, Khosravi S, Khatami M, Jamali S, Mousavi E, Iravani S, Rahdar A. Biosynthesis of Zn-doped CuFe 2O 4 nanoparticles and their cytotoxic activity. Sci Rep 2022; 12:9442. [PMID: 35676521 PMCID: PMC9177859 DOI: 10.1038/s41598-022-13692-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Zn-doped CuFe2O4 nanoparticles (NPs) were eco-friendly synthesized using plant extract. These nanoparticles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and thermal gravimetric analysis (TGA). SEM image showed spherical NPs with size range less than 30 nm. In the EDS diagram, the elements of zinc, copper, iron, and oxygen are shown. The cytotoxicity and anticancer properties of Zn-doped CuFe2O4 NPs were evaluated on macrophage normal cells and A549 lung cancer cells. The cytotoxic effects of Zn-doped CuFe2O4 and CuFe2O4 NPs on A549 cancer cell lines were analyzed. The Zn-doped CuFe2O4 and CuFe2O4 NPs demonstrated IC50 values 95.8 and 278.4 µg/mL on A549 cancer cell, respectively. Additionally, Zn-doped CuFe2O4 and CuFe2O4 NPs had IC80 values of 8.31 and 16.1 µg/mL on A549 cancer cell, respectively. Notably, doping Zn on CuFe2O4 NPs displayed better cytotoxic effects on A549 cancer cells compared with the CuFe2O4 NPs alone. Also spinel nanocrystals of Zn-doped CuFe2O4 (~ 13 nm) had a minimum toxicity (CC50 = 136.6 µg/mL) on macrophages J774 Cell Line.
Collapse
Affiliation(s)
- Maryam Darvish
- Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, 710004, People's Republic of China.
| | - Elnaz Mousavi
- Dental Sciences Research Center, Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| |
Collapse
|
24
|
Zaboronok A, Khaptakhanova P, Uspenskii S, Bekarevich R, Mechetina L, Volkova O, Mathis BJ, Kanygin V, Ishikawa E, Kasatova A, Kasatov D, Shchudlo I, Sycheva T, Taskaev S, Matsumura A. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022; 14:pharmaceutics14040761. [PMID: 35456595 PMCID: PMC9032815 DOI: 10.3390/pharmaceutics14040761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/24/2023] Open
Abstract
Sufficient boron-10 isotope (10B) accumulation by tumor cells is one of the main requirements for successful boron neutron capture therapy (BNCT). The inability of the clinically registered 10B-containing borophenylalanine (BPA) to maintain a high boron tumor concentration during neutron irradiation after a single injection has been partially solved by its continuous infusion; however, its lack of persistence has driven the development of new compounds that overcome the imperfections of BPA. We propose using elemental boron nanoparticles (eBNPs) synthesized by cascade ultrasonic dispersion and destruction of elemental boron microparticles and stabilized with hydroxyethylcellulose (HEC) as a core component of a novel boron drug for BNCT. These HEC particles are stable in aqueous media and show no apparent influence on U251, U87, and T98G human glioma cell proliferation without neutron beam irradiation. In BNCT experiments, cells incubated with eBNPs or BPA at an equivalent concentration of 40 µg 10B/mL for 24 h or control cells without boron were irradiated at an accelerator-based neutron source with a total fluence of thermal and epithermal neutrons of 2.685, 5.370, or 8.055 × 1012/cm2. The eBNPs significantly reduced colony-forming capacity in all studied cells during BNCT compared to BPA, verified by cell-survival curves fit to the linear-quadratic model and calculated radiobiological parameters, though the effect of both compounds differed depending on the cell line. The results of our study warrant further tumor targeting-oriented modifications of synthesized nanoparticles and subsequent in vivo BNCT experiments.
Collapse
Affiliation(s)
- Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +81-29-853-3220; Fax: +81-29-853-3214
| | - Polina Khaptakhanova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Sergey Uspenskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Raman Bekarevich
- The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Microscopy Laboratory, Trinity College Dublin, The University of Dublin, D02 W272 Dublin, Ireland;
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ludmila Mechetina
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Olga Volkova
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Japan;
| | - Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| |
Collapse
|
25
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|