1
|
Pal A, Rai HM, Frej MBH, Razaque A. Advanced Segmentation of Gastrointestinal (GI) Cancer Disease Using a Novel U-MaskNet Model. Life (Basel) 2024; 14:1488. [PMID: 39598286 PMCID: PMC11595444 DOI: 10.3390/life14111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The purpose of this research is to contribute to the development of approaches for the classification and segmentation of various gastrointestinal (GI) cancer diseases, such as dyed lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal Z line, polyps, and ulcerative colitis. This research is relevant and essential because of the current challenges related to the absence of efficient diagnostic tools for early diagnostics of GI cancers, which are fundamental for improving the diagnosis of these common diseases. To address the above challenges, we propose a new hybrid segmentation model, U-MaskNet, which is a combination of U-Net and Mask R-CNN models. Here, U-Net is utilized for pixel-wise classification and Mask R-CNN for instance segmentation, together forming a solution for classifying and segmenting GI cancer. The Kvasir dataset, which includes 8000 endoscopic images of various GI cancers, is utilized to validate the proposed methodology. The experimental results clearly demonstrated that the novel proposed model provided superior segmentation compared to other well-known models, such as DeepLabv3+, FCN, and DeepMask, as well as improved classification performance compared to state-of-the-art (SOTA) models, including LeNet-5, AlexNet, VGG-16, ResNet-50, and the Inception Network. The quantitative analysis revealed that our proposed model outperformed the other models, achieving a precision of 98.85%, recall of 98.49%, and F1 score of 98.68%. Additionally, the novel model achieved a Dice coefficient of 94.35% and IoU of 89.31%. Consequently, the developed model increased the accuracy and reliability in detecting and segmenting GI cancer, and it was proven that the proposed model can potentially be used for improving the diagnostic process and, consequently, patient care in the clinical environment. This work highlights the benefits of integrating the U-Net and Mask R-CNN models, opening the way for further research in medical image segmentation.
Collapse
Affiliation(s)
- Aditya Pal
- Department of Information Technology, Dronacharya Group of Institutions, Greater Noida 201306, India;
| | - Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Mohamed Ben Haj Frej
- Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Abdul Razaque
- Department of Electrical, Computer Engineering and Computer Science, Ohio Northern University, Ada, OH 45810, USA
| |
Collapse
|
2
|
Mukherjee J, Sharma R, Dutta P, Bhunia B. Artificial intelligence in healthcare: a mastery. Biotechnol Genet Eng Rev 2024; 40:1659-1708. [PMID: 37013913 DOI: 10.1080/02648725.2023.2196476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
There is a vast development of artificial intelligence (AI) in recent years. Computational technology, digitized data collection and enormous advancement in this field have allowed AI applications to penetrate the core human area of specialization. In this review article, we describe current progress achieved in the AI field highlighting constraints on smooth development in the field of medical AI sector, with discussion of its implementation in healthcare from a commercial, regulatory and sociological standpoint. Utilizing sizable multidimensional biological datasets that contain individual heterogeneity in genomes, functionality and milieu, precision medicine strives to create and optimize approaches for diagnosis, treatment methods and assessment. With the arise of complexity and expansion of data in the health-care industry, AI can be applied more frequently. The main application categories include indications for diagnosis and therapy, patient involvement and commitment and administrative tasks. There has recently been a sharp rise in interest in medical AI applications due to developments in AI software and technology, particularly in deep learning algorithms and in artificial neural network (ANN). In this overview, we enlisted the major categories of issues that AI systems are ideally equipped to resolve followed by clinical diagnostic tasks. It also includes a discussion of the future potential of AI, particularly for risk prediction in complex diseases, and the difficulties, constraints and biases that must be meticulously addressed for the effective delivery of AI in the health-care sector.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy Affiliated to Jawaharlal Nehru Technological University, Hyderabad, Telangana, India
| | - Ramesh Sharma
- Department of Bioengineering, National Institute of Technology, Agartala, India
| | - Prasenjit Dutta
- Department of Production Engineering, National Institute of Technology, Agartala, India
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India
| |
Collapse
|
3
|
Al-mousa A, Baniissa J, Hashem T, Ibraheem T. Enhanced electrocardiogram machine learning-based classification with emphasis on fusion and unknown heartbeat classes. Digit Health 2023; 9:20552076231187608. [PMID: 37469959 PMCID: PMC10353025 DOI: 10.1177/20552076231187608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Building an electrocardiogram (ECG) heartbeat classification model is essential for early arrhythmia detection. This research aims to build a reliable model that can classify heartbeats into five heartbeat types: normal beat (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F), and unknown beat (Q), with a focus on enhancing the predictions of the uncommon Q and F heartbeats. The base dataset used is the MIT-BIH SupraVentricular Database, which was used to train and compare the performance of five machine learning models: logistic regression, Random Forest (RF), K-nearest neighbor, linear support vector machine, and linear discriminant analysis. In addition to using the synthetic minority oversampling technique, data extracted from multiple databases for the F and Q classes were combined with the original base dataset. These methods resulted in significant improvement in the recall for the rare F and Q classes when compared to the literature. The RF algorithm produced the best performance with an accuracy of 97% and recall values equal to 97%, 93%, 95%, 95%, and 30% for N, SVEB, VEB, F, and Q, respectively.
Collapse
Affiliation(s)
- Amjed Al-mousa
- Computer Engineering Department, Princess Sumaya University for Technology, Amman, Jordan
| | - Joud Baniissa
- Computer Engineering Department, Princess Sumaya University for Technology, Amman, Jordan
| | - Tala Hashem
- Computer Engineering Department, Princess Sumaya University for Technology, Amman, Jordan
| | - Tala Ibraheem
- Computer Engineering Department, Princess Sumaya University for Technology, Amman, Jordan
| |
Collapse
|
4
|
Wang J, Wu X. A deep learning refinement strategy based on efficient channel attention for atrial fibrillation and atrial flutter signals identification. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kaliappan M, Manimegalai Govindan S, Kuppusamy MS. Automatic ECG analysis system with hybrid optimization algorithm based feature selection and classifier. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardio vascular disease threatens human life with higher mortality rate. Therefore it is quite important to monitor. An arrhythmia is an abnormal heart beat and rhythm which causes the disease. The best tool to find the heart rhythm of heart is Electro Cardiogram (ECG) which provides information about the different types of arrhythmias. This paper aims at proposing an automatic framework by employing multi-domain features to classify ECG signals. Proposed work uses optimum method of feature selection to improvise the efficiency of the classification process. A hybrid optimization algorithm is used for feature selection and proposed to optimize the parameters of the existing Support Vector Machine (SVM) classifier. Proposed hybrid optimization algorithm was developed using Particle Swarm Optimization (PSO) and Migration Modified Biogeography Based Optimization (MMBBO) algorithm. Algorithm provides an improved solution to the optimizing the parameters of ECG signals. Results are evaluated by implementing in MATLAB software and the performance is justified with comparative analysis. The proposed framework enhances the process of automatic prediction of various arrhythmias or rhythm abnormalities which performs in gaining better accuracy. For data sets, the average classification accuracy of this method is 97.89%. This result is an improvement of 4–5% over the comparison of other methods.
Collapse
Affiliation(s)
- Manikandan Kaliappan
- Department of Bio Medical Engineering, Sona College of Technology, Salem, Tamilnadu, India
| | | | | |
Collapse
|
6
|
Hassan SU, Mohd Zahid MS, Abdullah TAA, Husain K. Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. Digit Health 2022; 8:20552076221102766. [PMID: 35656286 PMCID: PMC9152186 DOI: 10.1177/20552076221102766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac arrhythmia is a leading cause of cardiovascular disease, with a high fatality rate worldwide. The timely diagnosis of cardiac arrhythmias, determined by irregular and fast heart rate, may help lower the risk of strokes. Electrocardiogram signals have been widely used to identify arrhythmias due to their non-invasive approach. However, the manual process is error-prone and time-consuming. A better alternative is to utilize deep learning models for early automatic identification of cardiac arrhythmia, thereby enhancing diagnosis and treatment. In this article, a novel deep learning model, combining convolutional neural network and bi-directional long short-term memory, is proposed for arrhythmia classification. Specifically, the classification comprises five different classes: non-ectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q) beats. The proposed model is trained, validated, and tested using MIT-BIH and St-Petersburg data sets separately. Also, the performance was measured in terms of precision, accuracy, recall, specificity, and f1-score. The results show that the proposed model achieves training, validation, and testing accuracies of 100%, 98%, and 98%, respectively with the MIT-BIH data set. Lower accuracies were shown for the St-Petersburg data set. The performance of the proposed model based on the MIT-BIH data set is also compared with the performance of existing models based on the MIT-BIH data set.
Collapse
Affiliation(s)
- Shahab Ul Hassan
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Malaysia
| | - Mohd S Mohd Zahid
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Malaysia
| | - Talal AA Abdullah
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Malaysia
| | - Khaleel Husain
- Institute of Health and Analytics, Universiti Teknologi PETRONAS, Malaysia (Until August 2021)
| |
Collapse
|
7
|
An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost+Random Forest Algorithm. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9913127. [PMID: 34336169 PMCID: PMC8289583 DOI: 10.1155/2021/9913127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Arrhythmia is a common cardiovascular disease that can threaten human life. In order to assist doctors in accurately diagnosing arrhythmia, an intelligent heartbeat classification system based on the selected optimal feature sets and AdaBoost + Random Forest model is developed. This system can acquire ECG signals through the Holter and transmit them to the cloud platform for preprocessing and feature extraction, and the features are input into AdaBoost + Random Forest for heartbeat classification. The analysis results are output in the form of reports. In this system, by comparing and analyzing the classification accuracy of different feature sets and classifiers, the optimal classification algorithm is obtained and applied to the system. The algorithm accuracy of the system is tested based on the MIT-BIH data set. The result shows that AdaBoost + Random Forest achieved 99.11% accuracy with optimal feature sets. The intelligent heartbeat classification system based on this algorithm has also achieved good results on clinical data.
Collapse
|
8
|
Pandey SK, Janghel RR. Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier. Phys Eng Sci Med 2021; 44:173-182. [PMID: 33405209 DOI: 10.1007/s13246-020-00965-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Early detection of cardiac arrhythmia is needed to reduce mortality. Automatically detecting the cardiac arrhythmias is a very challenging task. In this paper, a new deep convolutional encoded feature (CEF) based on non-linear compression composition is applied to diminish the ECG signal segment size. Bidirectional long short-term memory (BLSTM) network classifier has been proposed to detect arrhythmias from the ECG signal, which is encoded by the convolutional encoder. These encoded features are used as the input to BLSTM network classifier. For performance comparison, three other classifiers, namely unidirectional long short-term memory (ULSTM) network, gated recurrent Unit (GRU) and multilayer perceptron, are designed. The experimental studies detect and classify arrhythmias present in the MIT-BIH arrhythmia database into five different heartbeat classes. These heartbeat classes are normal (N), left bundle branch block (L), right bundle branch block(R), paced (P) and premature ventricular contraction (V). Evaluation of performance and system efficiency has been done with the help of four different types of evaluation criteria which are overall accuracy, precision, recall, and F-score. The experimental results indicate that the BLSTM network has achieved an overall accuracy of 99.52% with the processing time of only 6.043 s.
Collapse
Affiliation(s)
- Saroj Kumar Pandey
- Department of Information Technology, National Institute of Technology, Raipur, India.
| | - Rekh Ram Janghel
- Department of Information Technology, National Institute of Technology, Raipur, India
| |
Collapse
|