1
|
Yang Y, Zhang M, Zhang Y, Liu K, Lu C. 5-Fluorouracil Suppresses Colon Tumor through Activating the p53-Fas Pathway to Sensitize Myeloid-Derived Suppressor Cells to FasL + Cytotoxic T Lymphocyte Cytotoxicity. Cancers (Basel) 2023; 15:1563. [PMID: 36900354 PMCID: PMC10001142 DOI: 10.3390/cancers15051563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Myelosuppression is a major adverse effect of 5-fluorouracil (5-FU) chemotherapy. However, recent findings indicate that 5-FU selectively suppresses myeloid-derived suppressor cells (MDSCs), to enhance antitumor immunity in tumor-bearing mice. 5-FU-mediated myelosuppression may thus have a beneficial effect for cancer patients. The molecular mechanism underlying 5-FU's suppression of MDSCs is currently unknown. We aimed at testing the hypothesis that 5-FU suppresses MDSCs through enhancing MDSC sensitivity to Fas-mediated apoptosis. We observed that, although FasL is highly expressed in T cells, Fas is weakly expressed in myeloid cells in human colon carcinoma, indicating that downregulation of Fas is a mechanism underlying myeloid cell survival and accumulation in human colon cancer. 5-FU treatment upregulated expression of both p53 and Fas, and knocking down p53 diminished 5-FU-induced Fas expression in MDSC-like cells, in vitro. 5-FU treatment also increased MDSC-like cell sensitivity to FasL-induced apoptosis in vitro. Furthermore, we determined that 5-FU therapy increased expression of Fas on MDSCs, suppressed MDSC accumulation, and increased CTL tumor infiltration in colon tumor-bearing mice. In human colorectal cancer patients, 5-FU chemotherapy decreased MDSC accumulation and increased CTL level. Our findings determine that 5-FU chemotherapy activates the p53-Fas pathway, to suppress MDSC accumulation, to increase CTL tumor infiltration.
Collapse
Affiliation(s)
- Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yongdan Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Mahbub AA. 17β-estradiol Enhances 5-Fluorouracil Anti-Cancer Activities in Colon Cancer Cell Lines. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10040062. [PMID: 36412903 PMCID: PMC9680382 DOI: 10.3390/medsci10040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) represents one of the major constituents of chemotherapy combination regimens in colon cancer (CRC) treatments; however, this regimen is linked with severe adverse effects and chemoresistance. Thus, developing more efficient approaches for CRC is urgently needed to overcome these problems and improve the patient survival rate. Currently, 17β-estradiol (E2) has gained greater attention in colon carcinogenesis, significantly lowering the incidence of CRC in females at reproductive age compared with age-matched males. AIMS This study measured the effects of E2 and/or 5-FU single/dual therapies on cell cycle progression and apoptosis against human HT-29 female and SW480 male primary CRC cells versus their impact on SW620 male metastatic CRC cells. METHODS The HT-29, SW480, and SW620 cells were treated with IC50 of E2 (10 nM) and 5-FU (50 μM), alone or combined (E+F), for 48 h before cell cycle and apoptosis analyses using flow cytometry. RESULTS The data here showed that E2 monotherapy has great potential to arrest the cell cycle and induce apoptosis in all the investigated colon cancer cells, with the most remarkable effects on metastatic cells (SW620). Most importantly, the dual therapy (E+F) has exerted anti-cancer activities in female (HT-29) and male (SW480) primary CRC cells by inducing apoptosis, which was preferentially provoked in the sub-G1 phase. However, the dual treatment showed the smallest effect in SW620 metastatic cells. CONCLUSION this is the first study that demonstrated that the anti-cancer actions of 17β-estradiol and 5-Fluorouracil dual therapy were superior to the monotherapies in female and male primary CRC cells; it is proposed that this treatment strategy could be promising for the early stages of CRC. At the same time, 17β-estradiol monotherapy could be a better approach for treating the metastatic forms of the disease. Nevertheless, additional investigations are still required to determine their precise therapeutic values in CRC.
Collapse
Affiliation(s)
- Amani A Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| |
Collapse
|
3
|
Pires V, Bramatti I, Aschner M, Branco V, Carvalho C. Thioredoxin Reductase Inhibitors as Potential Antitumors: Mercury Compounds Efficacy in Glioma Cells. Front Mol Biosci 2022; 9:889971. [PMID: 35813817 PMCID: PMC9260667 DOI: 10.3389/fmolb.2022.889971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common form of glioma. GBM, like many other tumors, expresses high levels of redox proteins, such as thioredoxin (Trx) and thioredoxin reductase (TrxR), allowing tumor cells to cope with high levels of reactive oxygen species (ROS) and resist chemotherapy and radiotherapy. Thus, tackling the activity of these enzymes is a strategy to reduce cell viability and proliferation and most importantly achieve tumor cell death. Mercury (Hg) compounds are among the most effective inhibitors of TrxR and Trx due to their high affinity for binding thiols and selenols. Moreover, organomercurials such as thimerosal, have a history of clinical use in humans. Thimerosal effectively crosses the blood–brain barrier (BBB), thus reaching effective concentrations for the treatment of GBM. Therefore, this study evaluated the effects of thimerosal (TmHg) and its metabolite ethylmercury (EtHg) over the mouse glioma cell line (GL261), namely, the inhibition of the thioredoxin system and the occurrence of oxidative cellular stress. The results showed that both TmHg and EtHg increased oxidative events and triggered cell death primarily by apoptosis, leading to a significant reduction in GL261 cell viability. Moreover, the cytotoxicity of TmHg and ETHg in GL261 was significantly higher when compared to temozolomide (TMZ). These results indicate that EtHg and TmHg have the potential to be used in GBM therapy since they strongly reduce the redox capability of tumor cells at exceedingly low exposure levels.
Collapse
Affiliation(s)
- Vanessa Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Isabella Bramatti
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Caparica, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Cristina Carvalho,
| |
Collapse
|
4
|
Gao J, Hou D, Hu P, Mao G. Curcumol increases the sensitivity of colon cancer to 5-FU by regulating Wnt/β-catenin signaling. Transl Cancer Res 2021; 10:2437-2450. [PMID: 35116559 PMCID: PMC8798486 DOI: 10.21037/tcr-21-689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Background 5-fluorouracil (5-FU) resistance is the leading cause of treatment failure in colon cancer. Combination therapy is an effective strategy to inhibit cancer cells and prevent drug resistance. Therefore, we studied the antitumor effect of curcumol alone or combined with 5-FU on human colon cancer drug-resistant cells. Methods The 5-FU resistant HCT116 cell line (HCT116/5-FU) was established by repeated exposure to gradually increasing concentrations of 5-FU; Cell viability was measured by cell counting kit-8 (CCK-8); apoptosis rate of HCT116 cells was detected using Annexin V-fluorescein isothiocyanate (FITC) assay kit; cell proliferation and invasion were detected using colony formation assays, wound healing assay and transwell invasion assays; activity of transplanted tumor in vivo in specific pathogen free (SPF) BALB/c nude mice (6 weeks old, male) was monitored by bioluminescence imaging, immunohistochemistry and western blot analysis. Results Our study showed the potent antitumor effect of curcumol by induction of apoptosis, inhibition of proliferation, invasion, migration, and improvement of the therapeutic efficacy of 5-FU toward human colon cancer HCT116 cells. From our results, curcumol could chemosensitize 5-FU-resistant HCT116 cells. The combination of curcumol and 5-FU exerted a synergistic inhibitory effect on the induction of apoptosis. Also, this combination inhibited the proliferation, invasion, and migration of both chemo-resistant and sensitive cells. Curcumol treatment decreased multidrug resistance-associated protein 2 (MRP-2), P-glycoprotein (P-gp), survivin, and β-catenin expression, which correlated with multidrug resistance (MDR) and the target genes of Wnt/β-catenin. It significantly increased the p-β-catenin level and Bad/Bcl-2 ratio in HCT116/5-FU cells compared with 5-FU treatment. In vivo, curcumol significantly inhibited the growth of transplanted tumors and the expression of Ki-67, proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF) in colon cancer cells. Conclusions Curcumol as a potential chemotherapeutic agent combined with 5-FU can overcome colon cancer resistance.
Collapse
Affiliation(s)
- Jinfeng Gao
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Daorong Hou
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Guoxin Mao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
A vanillin derivative suppresses the growth of HT29 cells through the Wnt/β-catenin signaling pathway. Eur J Pharmacol 2019; 849:43-49. [PMID: 30707959 DOI: 10.1016/j.ejphar.2019.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy and the leading cause of cancer death worldwide. According to previous studies, vanillin possesses pharmacological and anticancer activities. In this work, we have modified the structure of vanillin to obtain a vanillin derivative called 4-(1H-imidazo [4,5-f][1,10]-phenanthrolin-2-yl)-2-methoxyphenol (IPM711), which has improved anticancer activity. The present study is intended to explore the anti-colorectal cancer activity of IPM711 in HT29 and HCT116 cells. The results of this study suggest that IPM711 can inhibit the growth, invasion and migration of HT29 and HCT116 cells. Western blot and molecular docking showed that IPM711 could bind to a Wnt/β-catenin signaling receptor to inhibit cell growth, invasion and migration in HT29 cells. Based on these results, IPM711 is a promising anticancer drug candidate for human colorectal cancer therapy.
Collapse
|
6
|
Dominijanni A, Gmeiner WH. Improved potency of F10 relative to 5-fluorouracil in colorectal cancer cells with p53 mutations. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2018; 1:48-58. [PMID: 30613833 PMCID: PMC6320232 DOI: 10.20517/cdr.2018.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: Resistance to fluoropyrimidine drugs (FPs) is a major cause of mortality in colorectal cancer (CRC). We assessed the potency advantage of the polymeric FP F10 relative to 5-fluorouracil (5FU) in four human CRC cell lines that differ only in TP53 mutational status to determine how p53 mutations affect drug response and whether F10 is likely to improve outcomes. Methods: HCT-116 human CRC cells (p53+/+) and three isogenic variants (p53−/−, R248W/+, R248W/−) were assessed for drug response. Resistance factors were derived from cell viability data and used to establish the relative potency advantage for F10. Rescue studies with exogenous uridine/thymidine determined if cytotoxicity resulted from DNA-directed processes. Results: Significant resistance to 5-FU resulted from p53-loss or from gain-of-function (GOF) mutation (R248W) and was greatest when GOF mutation was coupled with loss of wild-type p53. F10 is much more potent than 5-FU (137–314-fold depending on TP53 mutational status). F10 and 5-FU induce apoptosis by DNA- and RNA-directed mechanisms, respectively, and only F10 shows a modest enhancement in cytotoxicity upon co-treatment with leucovorin. Conclusion: TP53 mutational status affects inherent sensitivity to FPs, with p53 GOF mutations most deleterious. F10 is much more effective than 5-FU regardless of TP53 mutations and has potential to be effective to CRC that is resistant to 5-FU due, in part, to TP53 mutations.6,7
Collapse
Affiliation(s)
- Anthony Dominijanni
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Pereira DM, Simões AES, Gomes SE, Castro RE, Carvalho T, Rodrigues CMP, Borralho PM. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget 2018; 7:34322-40. [PMID: 27144434 PMCID: PMC5085159 DOI: 10.18632/oncotarget.9107] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment.
Collapse
Affiliation(s)
- Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Histology and Comparative Pathology Laboratory, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Rani I, Sharma B, Kumar S, Kaur S, Agnihotri N. Apoptosis mediated chemosensitization of tumor cells to 5-fluorouracil on supplementation of fish oil in experimental colon carcinoma. Tumour Biol 2017; 39:1010428317695019. [PMID: 28349837 DOI: 10.1177/1010428317695019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
5-Fluorouracil has been considered as a cornerstone therapy for colorectal cancer; however, it suffers from low therapeutic response rate and severe side effects. Therefore, there is an urgent need to increase the clinical efficacy of 5-fluorouracil. Recently, fish oil rich in n-3 polyunsaturated fatty acids has been reported to chemosensitize tumor cells to anti-cancer drugs. This study is designed to understand the underlying mechanisms of synergistic effect of fish oil and 5-fluorouracil by evaluation of tumor cell-associated markers such as apoptosis and DNA damage. The colon cancer was developed by administration of N,N-dimethylhydrazine dihydrochloride and dextran sulfate sodium salt. Further these animals were treated with 5-fluorouracil, fish oil, or a combination of both. In carcinogen-treated animals, a decrease in DNA damage and apoptotic index was observed. There was also a decrease in the expression of Fas, FasL, caspase 8, and Bax, and an increase in Bcl-2. In contrast, administration of 5-fluorouracil and fish oil as an adjuvant increased both DNA damage and apoptotic index by activation of both extrinsic and intrinsic apoptotic pathways as compared to the other groups. The increased pro-apoptotic effect by synergism of 5-fluorouracil and fish oil may be attributed to the incorporation of n-3 polyunsaturated fatty acids in membrane, which alters membrane fluidity in cancer cells. In conclusion, this study highlights that the induction of apoptotic pathway by fish oil may increase the susceptibility of tumors to chemotherapeutic regimens.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Bhoomika Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Satinder Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
9
|
An apple oligogalactan enhances the growth inhibitory effect of 5-fluorouracil on colorectal cancer. Eur J Pharmacol 2017; 804:13-20. [PMID: 28389232 DOI: 10.1016/j.ejphar.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
Treatment of colorectal cancer (CRC) remains a clinical challenge, since current therapies are associated with obvious side effects and high expenses. These limitations highlight an urgent need for developing novel and safe treatment strategies. It is suggested that combinatorial strategies could be more effective and much safer than monotherapy in cancer treatment. In our previous study, an apple oligogalactan (AOG) has been found to show beneficial effect on treating CRC. This study tried to investigate whether AOG could enhance the growth inhibitory effect of 5-FU in human CRC cells (HT-29 and SW-620), a mouse model of colitis associated colorectal cancer and a murine model of xenograft tumor. The IC50 values of 5-FU were 26.70±0.21μM in HT-29 cells and 26.71±2.06μM in SW-620 cells. Pretreatment with 0.05 or 0.1mM AOG down-regulated IC50 values of 5-FU to 22.44±1.01 or 18.67±1.16μM in HT-29 and 21.21±1.49 or 17.99±1.42μM in SW-620 cells. AOG enhanced 5-FU-induced cell apoptosis and S phase arrest. The combination not only protected ICR mice against intestinal toxicities and carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate, but also decreased the xenograft tumor size, triggered apoptosis and inhibited proliferation of tumor cells in nude mice. The mechanisms of AOG on enhancing the growth inhibitory effect of 5-FU may be through the influence of TLR-4/NF-κB pathway. Taken together, the combinatorial therapy using AOG and 5-FU is a promising strategy for the treatment of colorectal cancer.
Collapse
|
10
|
Li X, Xun Z, Yang Y. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer. Biochem Biophys Res Commun 2016; 477:633-639. [PMID: 27349874 DOI: 10.1016/j.bbrc.2016.06.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023]
Abstract
Most colorectal cancer (CRC) cell lines are identified to overexpress phosphoserine phosphatase (PSPH), which regulates the intracellular synthesis of serine and glycine, and supports tumor growth. In this study, the effect of PSPH on 5-fluorouracil (5-FU) efficacy was evaluated. CRC cells exposed to 5-FU acquire metabolic remodeling, resulting in increased glucose flux for PSPH-mediated serine synthesis. Then serine is converted into GSH, which promotes cell survival through the detoxification of 5-FU-induced reactive oxygen species (ROS). Consequently, repression of PSPH by the use of shRNAs for PSPH impaired the defense against drug-induced oxidative stress, thereby sensitizing cells to 5-FU. The importance of the PSPH in supporting tumor growth during 5-FU treatment was also demonstrated in an in vivo tumor model of CRC. These findings indicate that the PSPH could serve as a target for increasing the anticancer efficacy of conventional therapy in patients with CRC.
Collapse
Affiliation(s)
- Xin Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Zhe Xun
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Yong Yang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
11
|
Hu Z, Lv G, Li Y, Li E, Li H, Zhou Q, Yang B, Cao W. Enhancement of anti-tumor effects of 5-fluorouracil on hepatocellular carcinoma by low-intensity ultrasound. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:71. [PMID: 27102814 PMCID: PMC4840943 DOI: 10.1186/s13046-016-0349-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/17/2016] [Indexed: 01/16/2023]
Abstract
Background Hepatocellular carcinoma (HCC) accounts for 75 % of liver cancers and is the second most lethal cancer, associated with its multiple etiologies, poor prognosis and resistance to chemotherapy drugs. Chemotherapy treatment on HCC suffers low efficacy of drug uptake and can produce a range of side effects. Here we report an investigation on the effect of a combined treatment on human hepatocellular carcinoma BEL-7402 cells using low-intensity ultrasound (US) and 5-fluorouracil (5-FU). Methods The uptake of 5-FU was measured by the high-performance liquid chromatography (HPLC). DNA damage was detected by the comet assay. MTT assay was used to examine cell viability. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) were respectively detected by the fluorescent probes DCFH-DA or JC-1. Endogenous apoptosis-associated proteins were analyzed by the western blot and immunohistochemistry. Histopathological changes were evaluated by the hematoxylin and eosin (H&E) staining. Cell apoptosis was evaluated by the TUNEL and flow cytometry assays. Cell proliferation was measured using the immunohistochemical staining of PCNA. Results Our results showed that low-intensity US (1.1 MHz, 1.0 W/cm2, 10 % duty cycle) significantly enhanced the uptake of 5-FU, 5-FU-mediated DNA damage and reactive oxygen species (ROS) generation. The increased ROS production up-regulated the p53 protein level, which led to the up-regulation of Bax and down-regulation of Bcl-2. The enhancement of ROS generation and the activation of the apoptosis-associated proteins further triggered the collapse of mitochondrial membrane potential, released cytochrome c from mitochondria into cytosol and activated the mitochondria-caspase pathway, and cell apoptosis. Such enhanced effects could be partially blocked by the ROS scavenger N-acetylcysteine (NAC). Overall, low-intensity US combined with 5-FU led to an effective inhibition of tumor growth and prolonged overall survival of BEL-7402 HCC-bearing nude mice by more than 15 % compared with 5-FU treatment alone. Conclusions Our results showed that low-intensity ultrasound combined with 5-FU produced much enhanced synergistic anti-tumor effects via enhanced ROS production in treating HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0349-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Hu
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Guixiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China
| | - Yongning Li
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Enze Li
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Haixia Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China
| | - Qi Zhou
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Bin Yang
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China
| | - Wenwu Cao
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, 150080, China. .,Department of Mathematics, and Materials Research Institute, The Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
12
|
Sivanantham B, Sethuraman S, Krishnan UM. Combinatorial Effects of Curcumin with an Anti-Neoplastic Agent on Head and Neck Squamous Cell Carcinoma Through the Regulation of EGFR-ERK1/2 and Apoptotic Signaling Pathways. ACS COMBINATORIAL SCIENCE 2016; 18:22-35. [PMID: 26505786 DOI: 10.1021/acscombsci.5b00043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Globally, head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer and represents approximately 6% of all diagnosed cancers. The use of anti-cancer drugs, such as docetaxel, doxorubicin (DOX), 5-fluorouracil (5-FU), and cisplatin (diammine dichloroplatinum(II), CDDP), is limited due to their non-specificity, drug resistance, and toxicity. A combinatorial approach may improve the efficacy of these chemotherapeutic drugs and reduce their non-specific toxicities. In the present study, curcumin, an anti-cancer phytochemical, was used in combination with 5-FU, doxorubicin, and cisplatin and their combinatorial effect on the HNSCC cell line NT8e was investigated. Our results showed that the combination of 5-FU or DOX with curcumin exhibited significant growth inhibition and enhanced apoptosis in NT8e cancer cells. Treatment with 5-FU or DOX in combination with curcumin induced apoptosis by inhibiting Bcl-2 and increasing Bax, caspase-3, and poly-ADP ribose polymerase (PARP) in NT8e cells. This was further confirmed through apoptotic characteristic features in cells, such as membrane blebbing, nuclear condensation, and cell shrinkage, as observed by DAPI staining and through decreased red/green fluorescence by JC-1. These two combinations also exhibited cell cycle growth arrest at the G1/S phase, which was confirmed by downregulation of cyclins (D1, E2, B1, and A2), CDK2, and increased p21 levels. In addition, curcumin exposure along with 5-FU or DOX inhibited cell proliferation through the downregulation of EGFR-ERK1/2 signaling molecules. Overall, our data demonstrates the promising therapeutic potential and underlying mechanisms of curcumin with 5-FU/DOX combinations as a new treatment modality for head and neck cancer management.
Collapse
Affiliation(s)
- Banudevi Sivanantham
- Centre For Nanotechnology
and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401, India
| | - Swaminathan Sethuraman
- Centre For Nanotechnology
and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401, India
| | - Uma Maheswari Krishnan
- Centre For Nanotechnology
and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401, India
| |
Collapse
|
13
|
Liu MN, Liu AY, Pei FH, Ma X, Fan YJ, DU YJ, Liu BR. Functional mechanism of the enhancement of 5-fluorouracil sensitivity by TUSC4 in colon cancer cells. Oncol Lett 2015; 10:3682-3688. [PMID: 26788191 DOI: 10.3892/ol.2015.3801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 07/07/2015] [Indexed: 02/01/2023] Open
Abstract
5-Fluorouracil (5-FU) is the chemotherapeutic drug of choice for the treatment of metastatic colorectal cancer (CRC). Tumor suppressor candidate 4 (TUSC4), also referred to as nitrogen permease regulator-like 2 (NPRL2), is located at chromosome 3p21.3 and expressed in numerous normal tissues, including the heart, liver, skeletal muscle, kidney, and pancreas. The aim of the present study was to investigate the functional mechanism by which TUSC4 affects sensitivity to 5-FU and to determine its clinical significance in CRC. The results of the present study demonstrated that TUSC4 overexpression increases the sensitivity of HCT116 cells to 5-FU. The IC50 of 5-FU was reduced in cells transduced with TUSC4 compared with negative control (NC) cells, and the effect of TUSC4 on 5-FU sensitivity was time dependent. Following TUSC4 transduction in HCT116 cells, a proportion of the cells were arrested in the G1 phase of the cell cycle, and a reduction in the S phase population was observed. Flow cytometry analysis revealed that TUSC4 transduction and 5-FU treatment increased apoptosis compared with NC cells. The mechanism through which TUSC4 overexpression enhances 5-FU sensitivity involves the downregulation of the function of the PI3K/Akt/mTOR network. Furthermore, 5-FU upregulated caspase-3 and caspase-9, promoting apoptosis in TUSC4-overexpressing cells compared with cells that were transduced with TUSC4 or treated with 5-FU and NC cells. The findings of the present study indicate that TUSC4 has potential as a biomarker for the prediction of the response to 5-FU and prognosis in patients with colorectal cancer and other types of human cancer. TUSC4 may also act as a molecular therapeutic agent for enhancing the patient's response to 5-FU treatment.
Collapse
Affiliation(s)
- Ming-Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Ai-Yun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Xiao Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Yu-Jing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Ya-Ju DU
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| | - Bing-Rong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150080, P.R. China
| |
Collapse
|
14
|
Paterna A, Borralho PM, Gomes SE, Mulhovo S, Rodrigues CM, Ferreira MJU. Monoterpene indole alkaloid hydrazone derivatives with apoptosis inducing activity in human HCT116 colon and HepG2 liver carcinoma cells. Bioorg Med Chem Lett 2015; 25:3556-9. [DOI: 10.1016/j.bmcl.2015.06.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/16/2023]
|
15
|
Paschall AV, Yang D, Lu C, Choi JH, Li X, Liu F, Figueroa M, Oberlies NH, Pearce C, Bollag WB, Nayak-Kapoor A, Liu K. H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance. THE JOURNAL OF IMMUNOLOGY 2015; 195:1868-82. [PMID: 26136424 DOI: 10.4049/jimmunol.1402243] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL(+) and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Cancer Center, Georgia Regents University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Jeong-Hyeon Choi
- Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Xia Li
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Feiyan Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China;
| | - Mario Figueroa
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| | | | - Wendy B Bollag
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904; Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Cancer Center, Georgia Regents University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904;
| |
Collapse
|
16
|
Brito H, Martins AC, Lavrado J, Mendes E, Francisco AP, Santos SA, Ohnmacht SA, Kim NS, Rodrigues CMP, Moreira R, Neidle S, Borralho PM, Paulo A. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS One 2015; 10:e0126891. [PMID: 26024321 PMCID: PMC4449006 DOI: 10.1371/journal.pone.0126891] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A guanine-rich strand within the promoter of the KRAS gene can fold into an intra-molecular G-quadruplex structure (G4), which has an important role in the regulation of KRAS transcription. We have previously identified indolo[3,2-b]quinolines with a 7-carboxylate group and three alkylamine side chains (IQ3A) as effective G4 stabilizers and promising selective anticancer leads. Herein we investigated the anticancer mechanism of action of these compounds, which we hypothesized due to stabilization of the G4 sequence in the KRAS promoter and subsequent down-regulation of gene expression. METHODOLOGY/PRINCIPAL FINDINGS IQ3A compounds showed greater stabilization of G4 compared to duplex DNA structures and reduced KRAS promoter activity in a dual luciferase reporter assay. Moreover, IQ3A compounds showed high anti-proliferative activity in HCT116 and SW620 colon cancer cells (IC50 < 2.69 μM), without eliciting cell death in non-malignant HEK293T human embryonic kidney, and human colon fibroblasts CCD18co. IQ3A compounds significantly reduced KRAS mRNA and protein steady-state levels at IC50 concentrations, and increased p53 protein steady-state levels and cell death by apoptosis in HCT116 cells (mut KRAS, wt p53). Furthermore, KRAS silencing in HCT116 p53 wild-type (p53(+/+)) and null (p53(-/-)) isogenic cell lines induced a higher level of cell death, and a higher IQ3A-induced cell death in HCT116 p53(+/+) compared to HCT116 p53(-/-). CONCLUSIONS Herein we provide evidence that G4 ligands such as IQ3A compounds can target G4 motifs present in KRAS promoter, down-regulate the expression of the mutant KRAS gene through inhibition of transcription and translation, and induce cell death by apoptosis in colon cancer cell lines. Thus, targeting KRAS at the genomic level with G4 ligands may be a new anticancer therapy strategy for colon cancer.
Collapse
Affiliation(s)
- Hugo Brito
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Martins
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Eduarda Mendes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Paula Francisco
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Sofia A. Santos
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stephan A. Ohnmacht
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Cecília M. P. Rodrigues
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Pedro M. Borralho
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- * E-mail: (PMB); (AP)
| | - Alexandra Paulo
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- * E-mail: (PMB); (AP)
| |
Collapse
|
17
|
Lee SH, Koo BS, Park SY, Kim YM. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol Med Rep 2015; 12:2777-83. [PMID: 25936796 DOI: 10.3892/mmr.2015.3675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
5-Fluorouracil (5-FU) has been used as a chemotherapeutic drug for various types of cancer, although the development of resistance remains a major limitation for its use in clinical settings. In the present study, the anti-angiogenic effects of resveratrol and 5-FU either alone or in combination were examined in a B16 murine melanoma model. Co-treatment using resveratrol and 5-FU inhibited cell proliferation more efficiently compared with use of either drug alone and the antiproliferative effect coincided with changes in the expression levels of AMP-activated protein kinase (AMPK), cyclooxygenase-2, vasodilator-stimulated phosphoprotein (VASP) and vascular endothelial growth factor (VEGF). Furthermore, co-treatment with resveratrol and 5-FU reduced tumor growth compared with that in the control group and this growth-inhibitory effect was associated with changes in the expression levels of AMPK, VASP and VEGF. Immunohistochemical staining for angiogenesis demonstrated that co-treatment with resveratrol and 5-FU reduced the number of microvascular vessels compared with that in the control group. These results suggested that co-treatment with resveratrol and 5-FU suppressed cell growth and angiogenesis in B16 murine melanoma tumors.
Collapse
Affiliation(s)
- Sol Hwa Lee
- Department of Biological Sciences and Biotechnology, College of Life Science and Nanotechnology, Hannam University, Yusung‑gu, Daejeon 305‑811, Republic of Korea
| | - Bong Seong Koo
- Department of Biological Sciences and Biotechnology, College of Life Science and Nanotechnology, Hannam University, Yusung‑gu, Daejeon 305‑811, Republic of Korea
| | - Song Yi Park
- Department of Biological Sciences and Biotechnology, College of Life Science and Nanotechnology, Hannam University, Yusung‑gu, Daejeon 305‑811, Republic of Korea
| | - Young Min Kim
- Department of Biological Sciences and Biotechnology, College of Life Science and Nanotechnology, Hannam University, Yusung‑gu, Daejeon 305‑811, Republic of Korea
| |
Collapse
|
18
|
Lavrado J, Brito H, Borralho PM, Ohnmacht SA, Kim NS, Leitão C, Pisco S, Gunaratnam M, Rodrigues CMP, Moreira R, Neidle S, Paulo A. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci Rep 2015; 5:9696. [PMID: 25853628 PMCID: PMC5382548 DOI: 10.1038/srep09696] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/29/2023] Open
Abstract
KRAS is one of the most frequently mutated oncogenes in human cancer, yet remaining undruggable. To explore a new therapeutic strategy, a library of 5-methyl-indolo[3,2-c]quinoline derivatives (IQc) with a range of alkyldiamine side chains was designed to target DNA and RNA G-quadruplexes (G4) in the promoter and 5′-UTR mRNA of the KRAS gene. Biophysical experiments showed that di-substituted IQc compounds are potent and selective KRAS G4 stabilizers. They preferentially inhibit the proliferation of KRAS mutant cancer cell lines (0.22 < IC50 < 4.80 μM), down-regulate KRAS promoter activity in a luciferase reporter assay, and reduce both KRAS mRNA and p21KRAS steady-state levels in mutant KRAS colon cancer cell lines. Additionally, IQcs induce cancer cell death by apoptosis, explained in part by their capacity to repress KRAS expression. Overall, the results suggest that targeting mutant KRAS at the gene level with G4 binding small molecules is a promising anticancer strategy.
Collapse
Affiliation(s)
- João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Hugo Brito
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Pedro M Borralho
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephan A Ohnmacht
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-333, Republic of Korea
| | - Clara Leitão
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sílvia Pisco
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mekala Gunaratnam
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Cecília M P Rodrigues
- Cell Function and Therapeutic Targeting Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Stephen Neidle
- The School of Pharmacy, University College London. 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Alexandra Paulo
- Medicinal Chemistry Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
19
|
González-Sarrías A, Tomé-Carneiro J, Bellesia A, Tomás-Barberán FA, Espín JC. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food Funct 2015; 6:1460-9. [DOI: 10.1039/c5fo00120j] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ellagic acid-derived gut microbiota metabolite, urolithin A, at concentrations achievable in the human colorectum, enhances the anticancer effects of 5-FU-chemotherapy on three different colon cancer cells.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| | - Joao Tomé-Carneiro
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| | - Andrea Bellesia
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 42122 Reggio Emilia
- Italy
| | - Francisco A. Tomás-Barberán
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| | - Juan Carlos Espín
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Dept. Food Science and Technology
- CEBAS-CSIC
- Murcia
| |
Collapse
|
20
|
Mansoor TA, Borralho PM, Luo X, Mulhovo S, Rodrigues CMP, Ferreira MJU. 6-Acetonyldihydrochelerythrine Is a Potent Inducer of Apoptosis in HCT116 and SW620 Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2014; 77:1825-1830. [PMID: 25066282 DOI: 10.1021/np500161n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
6-Acetonyldihydrochelerythrine (1), a benzophenanthridine alkaloid, isolated from the methanol extract of Zanthoxylum capense, displayed potent cytotoxic activity in human HCT116 and SW620 colon carcinoma cells, to a higher extent than 5-fluorouracil (5-FU), the cornerstone chemotherapeutic agent in colon cancer. Cytotoxicity of 1 was evaluated by MTS, lactate dehydrogenase (LDH), and Guava ViaCount assays. Interestingly, 1 significantly induced cytotoxicity in both cell lines, leading to a significant increase in LDH release, as compared to 5-FU. Further, Guava ViaCount flow cytometry assays demonstrated that 1 significantly increased cell death, as shown by the presence of a significantly higher population of apoptotic cells in both cell lines, as compared to cells exposed to 5-FU. Furthermore, evaluation of nuclear morphology by Hoechst staining of 1-treated HCT116 and SW620 cells confirmed flow cytometry results, demonstrating a marked induction of apoptotic cell death by 1, again to a further extent than that elicited by 5-FU. In addition, immunoblot analysis to ascertain the molecular events triggered by 1 exposure was performed. The results show that 1 exposure reduced the steady-state expression and activation of the pro-survival proteins ERK5 and Akt and increased the steady-state expression of p53 in both HCT116 and SW620 cells. Changes in ERK5 or Akt activation can be ascertained by evaluating the ratio of p-ERK5/ERK5 or p-Akt/Akt. In addition, exposure to 1 reduced expression of XIAP, Bcl-XL, and Bcl-2, while increasing the cleavage of poly(ADP-ribose) polymerase in both cell lines. Collectively, the data indicate that 6-acetonyldihydrochelerythrine (1) is a potent inducer of apoptosis in HCT116 and SW620 cell lines, highlighting its potential relevance in colon cancer.
Collapse
Affiliation(s)
- Tayyab A Mansoor
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Xuan Luo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Silva Mulhovo
- Centro de Estudos Moçambicanos e de Etnociências, Faculty of Natural Sciences and Mathematics, Pedagogical University , 21402161 Maputo, Mozambique
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon , 1649-003 Lisbon, Portugal
| |
Collapse
|
21
|
Ciccolini J. Déterminants moléculaires et génétiques d’efficacité et de toxicité du 5-fluoro-uracile. ONCOLOGIE 2014. [DOI: 10.1007/s10269-014-2372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Shakibaei M, Buhrmann C, Kraehe P, Shayan P, Lueders C, Goel A. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS One 2014; 9:e85397. [PMID: 24404205 PMCID: PMC3880338 DOI: 10.1371/journal.pone.0085397] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
Objective Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50–60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. Methods High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Results Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Conclusion Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract).
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Germany
- * E-mail: (MS); (AG)
| | | | - Patricia Kraehe
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Germany
| | - Parviz Shayan
- Investigating Institute of Molecular Biological System Transfer, Tehran, Iran
| | - Cora Lueders
- Department of Thoracic and Cardiovascular Surgery, Laboratory for Tissue Engineering, German Heart Institute Berlin, Berlin, Germany
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, United States of America
- * E-mail: (MS); (AG)
| |
Collapse
|
23
|
Li G, Chen Y, Hu J, Wu X, Hu J, He X, Li J, Zhao Z, Chen Z, Li Y, Hu H, Li Y, Lan P. A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials 2013; 34:9451-61. [PMID: 24011711 DOI: 10.1016/j.biomaterials.2013.08.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
Abstract
In-stents restenosis caused by tumour ingrowth is a major problem for patients undergoing stent displacement because the conventional stents often lack a sustained anti-tumour capability. The aim of this paper was to develop a weft-knitted polydioxanone stent which can slow release 5-fluorouracil (5-FU). In order to determine the most suitable drug concentration, the 5-FU safe concentration in vivo and appropriate loading percentage in the membranes were investigated, and then 5-FU-loaded poly-l-lactide membranes at concentration of 3.2%, 6.4% and 12.8% were coated onto the stent using electro-spinning method, respectively. The morphology, chemical structure and in vitro drug release property of the coating membranes were subsequently examined. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human colorectal cancer cell line HCT-116 and tumour-bearing BALB/c nude mice. The half maximal inhibitory concentration (IC50) and the median lethal dose (LD50) demonstrated that the 6.4% and 12.8% membranes had better anti-tumour effects than pure 5-FU due to the sustainable drug releasing property of the coated membranes on the stent. The membranes possessing appropriate drug loading doses, such as 6.4% or 12.8% also provided better anti-in-stents restenosis effects than other groups tested. Therefore, it is concluded that the drug-loaded stents have great potential for the use in the treatment of intestinal cancers in the future.
Collapse
Affiliation(s)
- Gang Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Guangdong-HK International Textile Bioengineering Joint Research Center, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mansoor TA, Borralho PM, Dewanjee S, Mulhovo S, Rodrigues CMP, Ferreira MJU. Monoterpene bisindole alkaloids, from the African medicinal plant Tabernaemontana elegans, induce apoptosis in HCT116 human colon carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:463-470. [PMID: 23872252 DOI: 10.1016/j.jep.2013.06.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/06/2013] [Accepted: 06/30/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tabernaemontana elegans is a medicinal plant used in African traditional medicine to treat several ailments including cancer. The aims of the present study were to identify anti-cancer compounds, namely apoptosis inducers, from Tabernaemontana elegans, and hence to validate its usage in traditional medicine. METHODS AND MATERIALS Six alkaloids, including four monomeric indole (1-3, and 6) and two bisindole (4 and 5) alkaloids, were isolated from the methanolic extract of Tabernaemontana elegans roots. The structures of these compounds were characterized by 1D and 2D NMR spectroscopic and mass spectrometric data. Compounds 1-6 along with compound 7, previously isolated from the leaves of the same species, were evaluated for in vitro cytotoxicity against HCT116 human colon carcinoma cells by the MTS metabolism assay. The cytotoxicity of the most promising compounds was corroborated by Guava-ViaCount flow cytometry assays. Selected compounds were next studied for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. RESULTS Among the tested compounds (1-7), the bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were found to be cytotoxic to HCT116 cells at 20 µM, with compound 5 being more cytotoxic than the positive control 5-Fluorouracil (5-FU), at a similar dose. In fact, even at 0.5 µM, compound 5 was more potent than 5-FU. Compounds 4 and 5 induced characteristic patterns of apoptosis in HCT116 cancer cells including, cell shrinkage, condensation, fragmentation of the nucleus, blebbing of the plasma membrane and chromatin condensation. Further, general caspase-3-like activity was increased in cells exposed to compounds 4 and 5, corroborating the nuclear morphology evaluation assays. CONCLUSIONS Bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were characterized as potent apoptosis inducers in HCT116 human colon carcinoma cells and as possible lead/scaffolds for the development of anti-cancer drugs. This study substantiates the usage of Tabernaemontana elegans in traditional medicine to treat cancer.
Collapse
Affiliation(s)
- Tayyab A Mansoor
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Lavrado J, Borralho PM, Ohnmacht SA, Castro RE, Rodrigues CMP, Moreira R, dos Santos DJVA, Neidle S, Paulo A. Synthesis, G-quadruplex stabilisation, docking studies, and effect on cancer cells of indolo[3,2-b]quinolines with one, two, or three basic side chains. ChemMedChem 2013; 8:1648-61. [PMID: 23960016 DOI: 10.1002/cmdc.201300288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 11/07/2022]
Abstract
G-quadruplex (G4) DNA structures in telomeres and oncogenic promoter regions are potential targets for cancer therapy, and G4 ligands have been shown to modulate telomerase activity and oncogene transcription. Herein we report the synthesis and G4 thermal stabilisation effects, determined by FRET melting assays, of 20 indolo[3,2-b]quinolines mono-, di-, and trisubstituted with basic side chains. Molecular modelling studies were also performed in an attempt to rationalise the ligands' binding poses with G4. Overall, the results suggest that ligand binding and G4 DNA thermal stabilisation increase with an N5-methyl or a 7-carboxylate group and propylamine side chains, whereas selectivity between G4 and duplex DNA appears to be modulated by the number and relative position of basic side chains. From all the indoloquinoline derivatives studied, the novel trisubstituted compounds 3 d and 4 d, bearing a 7-(aminoalkyl)carboxylate side chain, stand out as the most promising compounds; they show high G4 thermal stabilisation (ΔTm values between 17 and 8 °C) with an inter-G4 ΔTm trend of Hsp90A>KRas21R≈F21T>c-Kit2, 10-fold selectivity for G4 over duplex DNA, and 100-fold selectivity for the HCT116 cancer cell line (IC50 and IC90: <10 μM) over primary rat hepatocytes. Compounds 3 d and 4 d also decreased protein expression levels of Hsp90 and KRas in HCT116 cancer cells.
Collapse
Affiliation(s)
- João Lavrado
- Medicinal Chemistry Group, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon (Portugal)
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mansoor TA, Borralho PM, Luo X, Mulhovo S, Rodrigues CMP, Ferreira MJU. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:923-929. [PMID: 23643093 DOI: 10.1016/j.phymed.2013.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Thirteen compounds belonging to different classes of alkaloids (1-9) and lignans (10-13), isolated from the methanol extract of roots of the African medicinal plant Zanthoxylum capense, were assayed for their ability as apoptosis inducers in HCT116 colon carcinoma cells. The cytotoxicity of these compounds was evaluated in HCT116 colon carcinoma cells by the MTS assay. Out of the tested compounds, three benzophenanthridine alkaloids (1, 4, and 7), a dibenzyl butyrolactone lignan (10), and two 2-arylbenzofuran neolignans (12 and 13) displayed significant cytotoxicity to HCT116 cells, confirmed by the Guava ViaCount viability assay. The selected compounds (1, 4, 7, 10, 12, and 13) were further tested for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Morphologic evaluation of HCT116 nuclei following Hoechst staining and fluorescence microscopy revealed that compounds 1, 4, 7, 10, 12, and 13 induced apoptosis in HCT116 colon carcinoma cells, producing similar, or higher, apoptosis levels when compared with 5-fluorouracil (5-FU), the cornerstone cytotoxic used in colon cancer treatment for several decades. In fact, HCT116 cells developed morphological changes characteristic of apoptosis, including chromatin condensation, nuclear fragmentation and formation of apoptotic bodies. Importantly, compounds 4 and 13 at 20 μM were the most promising in this study, inducing respectively ∼11- and 7-fold increases in apoptotic cells as compared to vehicle control, whereas 5-FU increased apoptosis by ∼2-fold. Apoptosis induction for compounds 4 and 13 was further confirmed by caspase-3-like activity assays, which showed respectively ∼2- and 1.5-fold increases in caspase-3-like activity compared to vehicle control. These results suggested that specific benzophenanthridine alkaloids and 2-arylbenzofuran neolignans isolated from Zanthoxylum capense show strong anticancer activity in HCT116 colon carcinoma cells.
Collapse
Affiliation(s)
- Tayyab A Mansoor
- Research Institute for Medicines and Pharmaceutical Sciences-iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Simões AES, Pereira DM, Amaral JD, Nunes AF, Gomes SE, Rodrigues PM, Lo AC, D'Hooge R, Steer CJ, Thibodeau SN, Borralho PM, Rodrigues CMP. Efficient recovery of proteins from multiple source samples after TRIzol(®) or TRIzol(®)LS RNA extraction and long-term storage. BMC Genomics 2013; 14:181. [PMID: 23496794 PMCID: PMC3620933 DOI: 10.1186/1471-2164-14-181] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 03/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Simultaneous isolation of nucleic acids and proteins from a single biological sample facilitates meaningful data interpretation and reduces time, cost and sampling errors. This is particularly relevant for rare human and animal specimens, often scarce, and/or irreplaceable. TRIzol® and TRIzol®LS are suitable for simultaneous isolation of RNA, DNA and proteins from the same biological sample. These reagents are widely used for RNA and/or DNA isolation, while reports on their use for protein extraction are limited, attributable to technical difficulties in protein solubilisation. Results TRIzol®LS was used for RNA isolation from 284 human colon cancer samples, including normal colon mucosa, tubulovillous adenomas, and colon carcinomas with proficient and deficient mismatch repair system. TRIzol® was used for RNA isolation from human colon cancer cells, from brains of transgenic Alzheimer’s disease mice model, and from cultured mouse cortical neurons. Following RNA extraction, the TRIzol®-chloroform fractions from human colon cancer samples and from mouse hippocampus and frontal cortex were stored for 2 years and 3 months, respectively, at −80°C until used for protein isolation. Simple modifications to the TRIzol® manufacturer’s protocol, including Urea:SDS solubilization and sonication, allowed improved protein recovery yield compared to the TRIzol® manufacturer’s protocol. Following SDS-PAGE and Ponceau and Coomassie staining, recovered proteins displayed wide molecular weight range and staining pattern comparable to those obtainable with commonly used protein extraction protocols. We also show that nuclear and cytosolic proteins can be easily extracted and detected by immunoblotting, and that posttranslational modifications, such as protein phosphorylation, are detectable in proteins recovered from TRIzol®-chloroform fractions stored for up to 2 years at −80°C. Conclusions We provide a novel approach to improve protein recovery from samples processed for nucleic acid extraction with TRIzol® and TRIzol®LS compared to the manufacturer`s protocol, allowing downstream immunoblotting and evaluation of steady-state relative protein expression levels. The method was validated in large sets of samples from multiple sources, including human colon cancer and brains of transgenic Alzheimer’s disease mice model, stored in TRIzol®-chloroform for up to two years. Collectively, we provide a faster and cheaper alternative to the TRIzol® manufacturer`s protein extraction protocol, illustrating the high relevance, and wide applicability, of the present protein isolation method for the immunoblot evaluation of steady-state relative protein expression levels in samples from multiple sources, and following prolonged storage.
Collapse
Affiliation(s)
- André E S Simões
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One 2013; 8:e57218. [PMID: 23451189 PMCID: PMC3579779 DOI: 10.1371/journal.pone.0057218] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Objective Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells. Methods Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins. Results The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation. Conclusions Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.
Collapse
|
29
|
5-Fluorouracil signaling through a calcium-calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells. Oncogene 2012; 32:4529-38. [PMID: 23108402 DOI: 10.1038/onc.2012.467] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 01/12/2023]
Abstract
5-Fluorouracil (5-FU) is an anti-metabolite that is in clinical use for treatment of several cancers. In cells, it is converted into three distinct fluoro-based nucleotide analogs, which interfere with DNA synthesis and repair, leading to genome impairment and, eventually, apoptotic cell death. Current knowledge states that in certain cell types, 5-FU-induced stress is signaling through a p53-dependent induction of tumor necrosis factor-receptor oligomerization required for death-inducing signaling complex formation and caspase-8 activation. Here we establish a role of calcium (Ca(2+)) as a messenger for p53 activation in response to 5-FU. Using a combination of pharmacological and genetic approaches, we show that treatment of colon carcinoma cells stimulates entry of extracellular Ca(2+) through long lasting-type plasma membrane channels, which further directs posttranslational phosphorylation of at least three p53 serine residues (S15, S33 and S37) by means of calmodulin (CaM) activity. Obstructing this pathway by the Ca(2+)-chelator BAPTA (1,2-bis(o-aminophenoxy)ethane- N,N,N',N'-tetraacetic acid) or by inhibitors of CaM efficiently reduces 5-FU-induced caspase activities and subsequent cell death. Moreover, ectopic expression of p53 S15A in HCT116 p53(-/-) cells confirmed the importance of a Ca(2+)-CaM-p53 axis in 5-FU-induced extrinsic apoptosis. The fact that a widely used therapeutic drug, such as 5-FU, is operating via this pathway could provide new therapeutic intervention points, or specify new combinatorial treatment regimes.
Collapse
|
30
|
Borralho PM, Simões AES, Gomes SE, Lima RT, Carvalho T, Ferreira DMS, Vasconcelos MH, Castro RE, Rodrigues CMP. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One 2011; 6:e23787. [PMID: 21901135 PMCID: PMC3162002 DOI: 10.1371/journal.pone.0023787] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/25/2011] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are aberrantly expressed in human cancer and involved in the (dys)regulation of cell survival, proliferation, differentiation and death. Specifically, miRNA-143 (miR-143) is down-regulated in human colon cancer. In the present study, we evaluated the role of miR-143 overexpression on the growth of human colon carcinoma cells xenografted in nude mice (immunodeficient mouse strain: N: NIH(s) II-nu/nu). Methodology/Principal Findings HCT116 cells with stable miR-143 overexpression (Over-143) and control (Empty) cells were subcutaneously injected into the flanks of nude mice, and tumor growth was evaluated over time. Tumors arose ∼ 14 days after tumor cell implantation, and the experiment was ended at 40 days after implantation. miR-143 was confirmed to be significantly overexpressed in Over-143 versus Empty xenografts, by TaqMan® Real-time PCR (p<0.05). Importantly, Over-143 xenografts displayed slower tumor growth compared to Empty xenografts from 23 until 40 days in vivo (p<0.05), with final volumes of 928±338 and 2512±387 mm3, respectively. Evaluation of apoptotic proteins showed that Over-143 versus Empty xenografts displayed reduced Bcl-2 levels, and increased caspase-3 activation and PARP cleavage (p<0.05). In addition, the incidence of apoptotic tumor cells, assessed by TUNEL, was increased in Over-143 versus Empty xenografts (p<0.01). Finally, Over-143 versus Empty xenografts displayed significantly reduced NF-κB activation and ERK5 levels and activation (p<0.05), as well as reduced proliferative index, evaluated by Ki-67 immunohistochemistry (p<0.01). Conclusions Our results suggest that reduced tumor volume in Over-143 versus Empty xenografts may result from increased apoptosis and decreased proliferation induced by miR-143. This reinforces the relevance of miR-143 in colon cancer, indicating an important role in the control of in vivo tumor progression, and suggesting that miR-143 may constitute a putative novel therapeutic tool for colon cancer treatment that warrants further investigation.
Collapse
Affiliation(s)
- Pedro M. Borralho
- Research Institute for Medicines and Pharmaceutical Sciences - iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - André E. S. Simões
- Research Institute for Medicines and Pharmaceutical Sciences - iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Sofia E. Gomes
- Research Institute for Medicines and Pharmaceutical Sciences - iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Raquel T. Lima
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Centre of Medicinal Chemistry - University of Porto (CEQUIMED-UP), Porto, Portugal
| | - Tânia Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centro de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Francisco Gentil, Centro de Lisboa, Lisbon, Portugal
| | - Duarte M. S. Ferreira
- Research Institute for Medicines and Pharmaceutical Sciences - iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Maria H. Vasconcelos
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rui E. Castro
- Research Institute for Medicines and Pharmaceutical Sciences - iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences - iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
31
|
Abstract
BACKGROUND AND AIM The aim of the present study was to investigate if ghrelin inhibits apoptosis in colonic cancer cells. METHODS Cell viability in HT-29 cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was measured using 4',6-diamidino-2-phenylindole staining and flow cytometry. The protein expression of Bcl-2, Bax, and caspase-3 activation was examined using Western blotting. RESULTS Ghrelin dose dependently decreased the growth inhibition of HT-29 cells induced by 5-fluorouracil (5-FU). Cells treated with 5-FU displayed chromatin condensation and nuclear fragmentation, which are typical changes of apoptosis. However, co-treatment with ghrelin reduced these changes. Flow cytometry after staining with Annexin V and propidium iodide showed that ghrelin decreased the apoptotic rate of HT-29 cells induced by 5-FU. Caspase-3 activation was significantly lower in the co-treated group than in the group treated with 5-FU alone. In addition, ghrelin reversed the 5-FU-induced Bcl-2/Bax protein ratio. CONCLUSION Ghrelin inhibits 5-FU-induced apoptosis in colon cancer cells through the regulation of the Bcl-2/Bax protein ratio.
Collapse
Affiliation(s)
- Xiao-Tong He
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai, China
| | | | | |
Collapse
|
32
|
Stravopodis DJ, Karkoulis PK, Konstantakou EG, Melachroinou S, Thanasopoulou A, Aravantinos G, Margaritis LH, Anastasiadou E, Voutsinas GE. Thymidylate synthase inhibition induces p53-dependent and p53-independent apoptotic responses in human urinary bladder cancer cells. J Cancer Res Clin Oncol 2011; 137:359-74. [PMID: 20425122 DOI: 10.1007/s00432-010-0891-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 04/12/2010] [Indexed: 01/08/2023]
Abstract
PURPOSE In search for more effective clinical protocols, the antimetabolite drug 5-fluorouracil (5-FU) has been successfully included in new regimens of bladder cancer combination chemotherapy. In the present study, we have investigated the effects of 5-FU treatment on apoptosis induction in wild-type and mutant p53 urinary bladder cancer cells. METHODS We have used MTT-based assays, FACS analysis, Western blotting and semi-quantitative RT-PCR in RT4 and RT112 (grade I, wild-type p53), as well as in T24 (grade III, mutant p53) and TCCSUP (grade IV, mutant p53) human urinary bladder cancer cell lines. RESULTS In the urothelial bladder cancer cell lines RT4 and T24, 5-FU-induced TS inhibition proved to be associated with cell type-dependent (a) sensitivity to the drug, (b) Caspase-mediated apoptosis, (c) p53 stabilization and activation, as well as Rb phosphorylation and E2F1 expression and (d) transcriptional regulation of p53 target genes and their cognate proteins, while an E2F-dependent transcriptional network did not seem to be critically engaged in such type of responses. CONCLUSIONS We have shown that in the wild-type p53 context of RT4 cells, 5-FU-triggered apoptosis was prominently efficient and mainly regulated by p53-dependent mechanisms, whereas the mutant p53 environment of T24 cells was able to provide notable levels of resistance to apoptosis, basically ascribed to E2F-independent, and still unidentified, pathways. Nevertheless, the differential vulnerability of RT4 and T24 cells to 5-FU administration could also be associated with cell-type-specific transcriptional expression patterns of certain genes critically involved in 5-FU metabolism.
Collapse
Affiliation(s)
- Dimitrios J Stravopodis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Zografou, 15784 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Baldwin C, Millette M, Oth D, Ruiz MT, Luquet FM, Lacroix M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer 2010; 62:371-8. [PMID: 20358475 DOI: 10.1080/01635580903407197] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To assess the potential of Lactobacillus acidophilus and Lactobacillus casei strains to increase the apoptosis of a colorectal cancer cell line in the presence of 5-fluorouracil (5-FU), LS513 colorectal cancer cells were treated for 48 h with increasing concentrations of these lactic acid bacteria (LAB) in the presence of 100 mu g/ml of 5-FU. In the presence of 10(8) CFU/ml of live LAB, the apoptotic efficacy of the 5-FU increased by 40%, and the phenomenon was dose dependent. Moreover, irradiation-inactivated LAB caused the same level of induction, whereas microwave-inactivated LAB reduced the apoptotic capacity of the 5-FU. When cells were treated with a combination of live LAB and 5-FU, a faster activation of caspase-3 protein was observed, and the p21 protein seems to be downregulated. These results suggest that live L. acidophilus and L. casei are able to increase the apoptosis-induction capacity of 5-FU. The mechanisms of action are still not elucidated, and more research is needed to understand them. This is the first set of experiments demonstrating that some strains of LAB can enhance the apoptosis-induction capacity of the 5-FU. Based on these results, it is possible to speculate that LAB or probiotics could be used as an adjuvant treatment during anticancer chemotherapy.
Collapse
Affiliation(s)
- Cindy Baldwin
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
34
|
de Bruijn MT, Raats DAE, Hoogwater FJH, van Houdt WJ, Cameron K, Medema JP, Borel Rinkes IHM, Kranenburg O. Oncogenic KRAS sensitises colorectal tumour cells to chemotherapy by p53-dependent induction of Noxa. Br J Cancer 2010; 102:1254-64. [PMID: 20354524 PMCID: PMC2856010 DOI: 10.1038/sj.bjc.6605633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Oxaliplatin and 5-fluorouracil (5-FU) currently form the backbone of conservative treatment in patients with metastatic colorectal cancer. Tumour responses to these agents are highly variable, but the underlying mechanisms are poorly understood. Our previous results have indicated that oncogenic KRAS in colorectal tumour cells sensitises these cells to chemotherapy. Methods: FACS analysis was used to determine cell-cycle distribution and the percentage of apoptotic and mitotic cells. A multiplexed RT–PCR assay was used to identify KRAS-controlled apoptosis regulators after exposure to 5-FU or oxaliplatin. Lentiviral expression of short-hairpin RNAs was used to suppress p53 or Noxa. Results: Oncogenic KRAS sensitised colorectal tumour cells to oxaliplatin and 5-FU in a p53-dependent manner and promoted p53 phosphorylation at Ser37 and Ser392, without affecting p53 stabilisation, p21 induction, or cell-cycle arrest. Chemotherapy-induced expression of the p53 target gene Noxa was selectively enhanced by oncogenic KRAS. Suppression of Noxa did not affect p21 induction or cell-cycle arrest, but reduced KRAS/p53-dependent apoptosis after exposure to chemotherapy in vitro and in tumour xenografts. Noxa suppression did not affect tumour growth per se, but strongly reduced the response of these tumours to chemotherapy. Conclusion: Oncogenic KRAS determines the cellular response to p53 activation by oxaliplatin or 5-FU, by facilitating apoptosis induction through Noxa.
Collapse
Affiliation(s)
- M T de Bruijn
- Department of Surgery, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Targeting DNA double-strand break repair: is it the right way for sensitizing cells to 5-fluorouracil? Anticancer Drugs 2010; 21:277-87. [DOI: 10.1097/cad.0b013e328334b0ae] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Borralho PM, Kren BT, Castro RE, da Silva IBM, Steer CJ, Rodrigues CMP. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 2009; 276:6689-700. [PMID: 19843160 DOI: 10.1111/j.1742-4658.2009.07383.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are aberrantly expressed in cancer; microRNA-143 (miR-143) is down-regulated in colon cancer. HCT116 human colorectal cancer cells were used to investigate the biological role of miR-143. Transient miR-143 overexpression resulted in an approximate 60% reduction in cell viability. In addition, stable miR-143 overexpressing cells were selected with G418 and exposed to 5-fluorouracil. Increased stable expression of miR-143 was associated with decreased viability and increased cell death after exposure to 5-fluorouracil. These changes were associated with increased nuclear fragmentation and caspase -3, -8 and -9 activities. In addition, extracellular-regulated protein kinase 5, nuclear factor-kappaB and Bcl-2 protein expression was down-regulated by miR-143, and further reduced by exposure to 5-fluorouracil. In conclusion, miR-143 modulates the expression of key proteins involved in the regulation of cell proliferation, death and chemotherapy response. In addition, miR-143 increases the sensitivity of colon cancer cells to 5-fluorouracil, probably acting through extracellular-regulated protein kinase 5/nuclear factor-kappaB regulated pathways. Collectively, the data obtained in the present study suggest anti-proliferative, chemosensitizer and putative pro-apoptotic roles for miR-143 in colon cancer.
Collapse
Affiliation(s)
- Pedro M Borralho
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The tumor suppressor p53 protein supports growth arrest and is able to induce apoptosis, a signaling cascade regulated by sequential activation of caspases. Mechanisms that lead from p53 to activation of individual initiator caspases are still unclear. The present model for caspase-2 activation includes PIDDosome complex formation. However, in certain experimental models, elimination of complex constituents PIDD or RAIDD did not significantly influence caspase-2 activation, suggesting the existence of an alternative activation platform for caspase-2. Here we have investigated the link between p53 and caspase-2 in further detail and report that the latter is able to utilize the CD95 DISC as an activation platform. The recruitment of caspase-8 to this complex is required for activation of caspase-2. In the experimental system used, the DISC is formed through a distinct, p53-dependent upregulation of CD95. Moreover, we show that caspase-2 and -8 cleave Bid, and that both act simultaneously upstream of mitochondrial cytochrome c release. Finally, a direct interaction between the two caspases and the ability of caspase-8 to cleave caspase-2 are demonstrated. Thus, the observed functional link between caspase-8 and -2 within the DISC represents an alternative mechanism to the PIDDosome for caspase-2 activation in response to DNA damage.
Collapse
|
38
|
Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 2009; 12:55-64. [PMID: 19278896 DOI: 10.1016/j.drup.2009.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Cancers in the gastrointestinal system account for a large proportion of malignancies and cancer-related deaths with gastric cancer and colorectal cancer being the most common ones. For those patients in whom surgical resection is not possible, other therapeutic approaches are necessary. Disordered apoptosis has been linked to cancer development and treatment resistance. Apoptosis occurs via extrinsic or intrinsic signaling each triggered and regulated by many different molecular pathways. In recent years, the selective induction of apoptosis in tumor cells has been increasingly recognized as a promising approach for cancer therapy. A detailed understanding of the molecular pathways involved in the regulation of apoptosis is essential for developing novel effective therapeutic approaches. Apoptosis can be induced by many different approaches including activating cell surface death receptors (for example, Fas, TRAIL and TNF receptors), inhibiting cell survival signaling (such as EGFR, MAPK and PI3K), altering apoptosis threshold by modulating pro-apoptotic and anti-apoptotic members of the Bcl-2 family, down-regulating anti-apoptosis proteins (such as XIAP, survivin and c-IAP2), and using other pro-apoptotic agents. In this review, the authors reviewed the currently reported apoptosis-targeting approaches in gastrointestinal cancers.
Collapse
|