1
|
da Silva Santos I, Magalhaes LO, Marra RKF, da Silva Lima CH, Hamerski L, Albuquerque MG, da Silva BV. Natural and Synthetic Coumarins as Potential Drug Candidates against SARS-CoV-2/COVID-19. Curr Med Chem 2025; 32:539-562. [PMID: 38243979 DOI: 10.2174/0109298673285609231220111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
COVID-19, an airborne disease caused by a betacoronavirus named SARS-- CoV-2, was officially declared a pandemic in early 2020, resulting in more than 770 million confirmed cases and over 6.9 million deaths by September 2023. Although the introduction of vaccines in late 2020 helped reduce the number of deaths, the global effort to fight COVID-19 is far from over. While significant progress has been made in a short period, the fight against SARS-CoV-2/COVID-19 and other potential pandemic threats continues. Like AIDS and hepatitis C epidemics, controlling the spread of COVID-19 will require the development of multiple drugs to weaken the virus's resistance to different drug treatments. Therefore, it is essential to continue developing new drug candidates derived from natural or synthetic small molecules. Coumarins are a promising drug design and development scaffold due to their synthetic versatility and unique physicochemical properties. Numerous examples reported in scientific literature, mainly by in silico prospection, demonstrate their potential contribution to the rapid development of drugs against SARS-CoV-2/COVID-19 and other emergent and reemergent viruses.
Collapse
Affiliation(s)
- Iara da Silva Santos
- Department of Organic Chemistry, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Oliveira Magalhaes
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Roberta Katlen Fusco Marra
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Camilo Henrique da Silva Lima
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Lidilhone Hamerski
- Department of Organic Chemistry, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magaly Girao Albuquerque
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Barbara Vasconcellos da Silva
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Gilmore BF, White TA, Busetti A, McAteer MI, Maggs CA, Thompson TP. Exiguolysin, a Novel Thermolysin (M4) Peptidase from Exiguobacterium oxidotolerans. Microorganisms 2024; 12:2311. [PMID: 39597700 PMCID: PMC11596557 DOI: 10.3390/microorganisms12112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
This study details a comprehensive biochemical and structural characterization of exiguolysin, a novel thermolysin-like, caseinolytic peptidase secreted by a marine isolate of Exiguobacterium oxidotolerans strain BW26. Exiguolysin demonstrated optimal proteolytic activity at 37 °C and pH 3, retaining 85% activity at 50 °C, highlighting its potential stability under broad reaction conditions. SDS-PAGE and LC-MS analysis identified the enzyme as a 32 kDa M4-family metalloprotease. Exiguolysin activity was inhibited by 1,10-phenanthroline, confirming its dependence on metal ions for activity. Zymographic analysis and substrate specificity assays revealed selective hydrolysis of matrix metalloproteinase (MMP) substrates but no activity against elastase substrates. Analysis of the predicted gene sequence and structural predictions using AlphaFold identified the presence and position of HEXXH and Glu-Xaa-Xaa-Xaa-Asp motifs, crucial for zinc binding and catalytic activity, characteristic of 'Glu-zincins' and members of the M4 peptidase family. High-throughput screening of a 20 × 20 N-alpha mercaptoamide dipeptide inhibitor library against exiguolysin identified SH-CH2-CO-Met-Tyr-NH2 as the most potent inhibitor, with a Ki of 1.95 μM. Notably, exiguolysin selectively inhibited thrombin-induced PAR-1 activation in PC-3 cells, potentially indicating a potential mechanism of virulence in modulating PAR-1 signalling during infection by disarming PARs. This is the first detailed characterization of a peptidase of the M4 (thermolysin) family in the genus Exiguobacterium which may have industrial application potential and relevance as a putative virulence factor.
Collapse
Affiliation(s)
- Brendan F. Gilmore
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- School of Medicine, University of Limerick, Limerick V94 T9PX, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Tracy A. White
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alessandro Busetti
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew I. McAteer
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Christine A. Maggs
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Thomas P. Thompson
- Biofilm Research Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
3
|
Davoine C, Traina A, Evrard J, Lanners S, Fillet M, Pochet L. Coumarins as factor XIIa inhibitors: Potency and selectivity improvements using a fragment-based strategy. Eur J Med Chem 2023; 259:115636. [PMID: 37478556 DOI: 10.1016/j.ejmech.2023.115636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Previously, we described weak coumarin inhibitors of factor XIIa, a promising target for artificial surface-induced thrombosis and various inflammatory diseases. In this work, we used fragment-based drug discovery approach to improve our coumarin series. First, we screened about 200 fragments for the S1 pocket. The S1 pocket of trypsin-like serine proteases, such as factor XIIa, is highly conserved and is known to drive a major part of the association energy. From the screening, we selected fragments displaying a micromolar activity and studied their selectivity on other serine proteases. Then, these fragments were merged to our coumarin templates, leading to the generation of nanomolar inhibitors. The mechanism of inhibition was further studied by mass spectrometry demonstrating the covalent binding through the formation of an acyl enzyme complex. The most potent compound was tested in plasma to evaluate its stability and efficacy on coagulation assays. It exhibited a plasmatic half-life of 1.9 h and a good selectivity for the intrinsic coagulation pathway over the extrinsic one.
Collapse
Affiliation(s)
- Clara Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Amandine Traina
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jonathan Evrard
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Steve Lanners
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
4
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Keuler T, Wolf V, Lemke C, Voget R, Braune A, Gütschow M. Fluorogenic substrates and pre-column derivatization for monitoring the activity of bile salt hydrolase from Clostridium perfringens. Bioorg Chem 2023; 138:106574. [PMID: 37163789 DOI: 10.1016/j.bioorg.2023.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
The bile acid pool has a profound impact on human health and disease. The intestinal microbiota initiates the metabolism of conjugated bile acids through a critical first step catalyzed by bacterial bile salt hydrolase (BSH) and provides unique contributions to the diversity of bile acids. There has been great interest in surveying BSH activity. We compared two substrates with either 2-(7-amino-4-methyl-coumarinyl)acetic acid or 7-amino-4-methyl-coumarin as fluorescent reporters of BSH activity. The BSH-catalyzed conversion of the natural substrate taurocholic acid was followed through an HPLC-based assay by applying 7-nitrobenzo[c][1,2,5]oxadiazole as scavenger for taurine, released in the enzymatic reaction. Hence, a new opportunity to monitor the activity of bile salt hydrolases was introduced.
Collapse
Affiliation(s)
- Tim Keuler
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Valentina Wolf
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Carina Lemke
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rabea Voget
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
6
|
Lemke C, Jílková A, Ferber D, Braune A, On A, Johe P, Zíková A, Schirmeister T, Mareš M, Horn M, Gütschow M. Two Tags in One Probe: Combining Fluorescence- and Biotin-based Detection of the Trypanosomal Cysteine Protease Rhodesain. Chemistry 2022; 28:e202201636. [PMID: 35852812 PMCID: PMC9826439 DOI: 10.1002/chem.202201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 01/11/2023]
Abstract
Rhodesain is the major cysteine protease of the protozoan parasite Trypanosoma brucei and a therapeutic target for sleeping sickness, a fatal neglected tropical disease. We designed, synthesized and characterized a bimodal activity-based probe that binds to and inactivates rhodesain. This probe exhibited an irreversible mode of action and extraordinary potency for the target protease with a kinac /Ki value of 37,000 M-1 s-1 . Two reporter tags, a fluorescent coumarin moiety and a biotin affinity label, were incorporated into the probe and enabled highly sensitive detection of rhodesain in a complex proteome by in-gel fluorescence and on-blot chemiluminescence. Furthermore, the probe was employed for microseparation and quantification of rhodesain and for inhibitor screening using a competition assay. The developed bimodal rhodesain probe represents a new proteomic tool for studying Trypanosoma pathobiochemistry and antitrypanosomal drug discovery.
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Adéla Jílková
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Dominic Ferber
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Annett Braune
- Research Group Intestinal MicrobiologyGerman Institute of Human Nutrition Potsdam-RehbrueckeArthur-Scheunert-Allee 114–11614558NuthetalGermany
| | - Anja On
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences (IPBS)Johannes Gutenberg University of MainzStaudingerweg 555128MainzGermany
| | - Alena Zíková
- Biology Centre CASInstitute of ParasitologyUniversity of South BohemiaFaculty of ScienceBranišovská 1160/3137005České BudějoviceCzech Republic
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS)Johannes Gutenberg University of MainzStaudingerweg 555128MainzGermany
| | - Michael Mareš
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Martin Horn
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo n. 216610PragueCzech Republic
| | - Michael Gütschow
- Pharmaceutical InstituteDepartment of Pharmaceutical & Medicinal ChemistryUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
7
|
Samborski A, Jankowski P, Ostaszewski R. The influence of UV light on the course of fluorescent enzyme assays. Prep Biochem Biotechnol 2022; 53:572-577. [PMID: 36107636 DOI: 10.1080/10826068.2022.2119573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Experiments were carried out to illustrate the effect of UV light on the course of the enzymatic reaction of the coumarin derivative. Only the pulsating light of the UV diode gives the correct results for the determination of the kinetic constants of the enzymatic reaction. The enzyme concentration limit was found where the description of the M-M model breaks. It was shown that the system determines the kinetic parameters of enzymatic reactions: Vmax-the maximum rate of reaction and KM-the Michaelis constant. This method produces kinetic constants calculated from the changes in enzyme product concentration using the Michaelis-Menten model. To verify the results, we used a statistical analysis that checks the correctness of the model used.
Collapse
Affiliation(s)
- A. Samborski
- Institute of Physical Chemistry PAS, Warsaw, Poland
| | - P. Jankowski
- Institute of Physical Chemistry PAS, Warsaw, Poland
| | | |
Collapse
|
8
|
Elsinghorst PW, Wille T, Barić D, Mertens MD, Baumann M, Küppers J, Gütschow M. Aminoalkoxy-substituted coumarins: Synthesis and evaluation for reactivation of inhibited human acetylcholinesterase. Arch Pharm (Weinheim) 2022; 355:e2200208. [PMID: 35876340 DOI: 10.1002/ardp.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Reactivation of inhibited acetylcholinesterase remains an important therapeutic strategy for the treatment of poisoning by organophosphorus compounds, such as nerve agents or pesticides. Although drugs like obidoxime or pralidoxime have been used with considerable success, there is a need for new substances capable of reactivating acetylcholinesterase with a broader scope and increased efficacy. Possible screening candidates must fulfill two fundamental requirements: They must (i) show an affinity to acetylcholinesterase well balanced between sufficient binding and competitive inhibition and (ii) facilitate the nucleophilic cleavage of the phosphorylated catalytic serine residue. We attached a variety of nonaromatic primary and secondary amines to a coumarin core through selected alkoxy side linkers attached at coumarin positions 6 or 7 to obtain a small set of possible reactivators. Evaluation of their inhibition and reactivation potential in vitro showed some activity with respect to acetylcholinesterase inhibited by cyclosarin.
Collapse
Affiliation(s)
- Paul W Elsinghorst
- Food Chemistry, Central Institute of the Bundeswehr Medical Service Munich, Garching, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, München, Germany
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Matthias D Mertens
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Madlen Baumann
- Bundeswehr Institute of Pharmacology and Toxicology, München, Germany
| | - Jim Küppers
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Michael Gütschow
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Paracha M, Thakar A, Darling RA, Wulff SS, Rule DC, Nair S, Brown TE. Role of cathepsin K in the expression of mechanical hypersensitivity following intra-plantar inflammation. Sci Rep 2022; 12:7108. [PMID: 35501334 PMCID: PMC9061763 DOI: 10.1038/s41598-022-11043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
Persistent/chronic inflammatory pain involves multiple pathophysiological mechanisms and is far more complex than acute/momentary pain. Current therapeutics for chronic inflammatory pain are often not effective because the etiology responsible for the pain is not addressed by traditional pharmacological treatments. Cathepsin K is a cysteine protease that has mostly been studied in the context of bone and joint disorders. Previous work by others has shown that inhibition of cathepsin K activity reduces osteoarthritis-associated nociception in joints. However, the role of cathepsin K in cutaneous inflammation is understudied. We assessed the effectiveness of genetic deletion or pharmacological inhibition of cathepsin K in male mice on the expression of nocifensive behaviors after formalin injection or mechanical and thermal hypersensitivity after injection of complete Freund’s adjuvant (CFA) into the mouse hind paw. Our data demonstrate that cathepsin K knockout mice (Ctsk−/−) have a reduction in nocifensive behaviors in the formalin test. In addition, Ctsk−/− do not develop mechanical hypersensitivity after CFA injection for up to 7 days. Moreover, we found that inhibition of cathepsin K reduced mechanical hypersensitivity after CFA injection and mRNA levels, protein levels, and cathepsin K activity levels were elevated after CFA injection. Based upon our data, cathepsin K is indicated to play a role in the expression of chemically-induced cutaneous hypersensitivity, as Ctsk−/− mice do not develop mechanical hypersensitivity and show a reduction in nocifensive behaviors. Further research is needed to determine whether attenuating cathepsin K activity may generate a clinically relevant therapeutic.
Collapse
|
10
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
11
|
Lin Z, Zheng XL, Mao XJ, Li DF, Hou RB, Xia Y. Fluorescent probe based on coumarin derivative for the selective detection of cysteine in living cells. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Lemke C, Benýšek J, Brajtenbach D, Breuer C, Jílková A, Horn M, Buša M, Ulrychová L, Illies A, Kubatzky KF, Bartz U, Mareš M, Gütschow M. An Activity-Based Probe for Cathepsin K Imaging with Excellent Potency and Selectivity. J Med Chem 2021; 64:13793-13806. [PMID: 34473502 DOI: 10.1021/acs.jmedchem.1c01178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cysteine protease cathepsin K is a target for the treatment of diseases associated with high bone turnover. Cathepsin K is mainly expressed in osteoclasts and responsible for the destruction of the proteinaceous components of the bone matrix. We designed various fluorescent activity-based probes (ABPs) and their precursors that bind to and inactivate cathepsin K. ABP 25 exhibited extraordinary potency (kinac/Ki = 35,300 M-1s-1) and selectivity for human cathepsin K. Crystal structures of cathepsin K in complex with ABP 25 and its nonfluorescent precursor 21 were determined to characterize the binding mode of this new type of acrylamide-based Michael acceptor with the particular orientation of the dibenzylamine moiety to the primed subsite region. The cyanine-5 containing probe 25 allowed for sensitive detection of cathepsin K, selective visualization in complex proteomes, and live cell imaging of a human osteosarcoma cell line, underlining its applicability in a pathophysiological environment.
Collapse
Affiliation(s)
- Carina Lemke
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Jakub Benýšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.,First Faculty of Medicine, Charles University, Kateřinská 32, Prague 12108, Czech Republic
| | - Dominik Brajtenbach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Christian Breuer
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany.,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Adéla Jílková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Lenka Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Annika Illies
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
13
|
Keuler T, Gatterdam K, Akbal A, Lovotti M, Marleaux M, Geyer M, Latz E, Gütschow M. Development of Fluorescent and Biotin Probes Targeting NLRP3. Front Chem 2021; 9:642273. [PMID: 33996748 PMCID: PMC8115122 DOI: 10.3389/fchem.2021.642273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Extracellular signals drive the nucleation of the NLRP3 inflammasome which leads to the release of cytokines and causes inflammatory events. Hence, the inflammasome has gained enormous momentum in biomedical basic research. The detailed mechanisms of inflammasome generation and regulation remain to be elucidated. Our study was directed toward the design, convergent synthesis, and initial biochemical evaluation of activity-based probes addressing NLRP3. For this purpose, probes were assembled from a CRID3/MCC950-related NLRP3-binding unit, a linker portion and a coumarin 343 fluorophore or biotin. The affinity of our probes to NLRP3 was demonstrated through SPR measurements and their cellular activity was confirmed by reduction of the interleukin 1β release from stimulated bone marrow-derived macrophages. The initial characterizations of NLRP3-targeting probes highlighted the coumarin probe 2 as a suitable tool compound for the cellular and biochemical analysis of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tim Keuler
- Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Anil Akbal
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Marta Lovotti
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Michael Marleaux
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | | |
Collapse
|
14
|
Yoshikawa C, Ishida H, Ohashi N, Itoh T. Synthesis of a Coumarin-Based PPARγ Fluorescence Probe for Competitive Binding Assay. Int J Mol Sci 2021; 22:4034. [PMID: 33919837 PMCID: PMC8070791 DOI: 10.3390/ijms22084034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a molecular target of metabolic syndrome and inflammatory disease. PPARγ is an important nuclear receptor and numerous PPARγ ligands were developed to date; thus, efficient assay methods are important. Here, we investigated the incorporation of 7-diethylamino coumarin into the PPARγ agonist rosiglitazone and used the compound in a binding assay for PPARγ. PPARγ-ligand-incorporated 7-methoxycoumarin, 1, showed weak fluorescence intensity in a previous report. We synthesized PPARγ-ligand-incorporating coumarin, 2, in this report, and it enhanced the fluorescence intensity. The PPARγ ligand 2 maintained the rosiglitazone activity. The obtained partial agonist 6 appeared to act through a novel mechanism. The fluorescence intensity of 2 and 6 increased by binding to the ligand binding domain (LBD) of PPARγ and the affinity of reported PPARγ ligands were evaluated using the probe.
Collapse
Affiliation(s)
| | | | | | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; (C.Y.); (H.I.); (N.O.)
| |
Collapse
|
15
|
Burster T, Gärtner F, Knippschild U, Zhanapiya A. Activity-Based Probes to Utilize the Proteolytic Activity of Cathepsin G in Biological Samples. Front Chem 2021; 9:628295. [PMID: 33732686 PMCID: PMC7959752 DOI: 10.3389/fchem.2021.628295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophils, migrating to the site of infection, are able to release serine proteases after being activated. These serine proteases comprise cathepsin G (CatG), neutrophil elastase protease 3 (PR3), and neutrophil serine protease 4 (NSP4). A disadvantage of the uncontrolled proteolytic activity of proteases is the outcome of various human diseases, including cardiovascular diseases, thrombosis, and autoimmune diseases. Activity-based probes (ABPs) are used to determine the proteolytic activity of proteases, containing a set of three essential elements: Warhead, recognition sequence, and the reporter tag for detection of the covalent enzyme activity–based probe complex. Here, we summarize the latest findings of ABP-mediated detection of proteases in both locations intracellularly and on the cell surface of cells, thereby focusing on CatG. Particularly, application of ABPs in regular flow cytometry, imaging flow cytometry, and mass cytometry by time-of-flight (CyTOF) approaches is advantageous when distinguishing between immune cell subsets. ABPs can be included in a vast panel of markers to detect proteolytic activity and determine whether proteases are properly regulated during medication. The use of ABPs as a detection tool opens the possibility to interfere with uncontrolled proteolytic activity of proteases by employing protease inhibitors.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
16
|
|
17
|
Carneiro A, Matos MJ, Uriarte E, Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules 2021; 26:501. [PMID: 33477785 PMCID: PMC7832358 DOI: 10.3390/molecules26020501] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Coumarins are naturally occurring molecules with a versatile range of activities. Their structural and physicochemical characteristics make them a privileged scaffold in medicinal chemistry and chemical biology. Many research articles and reviews compile information on this important family of compounds. In this overview, the most recent research papers and reviews from 2020 are organized and analyzed, and a discussion on these data is included. Multiple electronic databases were scanned, including SciFinder, Mendeley, and PubMed, the latter being the main source of information. Particular attention was paid to the potential of coumarins as an important scaffold in drug design, as well as fluorescent probes for decaging of prodrugs, metal detection, and diagnostic purposes. Herein we do an analysis of the trending topics related to coumarin and its derivatives in the broad field of drug discovery.
Collapse
Affiliation(s)
- Aitor Carneiro
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.); (M.J.M.); (E.U.)
| |
Collapse
|
18
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Gärtner F, Knippschild U, Burster T. Application of an Activity-Based Probe to Determine Proteolytic Activity of Cell Surface Cathepsin G by Mass Cytometry Data Acquisition. ACS OMEGA 2020; 5:28233-28238. [PMID: 33163806 PMCID: PMC7643251 DOI: 10.1021/acsomega.0c04092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 05/08/2023]
Abstract
During an immune response, cathepsin G (CatG) takes on the role of adaptive and innate immunity and the outcome depends on the localization of CatG. Soluble, cell surface-bound, or intracellular CatG is also responsible for pathophysiology conditions. We applied the activity-based probe MARS116-Bt to mass cytometry by time-of-flight to analyze CatG activity on the cell surface of immune cells. The phosphonate warhead of MARS116-Bt binds covalently to the serine amino acid residue S195 of the catalytic center and thereby CatG activity can be detected. This method contributes to observing the activation or inhibition status of cells during pathogenesis of diseases and enables accurate data acquisition from complex biological samples with a vast panel of cell subset markers in a single-cell resolution.
Collapse
Affiliation(s)
- Fabian Gärtner
- Department of General
and Visceral Surgery, Surgery Center, Ulm
University Medical Center, 89081 Ulm, Germany
| | - Uwe Knippschild
- Department of General
and Visceral Surgery, Surgery Center, Ulm
University Medical Center, 89081 Ulm, Germany
| | - Timo Burster
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Avenue, 53, Nur-Sultan 010000, Kazakhstan Republic
- . Phone: +7 (7172)
70-66-75
| |
Collapse
|