1
|
Muñoz-Osses M, Navarrete E, Morales P, Quiroz J, Silva M, Torres-González S, Vásquez-Martínez Y, Godoy F, Mascayano C. Substituted aryl piperazine ligands as new dual 5-hLOX/COX-2 inhibitors. Synthesis, biological and computational studies. Bioorg Chem 2025; 159:108398. [PMID: 40174530 DOI: 10.1016/j.bioorg.2025.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Two series of cyano (1a-l) and amino (2a-l) aryl piperazines were synthesized and evaluated for their inhibitory activity against 5-lipoxygenase (5-hLOX) and cyclooxygenase-2 (COX-2). The newly designed derivatives feature diphenyl methyl (a-d), phenyl (e-h), or methoxyphenyl (i-l) groups, respectively, and demonstrated significant inhibition of 5-hLOX. Noteworthy were compounds 1b, 1 g, 1 k, 2f, and 2 g, exhibiting IC50 values ranging from 2.2 to 3.3 μM. The most potent inhibitors (1b, 1 g, 1 k, 2c, and 2f) were characterized by a competitive inhibition mechanism, with Ki values ranging between 1.77 μM and 9.50 μM. Additionally, compounds 2a, 2b, 2 g, and 2 h displayed promising dual inhibition of 5-hLOX and COX-2, with IC50 values below 15 μM. Cytotoxicity assessments against HEK293 cells revealed that the cyano derivatives (1a-l) were non-cytotoxic (CC50 > 200 μM), whereas the amino derivatives (2a-l) exhibited moderate cytotoxicity (CC50 < 50 μM). Notably, the most active derivatives against both targets were non-cytotoxic at their respective inhibitory concentrations. Computational studies, including docking and molecular dynamics simulations, indicated that compound 1 g demonstrated greater stability within the catalytic site of 5-hLOX compared to compound 2f, correlating with the higher affinity observed in kinetic assays. Furthermore, quantitative structure-activity relationship (QSAR) analyses revealed strong correlations between theoretical and experimental IC50 values (97 % for 1a-l and 93 % for 2a-l). These findings, combined with absorption, distribution, metabolism, and excretion (ADME) predictions, suggest that these derivatives are promising candidates as dual inhibitors of 5-hLOX and COX-2.
Collapse
Affiliation(s)
| | | | - Pilar Morales
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | - Maite Silva
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | | | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Fernando Godoy
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| |
Collapse
|
2
|
Koller A, Preishuber-Pflügl J, Mayr D, Brunner SM, Ladek AM, Runge C, Aigner L, Reitsamer HA, Trost A. Cysteinyl leukotriene receptor 1 modulates retinal immune cells, vascularity and proteolytic activity in aged mice. Aging (Albany NY) 2025; 17:308-328. [PMID: 39891615 PMCID: PMC11892928 DOI: 10.18632/aging.206193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Cysteinyl leukotrienes (CysLTs) modulate the immune response, the microvasculature, cell stress and the endosomal-lysosomal system, and are involved in cellular aging. Interestingly, CysLT receptor 1 (Cysltr1) is highly expressed in the retina, a tissue that is strongly affected by the aging process. Thus, we performed an introductory examination to determine a potential importance of Cysltr1 for cells in the neurovascular unit using qPCR and immunofluorescence analysis, and on proteolytic activity in the retinas of aged mice. Aged mice (~84 weeks) were treated orally with vehicle or 10 mg/kg montelukast (MTK), a specific Cysltr1 inhibitor, for 8 weeks, 5x/week. The retinas of young mice (~11 weeks) served as controls. Compared with young control mice, aged mice exhibited increased numbers of microglia and a reduced retinal capillary diameter, but these age-dependent changes were abrogated by MTK treatment. Retinal protein levels of the ubiquitin binding protein sequestosome-1 were amplified by aging, but were reduced by MTK treatment. Interestingly, retinal proteasome activity was decreased in aged mice, whereas Cysltr1 inhibition increased this activity. The reduction in immune cells caused by Cysltr1 suppression may dampen neuroinflammation, a known promoter of tissue aging. Additionally, an increase in capillary diameter after Cysltr1 inhibition could have a beneficial effect on blood flow in aged individuals. Furthermore, the increase in proteolytic activity upon Cysltr1 inhibition could prevent the accumulation of toxic deposits, which is a hallmark of aged tissue. Overall, Cysltr1 is a promising target for modulating the impact of aging on retinal tissue.
Collapse
Affiliation(s)
- Andreas Koller
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Julia Preishuber-Pflügl
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Daniela Mayr
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Susanne Maria Brunner
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Anja-Maria Ladek
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Christian Runge
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg 5020, Austria
| | - Herbert Anton Reitsamer
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, University Hospital of the Paracelsus Medical University, Salzburg 5020, Austria
| |
Collapse
|
3
|
Shakir SA, Rashid U, Marryum, Fatima N, Ejaz SA, Fayyaz A, Ullah MZ, Saeed A, Khan A, Al Harrasi A, Mumtaz A. Exploration of novel triazolo-thiadiazine hybrids of deferasirox as multi-target-directed anti-neuroinflammatory agents with structure-activity relationship (SAR): a new treatment opportunity for Alzheimer's disease. RSC Adv 2025; 15:101-118. [PMID: 39758929 PMCID: PMC11694444 DOI: 10.1039/d4ra06916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
It is believed that inflammation influences several physiological processes, including the function of the central nervous system. Moreover, the impairment of lipid mechanisms/pathways is associated with neurodegenerative disorders and onset of Alzheimer's disease (AD). AD is a chronic neurodegenerative disease representing the major cause of dementia worldwide. In this case, the overexpression of different pharmacological targets has been confirmed to address neuronal inflammation and AD, with acetylcholinesterase (AChE), monoamine oxidase-B (MAO-B), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (LOX-5) being the most explored targets. Currently, the available treatments are only capable of alleviating the symptoms and not capable of delivering disease-modifying effects. Thus, the current research objective is to synthesize triazolo-thiadiazine derivatives of the deferasirox drug as multi-target compounds that could concurrently inhibit ChEs, MAOs, LOX-5 and COX-2. The synthesized derivatives were confirmed by FTIR, 1H NMR, 13C NMR and DEPT-135 spectroscopic techniques. During in vitro investigations, compound 11 was found to be the most potent inhibitor of all the targeted enzymes. Briefly, this compound exhibited inhibitory values (IC50 ± SEM) of 0.31 ± 0.16, 0.13 ± 0.16 and 0.94 ± 0.16 μM against AChE, MAO-B and COX-2, respectively, suggesting that it is a lead molecule for the synthesis of more potential multi-targeted inhibitors. Several compounds, such as compound 9 and 13, showed dual inhibition potential in comparison to standard drugs. Furthermore, molecular docking analysis was performed to validate the in vitro results, where the potent compounds showed some significant interactions with the key amino acids present in the active site of the targeted enzymes. Furthermore, molecular dynamics (MD) simulation data and physicochemical properties supported deferasirox-substituted triazolo-thiadiazine as a promising horizon for the discovery and development of new molecules to treat multifactorial diseases associated with neuro-inflammation, such as AD.
Collapse
Affiliation(s)
- Syed Ahmed Shakir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570
| | - Marryum
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570
| | - Nighat Fatima
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Muhammad Zahid Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa 616 Nizwa Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University 145 Anan-RO, Seongbuk-Gu Seoul 02841 Korea
| | - Ahmed Al Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa 616 Nizwa Oman
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060 Pakistan +92334517999 +923005316570
| |
Collapse
|
4
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2341-2359. [PMID: 39215908 PMCID: PMC11585516 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
5
|
He Y, Wang J, Ying C, Xu KL, Luo J, Wang B, Gao J, Yin Z, Zhang Y. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion. Front Immunol 2024; 15:1482386. [PMID: 39582857 PMCID: PMC11583640 DOI: 10.3389/fimmu.2024.1482386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
Stroke ranks as the second most significant contributor to mortality worldwide and is a major factor in disability. Ischemic strokes account for 71% of all stroke incidences globally. The foremost approach to treating ischemic stroke prioritizes quick reperfusion, involving methods such as intravenous thrombolysis and endovascular thrombectomy. These techniques can reduce disability but necessitate immediate intervention. After cerebral ischemia, inflammation rapidly arises in the vascular system, producing pro-inflammatory signals that activate immune cells, which in turn worsen neuronal injury. Following reperfusion, an overload of intracellular iron triggers the Fenton reaction, resulting in an excess of free radicals that cause lipid peroxidation and damage to cellular membranes, ultimately leading to ferroptosis. The relationship between inflammation and ferroptosis is increasingly recognized as vital in the process of cerebral ischemia-reperfusion (I/R). Inflammatory processes disturb iron balance and encourage lipid peroxidation (LPO) through neuroglial cells, while also reducing the activity of antioxidant systems, contributing to ferroptosis. Furthermore, the lipid peroxidation products generated during ferroptosis, along with damage-associated molecular patterns (DAMPs) released from ruptured cell membranes, can incite inflammation. Given the complex relationship between ferroptosis and inflammation, investigating their interaction in brain I/R is crucial for understanding disease development and creating innovative therapeutic options. Consequently, this article will provide a comprehensive introduction of the mechanisms linking ferroptosis and neuroinflammation, as well as evaluate potential treatment modalities, with the goal of presenting various insights for alleviating brain I/R injury and exploring new therapeutic avenues.
Collapse
Affiliation(s)
- Yuxuan He
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Chunmiao Ying
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kang Li Xu
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingwen Luo
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Baiqiao Wang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zaitian Yin
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunke Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
7
|
Issy AC, Pedrazzi JF, Nascimento GC, Faccioli LH, Del Bel E. Impact of 5-Lipoxygenase Deficiency on Dopamine-Mediated Behavioral Responses. Neurotox Res 2024; 42:42. [PMID: 39365372 DOI: 10.1007/s12640-024-00720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.
Collapse
Affiliation(s)
- Ana Carolina Issy
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - João Francisco Pedrazzi
- Department of Neuroscience and Behavior Sciences, Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Guan Q, Wang Z, Zhang K, Liu Z, Zhou H, Cao D, Mao X. CRISPR/Cas9-mediated neuronal deletion of 5-lipoxygenase alleviates deficits in mouse models of epilepsy. J Adv Res 2024; 63:73-90. [PMID: 39048074 PMCID: PMC11379977 DOI: 10.1016/j.jare.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION Our previous work reveals a critical role of activation of neuronal Alox5 in exacerbating brain injury post seizures. However, whether neuronal Alox5 impacts the pathological process of epilepsy remains unknown. OBJECTIVES To prove the feasibility of neuron-specific deletion of Alox5 via CRISPR-Cas9 in the blockade of seizure onset and epileptic progression. METHODS Here, we employed a Clustered regularly interspaced short-palindromic repeat-associated proteins 9 system (CRISPR/Cas9) system delivered by adeno-associated virus (AAV) to specifically delete neuronal Alox5 gene in the hippocampus to explore its therapeutic potential in various epilepsy mouse models and possible mechanisms. RESULTS Neuronal depletion of Alox5 was successfully achieved in the brain. AAV delivery of single guide RNA of Alox5 in hippocampus resulted in reducing seizure severity, delaying epileptic progression and improving epilepsy-associated neuropsychiatric comorbidities especially anxiety, cognitive deficit and autistic-like behaviors in pilocarpine- and kainic acid-induced temporal lobe epilepsy (TLE) models. In addition, neuronal Alox5 deletion also reversed neuron loss, neurodegeneration, astrogliosis and mossy fiber sprouting in TLE model. Moreover, a battery of tests including analysis of routine blood test, hepatic function, renal function, routine urine test and inflammatory factors demonstrated no noticeable toxic effect, suggesting that Alox5 deletion possesses the satisfactory biosafety. Mechanistically, the anti-epileptic effect of Alox5 deletion might be associated with reduction of glutamate level to restore excitatory/inhibitory balance by reducing CAMKII-mediated phosphorylation of Syn ISer603. CONCLUSION Our findings showed the translational potential of AAV-mediated delivery of CRISPR-Cas9 system including neuronal Alox5 gene for an alternative promising therapeutic approach to treat epilepsy.
Collapse
Affiliation(s)
- Qiwen Guan
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China; Department of Clinical Pharmacy, Jiaozuo People's Hospital, Jiaozuo 454000, China
| | - Zhaojun Wang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Kai Zhang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Honghao Zhou
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Danfeng Cao
- Academician Workstation and Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
9
|
Chistyakov DV, Azbukina NV, Lopachev AV, Goriainov SV, Astakhova AA, Ptitsyna EV, Klimenko AS, Poleshuk VV, Kazanskaya RB, Fedorova TN, Sergeeva MG. Plasma oxylipin profiles reflect Parkinson's disease stage. Prostaglandins Other Lipid Mediat 2024; 171:106788. [PMID: 37866654 DOI: 10.1016/j.prostaglandins.2023.106788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Derivatives of polyunsaturated fatty acids (PUFAs), also known as oxylipins, are key participants in regulating inflammation. Neuroinflammation is involved in many neurodegenerative diseases, including Parkinson's disease. The development of ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) facilitated the study of oxylipins on a system level, i.e., the analysis of oxylipin profiles. We analyzed oxylipin profiles in the blood plasma of 36 healthy volunteers (HC) and 73 patients with Parkinson's disease (PD), divided into early (L\M, 29 patients) or advanced (H, 44 patients) stages based on the Hoehn and Yahr scale. Among the 40 oxylipins detected, we observed a decrease in the concentration of arachidonic acid (AA) and AA derivatives, including anandamide (AEA) and Leukotriene E4 (LTE4), and an increase in the concentration of hydroxyeicosatetraenoic acids 19-HETE and 12-HETE (PD vs HC). Correlation analysis of gender, age of PD onset, and disease stages revealed 20 compounds the concentration of which changed depending on disease stage. Comparison of the acquired oxylipin profiles to openly available PD patient brain transcriptome datasets showed that plasma oxylipins do not appear to directly reflect changes in brain metabolism at different disease stages. However, both the L\M and H stages are characterized by their own oxylipin profiles - in patients with the H stage oxylipin synthesis is increased, while in patients with L\M stages oxylipin synthesis decreases compared to HC. This suggests that different therapeutic approaches may be more effective for patients at early versus late stages of PD.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezhda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, 119234 Moscow, Russia
| | - Alexander V Lopachev
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; Institute of Translational Biomedicine, St. Petersburg State University, 7/9 Universitetskaya Emb., St. Peters-burg 199034, Russia
| | | | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Elena V Ptitsyna
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna S Klimenko
- Peoples' Friendship University of Russia, Moscow 117198 Russia
| | - Vsevolod V Poleshuk
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Rogneda B Kazanskaya
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St Petersburg, Russia
| | - Tatiana N Fedorova
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, 125367 Moscow, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
10
|
Yuan M, He Q, Xiang W, Deng Y, Lin S, Zhang R. Natural compounds efficacy in Ophthalmic Diseases: A new twist impacting ferroptosis. Biomed Pharmacother 2024; 172:116230. [PMID: 38350366 DOI: 10.1016/j.biopha.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Ferroptosis, a distinct form of cell death, is characterized by the iron-mediated oxidation of lipids and is finely controlled by multiple cellular metabolic pathways. These pathways encompass redox balance, iron regulation, mitochondrial function, as well as amino acid, lipid, and sugar metabolism. Additionally, various disease-related signaling pathways also play a role in the regulation of ferroptosis. In recent years, with the introduction of the concept of ferroptosis and the deepening of research on its mechanism, ferroptosis is closely related to various biological conditions of eye diseases, including eye organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanism of ferroptosis, and its latest research progress in ophthalmic diseases and reviews the research on ferroptosis in ocular diseases within the framework of metabolism, active oxygen biology, and iron biology. Key regulators and mechanisms of ferroptosis in ocular diseases introduce important concepts and major open questions in the field of ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs will be made in the regulation mechanism of ferroptosis and the use of ferroptosis to promote the treatment of eye diseases. At the same time, natural compounds may be the direction of new drug development for the potential treatment of ferroptosis in the future. Open up a new way for clinical ophthalmologists to research and prevent diseases.
Collapse
Affiliation(s)
- Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shibin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
11
|
Fu Y, Xue H, Wang T, Ding Y, Cui Y, Nie H. Fibrinolytic system and COVID-19: From an innovative view of epithelial ion transport. Biomed Pharmacother 2023; 163:114863. [PMID: 37172333 PMCID: PMC10169260 DOI: 10.1016/j.biopha.2023.114863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Lifeways of worldwide people have changed dramatically amid the coronavirus disease 2019 (COVID-19) pandemic, and public health is at stake currently. In the early stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, fibrinolytic system is mostly inhibited, which is responsible for the development of hypofibrinolysis, promoting disseminated intravascular coagulation, hyaline membrane formation, and pulmonary edema. Whereas the common feature and risk factor at advanced stage is a large amount of fibrin degradation products, including D-dimer, the characteristic of hyperfibrinolysis. Plasmin can cleave both SARS-CoV-2 spike protein and γ subunit of epithelial sodium channel (ENaC), a critical element to edematous fluid clearance. In this review, we aim to sort out the role of fibrinolytic system in the pathogenesis of COVID-19, as well as provide the possible guidance in current treating methods. In addition, the abnormal regulation of ENaC in the occurrence of SARS-CoV-2 mediated hypofibrinolysis and hyperfibrinolysis are summarized, with the view of proposing an innovative view of epithelial ion transport in preventing the dysfunction of fibrinolytic system during the progress of COVID-19.
Collapse
Affiliation(s)
- Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
12
|
Functional Characterization of Transgenic Mice Overexpressing Human 15-Lipoxygenase-1 (ALOX15) under the Control of the aP2 Promoter. Int J Mol Sci 2023; 24:ijms24054815. [PMID: 36902243 PMCID: PMC10003068 DOI: 10.3390/ijms24054815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory, hyperproliferative, neurodegenerative, and metabolic diseases, but the physiological function of ALOX15 still remains a matter of discussion. To contribute to this discussion, we created transgenic mice (aP2-ALOX15 mice) expressing human ALOX15 under the control of the aP2 (adipocyte fatty acid binding protein 2) promoter, which directs expression of the transgene to mesenchymal cells. Fluorescence in situ hybridization and whole-genome sequencing indicated transgene insertion into the E1-2 region of chromosome 2. The transgene was highly expressed in adipocytes, bone marrow cells, and peritoneal macrophages, and ex vivo activity assays proved the catalytic activity of the transgenic enzyme. LC-MS/MS-based plasma oxylipidome analyses of the aP2-ALOX15 mice suggested in vivo activity of the transgenic enzyme. The aP2-ALOX15 mice were viable, could reproduce normally, and did not show major phenotypic alterations when compared with wildtype control animals. However, they exhibited gender-specific differences with wildtype controls when their body-weight kinetics were evaluated during adolescence and early adulthood. The aP2-ALOX15 mice characterized here can now be used for gain-of-function studies evaluating the biological role of ALOX15 in adipose tissue and hematopoietic cells.
Collapse
|
13
|
Ji H, Liu Z, Wang F, Sun H, Wang N, Liu Y, Hu S, You C. Novel macrophage-related gene prognostic index for glioblastoma associated with M2 macrophages and T cell dysfunction. Front Immunol 2022; 13:941556. [PMID: 36177003 PMCID: PMC9513135 DOI: 10.3389/fimmu.2022.941556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
This study aims to construct a Macrophage-Related Gene Prognostic Index (MRGPI) for glioblastoma (GBM) and explore the underlying molecular, metabolic, and immunological features. Based on the GBM dataset from The Cancer Genome Atlas (n = 156), 13 macrophage-related hub genes were identified by weighted gene co-expression network (WGCNA) analysis. 5 prognostic genes screened by Kaplan-Meire (K-M) analysis and Cox regression model were used to construct the MRGPI, including GPR84, NCF2, HK3, LILRB2, and CCL18. Multivariate Cox regression analysis found that the MRGPI was an independent risk factor (HR = 2.81, CI95: 1.13-6.98, p = 0.026), leading to an unfavorable outcome for the MRGPI-high group, which was further validated by 4 validation GBM cohorts (n = 728). Thereafter, the molecular, metabolic, and immune features and the clinical implications of the MRGPI-based groups were comprehensively characterized. Gene set enrichment analysis (GSEA) found that immune-related pathways, including inflammatory and adaptive immune response, and activated eicosanoid metabolic pathways were enriched in the MRGPI-high group. Besides, genes constituting the MRGPI was primarily expressed by monocytes and macrophages at single-cell scope and was associated with the alternative activation of macrophages. Moreover, correlation analysis and receiver operating characteristic (ROC) curves revealed the relevance between the MRGPI with the expression of immune checkpoints and T cell dysfunction. Thus, the responsiveness of samples in the MRGPI-high group to immune checkpoint inhibitors (ICI) was detected by algorithms, including Tumor Immune Dysfunction and Exclusion (TIDE) and Submap. In contrast, the MRGPI-low group had favorable outcome, was less immune active and insensitive to ICI. Together, we have developed a promising biomarker to classify the prognosis, metabolic and immune features for GBM, and provide references for facilitating the personalized application of ICI in GBM.
Collapse
Affiliation(s)
- Hang Ji
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Haogeng Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chao You, ; Shaoshan Hu, ; Yi Liu,
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Chao You, ; Shaoshan Hu, ; Yi Liu,
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chao You, ; Shaoshan Hu, ; Yi Liu,
| |
Collapse
|
14
|
Liu R, Zhang Y, Li S, Liu C, Zhuang S, Zhou X, Li Y, Liang J. Receptor-ligand affinity-based screening and isolation of water-soluble 5-lipoxygenase inhibitors from Phellinus igniarius. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1209:123415. [PMID: 35973282 DOI: 10.1016/j.jchromb.2022.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
We developed an efficient combination method for extraction, biological activity screening, and preparation of 5-lipoxygenase inhibitors from Phellinus igniarius. 5-Lipoxygenase inhibitors were rapidly screened using ultrafiltration-liquid chromatography based on the receptor-ligand affinity. Parameters such as extraction time, extraction times, and temperature as well as liquid-solid ratio were optimized using response surface methodology to maximize the total yield of the three target compounds. Next, bioactive ingredients were isolated using high-speed countercurrent chromatography and semi-preparative liquid chromatography. Three active ingredients, phellibaumin E, protocatechuic aldehyde, and osmundacetone, were obtained via ultrafiltration-liquid chromatography. Subsequently, the potential anti-dementia effects of the obtained bioactive compounds were verified using molecular docking assays. The above-mentioned target compounds, with purities of 98.82%, 98.89%, and 99.51%, respectively, were separated using a two-phase solvent system consisting of n-hexane-ethyl acetate-ethanol-water (2.5:2:0.75:3, v/v/v/v) coupled with semi-preparative liquid chromatography.
Collapse
Affiliation(s)
- Ruoyao Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China.
| | - Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China.
| | - Siyuan Zhuang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun 130032, China
| |
Collapse
|
15
|
Yasin M, Shahid W, Ashraf M, Saleem M, Muzaffar S, Aziz-Ur-Rehman, Ejaz SA, Mahmood HMK, Bhattarai K, Riaz N. Targeting new N-furfurylated 4-chlorophenyl-1,2,4-triazolepropionamide hybrids as potential 15-lipoxygenase inhibitors supported with in vitro and in silico studies. J Biomol Struct Dyn 2022:1-17. [PMID: 35699270 DOI: 10.1080/07391102.2022.2080765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lipoxygenases (LOXs) are a group of enzymes that catalyze the oxidation of polyunsaturated fatty acids and initiate the biosynthesis of secondary metabolites that are involved to control inflammation. In search of new and more potent LOX inhibitors, a series of new 3-(5-(4-chlorophenyl)-4-(2-furylmethyl)-1,2,4-triazole hybrids was prepared and screened for its LOX inhibitory potential. 4-Chlorobenzoic acid (a) was metamorphosed into N-furfuryl-5-(4-chlorophenyl)-4-(2-furylmethyl)-1,2,4-triazole (4) via intermediates like benzoate (1), hydrazide (2) and semicarbazide (3). Finally, triazole (4) was fused with propionamides (6a-o) and transformed it into the aimed derivatives (7a-o). The structural interpretations of the prepared derivatives (7a-o) were accomplished via FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry. The inhibitory potency of the compounds against soybean 15-LOX was determined by in vitro assay using chemiluminescence method. Compounds 7a and 7f exhibited potent LOX inhibitory profiles with IC50 21.83 ± 0.56 and 25.72 ± 0.51 µM, whereas 7d and 7e showed comparable inhibitory potential with IC50 values of 34.52 ± 0.39 and 39.12 ± 0.46 µM, respectively. Compounds 7a, 7f, 7d and 7e exhibited 65.58 ± 1.4%, 54.72 ± 1.3%, 58.52 ± 1.2% and 63.56 ± 1.4% blood mononuclear cells viability, respectively. Density functional theory and molecular docking studies further strengthened the studies of the synthesized compounds and these derivatives perceived to be potential 'lead' compounds in drug discovery as anti-LOX.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Yasin
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Wardah Shahid
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saima Muzaffar
- Division of Science and Technology, Department of Chemistry, University of Education, Lahore, Pakistan
| | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Mohammad Kashif Mahmood
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, University of Tuebingen, Tuebingen, Germany
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
16
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
17
|
Xie Z, Meng J, Kong W, Wu Z, Lan F, Narengaowa, Hayashi Y, Yang Q, Bai Z, Nakanishi H, Qing H, Ni J. Microglial cathepsin E plays a role in neuroinflammation and amyloid β production in Alzheimer's disease. Aging Cell 2022; 21:e13565. [PMID: 35181976 PMCID: PMC8920437 DOI: 10.1111/acel.13565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Regulation of neuroinflammation and β‐amyloid (Aβ) production are critical factors in the pathogenesis of Alzheimer's disease (AD). Cathepsin E (CatE), an aspartic protease, is widely studied as an inducer of growth arrest and apoptosis in several types of cancer cells. However, the function of CatE in AD is unknown. In this study, we demonstrated that the ablation of CatE in human amyloid precursor protein knock‐in mice, called APPNL−G−F mice, significantly reduced Aβ accumulation, neuroinflammation, and cognitive impairments. Mechanistically, microglial CatE is involved in the secretion of soluble TNF‐related apoptosis‐inducing ligand, which plays an important role in microglia‐mediated NF‐κB‐dependent neuroinflammation and neuronal Aβ production by beta‐site APP cleaving enzyme 1. Furthermore, cannula‐delivered CatE inhibitors improved memory function and reduced Aβ accumulation and neuroinflammation in AD mice. Our findings reveal that CatE as a modulator of microglial activation and neurodegeneration in AD and suggest CatE as a therapeutic target for AD by targeting neuroinflammation and Aβ pathology.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy Department of Biology School of Life Science Beijing Institute of Technology Beijing China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy Collaborative Innovation Center for Biotherapy West China Hospital Sichuan University Chengdu China
- Department of Aging Science and Pharmacology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy Department of Biology School of Life Science Beijing Institute of Technology Beijing China
| | - Zhou Wu
- Department of Aging Science and Pharmacology Faculty of Dental Science Kyushu University Fukuoka Japan
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy Department of Biology School of Life Science Beijing Institute of Technology Beijing China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy Department of Biology School of Life Science Beijing Institute of Technology Beijing China
| | - Yoshinori Hayashi
- Department of Physiology Nihon University School of Dentistry Tokyo Japan
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources Yan’an University Yan’an China
| | - Zhantao Bai
- Research Center for Resource Peptide Drugs Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources Yan’an University Yan’an China
| | - Hiroshi Nakanishi
- Department of Pharmacology Faculty of Pharmacy Yasuda Women’s University Hiroshima Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy Department of Biology School of Life Science Beijing Institute of Technology Beijing China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy Department of Biology School of Life Science Beijing Institute of Technology Beijing China
- Department of Aging Science and Pharmacology Faculty of Dental Science Kyushu University Fukuoka Japan
| |
Collapse
|