1
|
Zakaria NH, Mohamed Tap F, Aljohani GF, Abdul Majid FA. Molecular docking and dynamics simulations revealed the potential inhibitory activity of honey-iQfood ingredients against GSK-3β and CDK5 protein targets for brain health. J Biomol Struct Dyn 2025; 43:3429-3448. [PMID: 38165434 DOI: 10.1080/07391102.2023.2298726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Honey-iQfood is an herbal supplement made of a mixture of polyherbal extracts and wild honey. The mixture is traditionally claimed to improve various conditions related to brain cells and functions including dementia and Alzheimer's disease. Glycogen synthase kinase-3 beta (GSK-3β) and cyclin-dependent kinase 5 (CDK5) have been identified as being involved in the pathological hyperphosphorylation of tau proteins, which leads to the formation of neurofibrillary tangles and causes Alzheimer's disease. Therefore, this study was conducted to confirm the traditional claims by detection of active compounds, namely curcumin, gallic acid, catechin, rosmarinic acid, and andrographolide in the raw materials of Honey-iQfood through HPLC analysis, molecular docking, and dynamic simulations. Two potential compounds, andrographolide, and rosmarinic acid, produced the best binding affinities following the molecular docking of the active compounds against the GSK-3β and CDK5 targets. Andrographolide binds with GSK-3β at -8.2 kcal/mol, whereas rosmarinic acid binds to CDK5 targets at -8.6 kcal/mol. Molecular dynamics was further carried out to confirm the docking results and clarify their dynamic properties such as RMSD, RMSF, rGyr, SASA, PSA, and binding free energy. CDK5-andrographolide complexes had the best MM-GBSA score (-83.63 kcal/mol) compared to other complexes, indicating the better interaction profile and stability of the complex. These findings warrant further research into andrographolide and rosmarinic acid as efficient inhibitors of tau protein hyperphosphorylation to verify their therapeutic potential in brain-related illnesses.
Collapse
Affiliation(s)
- Nor Hafizah Zakaria
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Fatahiya Mohamed Tap
- Universiti Teknologi Mara Terengganu, Bukit Besi Campus, Dungun, Terengganu, Malaysia
| | - Ghadah Faraj Aljohani
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Fadzilah Adibah Abdul Majid
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
2
|
Naik RA, Rajpoot R, Koiri RK, Bhardwaj R, Aldairi AF, Johargy AK, Faidah H, Babalghith AO, Hjazi A, Alsanie WF, Alamri AS, Alhomrani M, Alsharif A, Shkodina A, Singh SK. Dietary supplementation and the role of phytochemicals against the Alzheimer's disease: Focus on polyphenolic compounds. J Prev Alzheimers Dis 2025; 12:100004. [PMID: 39800464 DOI: 10.1016/j.tjpad.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 05/02/2025]
Abstract
Alzheimer's disease is a complicated, multifaceted, neurodegenerative illness that places an increasing strain on healthcare systems. Due to increasing malfunction and death of nerve cells, the person suffering from Alzheimer's disease (AD) slowly and steadily loses their memories, cognitive functions and even their personality. Although medications may temporarily enhance memory, there are currently no permanent therapies that can halt or cure this irreversible neurodegenerative process. Nonetheless, fast progress in comprehending the cellular and molecular abnormalities responsible for neuronal degeneration has increased confidence in the development of viable prevention and treatments. All FDA-approved anti-AD medications have merely symptomatic effects and cannot cure the illness. This necessitates the pursuit of alternate treatments. Accumulating data shows that systemic neuroinflammation, oxidative stress and associated mitochondrial dysfunction play crucial roles in the etiology of AD and precede its clinical presentation. Therefore, innovative therapeutic approaches targeting these pathophysiological components of Alzheimer's disease are being explored aggressively in the present scenario. Phytochemicals such as resveratrol, curcumin, quercetin, genistein and catechins are prospective therapies owing to their capacity to alter key AD pathogenetic pathways, such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. The use of new phytochemical delivery strategies would certainly provide the possibility to solve several issues with standard anti-AD medicines. In this review, the roles of phytophenolic compound-based treatment strategies for AD are discussed.
Collapse
Affiliation(s)
- Rayees Ahmad Naik
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh, 470003, India
| | - Roshni Rajpoot
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh, 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh, 470003, India
| | - Rima Bhardwaj
- Department of Chemistry Poona College, Savitribai Phule Pune University, Pune 411007, India
| | - Abdullah F Aldairi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayman K Johargy
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Saudi Arabia
| | - Anastasiia Shkodina
- Department of Neurological diseases, Poltava State Medical University, Poltava, 36000, Ukraine.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, India.
| |
Collapse
|
3
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Mahmoudian M, Lorigooini Z, Rahimi-Madiseh M, Shabani S, Amini-Khoei H. Protective effects of rosmarinic acid against autistic-like behaviors in a mouse model of maternal separation stress: behavioral and molecular amendments. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7819-7828. [PMID: 38730077 DOI: 10.1007/s00210-024-03143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with worldwide increasing incidence. Maternal separation (MS) stress at the beginning of life with its own neuroendocrine changes can provide the basis for development of ASD. Rosmarinic acid (RA) is a phenolic compound with a protective effect in neurodegenerative diseases. The aim of this study was to determine the effect of RA on autistic-like behaviors in maternally separated mice focusing on its possible effects on neuroimmune response and nitrite levels in the hippocampus. In this study, 40 mice were randomly divided into five groups of control (received normal saline (1 ml/kg)) and MS that were treated with normal saline (1 ml/kg) or doses of 1, 2, and 4 mg/kg RA, respectively, for 14 days. Three-chamber sociability, shuttle box, and marble burying tests were used to investigate autistic-like behaviors. Nitrite level and gene expression of inflammatory cytokines including TNF-α, IL-1β, TLR4, and iNOS were assessed in the hippocampus. The results showed that RA significantly increased the social preference and social novelty indexes, as well as attenuated impaired passive avoidance memory and the occurrence of repetitive and obsessive behaviors in the MS mice. RA reduced the nitrite level and gene expression of inflammatory cytokines in the hippocampus. RA, probably via attenuation of the nitrite level as well as of the neuroimmune response in the hippocampus, mitigated autistic-like behaviors in maternally separated mice.
Collapse
Affiliation(s)
- Maziar Mahmoudian
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Neagu M, Constantin C, Surcel M, Munteanu A, Scheau C, Savulescu‐Fiedler I, Caruntu C. Diabetic neuropathy: A NRF2 disease? J Diabetes 2024; 16:e13524. [PMID: 38158644 PMCID: PMC11418408 DOI: 10.1111/1753-0407.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) has multifarious action with its target genes having redox-regulating functions and being involved in inflammation control, proteostasis, autophagy, and metabolic pathways. Therefore, the genes controlled by NRF2 are involved in the pathogenesis of myriad diseases, such as cardiovascular diseases, metabolic syndrome, neurodegenerative diseases, autoimmune disorders, and cancer. Amidst this large array of diseases, diabetic neuropathy (DN) occurs in half of patients diagnosed with diabetes and appears as an injury inflicted upon peripheral and autonomic nervous systems. As a complex effector factor, NRF2 has entered the spotlight during the search of new biomarkers and/or new therapy targets in DN. Due to the growing attention for NRF2 as a modulating factor in several diseases, including DN, this paper aims to update the recently discovered regulatory pathways of NRF2 in oxidative stress, inflammation and immunity. It presents the animal models that further facilitated the human studies in regard to NRF2 modulation and the possibilities of using NRF2 as DN biomarker and/or as target therapy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
- Doctoral School, Faculty of BiologyUniversity of BucharestBucharestRomania
| | - Carolina Constantin
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
- Pathology DepartmentColentina Clinical HospitalBucharestRomania
| | - Mihaela Surcel
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Adriana Munteanu
- Immunology DepartmentVictor Babes National Institute of PathologyBucharestRomania
| | - Cristian Scheau
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Ilinca Savulescu‐Fiedler
- Department of Internal Medicine – Coltea Clinical Hospital, ”Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Constantin Caruntu
- Department of Physiology“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Dermatology“Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic DiseasesBucharestRomania
| |
Collapse
|
6
|
Chiu PL, Lin MC, Hsu ST, Ho TY, Chen YH, Chen CC, Chen YS. Rosmarinic acid Ameliorates neuronal regeneration in the bridging silicone rubber conduits of the sciatic nerve in taxol-treated rats. J Tradit Complement Med 2024; 14:276-286. [PMID: 38707916 PMCID: PMC11068989 DOI: 10.1016/j.jtcme.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Background and aim Taxol modulates local inflammatory conditions in peripheral nerves, which may impair their regeneration and recovery when injured. This study aimed to determine the effects of rosmarinic acid (RA, a polyphenol constituent of many culinary herbs) on the regeneration of the sciatic nerves in the bridging conduits. Experimental procedure In the cell study, RA decreased nuclear factor (NF)-κB activity induced by taxol in a dose dependency. In the animal model, taxol-treated rats were divided into 3 groups (n = 10/group): taxol (2 mg/kg body weight for 4 times) and taxol + RA (3 times/week for 4 weeks at 20 and 40 mg/kg body weight) groups. Macrophage infiltration, calcitonin gene-related peptide (CGRP) expression levels, neuronal connectivity, animal behavior, and neuronal electrophysiology were evaluated. Results and conclusion At the end of 4 weeks, macrophage density, CGRP expression level, and axon number significantly increased in the RA group compared with the taxol group. The RA administration unaffected heat, cold plate licking latencies, and motor coordination. Moreover, the 40 mg/kg RA group had significantly larger nerve conduction velocity and less latency compared to the taxol group. This study suggested that RA could ameliorate local inflammatory conditions to augment the recovery of regenerating nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated peripheral nerve injury repaired with the silicone rubber conduit.
Collapse
Affiliation(s)
- Ping-Ling Chiu
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Mei-Chen Lin
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Shih-Tien Hsu
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Center for General Education, Ling Tung University, Taichung, 408, Taiwan
| | - Tin-Yun Ho
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yung-Hsiang Chen
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, 103, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City, 840, Taiwan
| | - Yueh-Sheng Chen
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
7
|
Pereira JF, de Sousa Neves JC, Fonteles AA, Bezerra JR, Pires RC, da Silva ATA, Lima FAV, Neves KRT, Oriá RB, de Barros Viana GS, Tavares J, de Sousa Nascimento T, Oliveira AV, Parente ACB, Gomes JMP, de Andrade GM. Palmatine, a natural alkaloid, attenuates memory deficits and neuroinflammation in mice submitted to permanent focal cerebral ischemia. J Neuroimmunol 2023; 381:578131. [PMID: 37413943 DOI: 10.1016/j.jneuroim.2023.578131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Ischemic stroke is one of the major causes of human morbidity and mortality. The pathophysiology of ischemic stroke involves complex events, including oxidative stress and inflammation, that lead to neuronal loss and cognitive deficits. Palmatine (PAL) is a naturally occurring (Coptidis rhizome) isoquinoline alkaloid that belongs to the class of protoberberines and has a wide spectrum of pharmacological and biological effects. In the present study, we evaluated the impact of Palmatine on neuronal damage, memory deficits, and inflammatory response in mice submitted to permanent focal cerebral ischemia induced by middle cerebral artery (pMCAO) occlusion. The animals were treated with Palmatine (0.2, 2 and 20 mg/kg/day, orally) or vehicle (3% Tween + saline solution) 2 h after pMCAO once daily for 3 days. Cerebral ischemia was confirmed by evaluating the infarct area (TTC staining) and neurological deficit score 24 h after pMCAO. Treatment with palmatine (2 and 20 mg/kg) reduced infarct size and neurological deficits and prevented working and aversive memory deficits in ischemic mice. Palmatine, at a dose of 2 mg/kg, had a similar effect of reducing neuroinflammation 24 h after cerebral ischemia, decreasing TNF-, iNOS, COX-2, and NF- κB immunoreactivities and preventing the activation of microglia and astrocytes. Moreover, palmatine (2 mg/kg) reduced COX-2, iNOS, and IL-1β immunoreactivity 96 h after pMCAO. The neuroprotective properties of palmatine make it an excellent adjuvant treatment for strokes due to its inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Juliana Fernandes Pereira
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Juliana Catharina de Sousa Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Analu Aragão Fonteles
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Jéssica Rabelo Bezerra
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Rayssa Costa Pires
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Thais Araújo da Silva
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Francisco Arnaldo Viana Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Kelly Rose Tavares Neves
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil
| | - Reinaldo Barreto Oriá
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil
| | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Juliete Tavares
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Tyciane de Sousa Nascimento
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Alfaete Vieira Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Ana Caroline Barros Parente
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Jessica Maria Pessoa Gomes
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Brazil, Rua Professor Costa Mendes, 1608, 60.430-140 Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Coronel Nunes de Melo, 1127, 60.430-275 Fortaleza, CE, Brazil; Neuroscience and Behavior Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Rua Coronel Nunes de Melo, 1000, 60.430-275 Fortaleza, CE, Brazil.
| |
Collapse
|
8
|
Wagdy R, Abdel-Kader RM, El-Khatib AH, Linscheid MW, Handoussa H, Hamdi N. Origanum majorana L. protects against neuroinflammation-mediated cognitive impairment: a phyto-pharmacological study. BMC Complement Med Ther 2023; 23:165. [PMID: 37210483 DOI: 10.1186/s12906-023-03994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's disease (AD) which is responsible for most cases of dementia in the elderly. With the lack of curative treatments, natural phenolics are potential candidates to delay the onset and progression of such age-related disorders due to their potent antioxidant and anti-inflammatory effects. This study aims at assessing the phytochemical characteristics of Origanum majorana L. (OM) hydroalcohol extract and its neuroprotective activities in a murine neuroinflammatory model. METHODS OM phytochemical analysis was done by HPLC/PDA/ESI-MSn. Oxidative stress was induced in vitro by hydrogen peroxide and cell viability was measured using WST-1 assay. Swiss albino mice were injected intraperitoneally with OM extract at a dose of 100 mg/kg for 12 days and with 250 μg/kg LPS daily starting from day 6 to induce neuroinflammation. Cognitive functions were assessed by novel object recognition and Y-maze behavioral tests. Hematoxylin and eosin staining was used to assess the degree of neurodegeneration in the brain. Reactive astrogliosis and inflammation were assessed by immunohistochemistry using GFAP and COX-2 antibodies, respectively. RESULTS OM is rich in phenolics, with rosmarinic acid and its derivatives being major constituents. OM extract and rosmarinic acid significantly protected microglial cells against oxidative stress-induced cell death (p < 0.001). OM protected against the LPS-induced alteration of recognition and spatial memory in mice (p < 0.001) and (p < 0.05), respectively. Mice that received OM extract prior to the induction of neuroinflammation showed comparable histology to control brains, with no overt neurodegeneration. Furthermore, OM pre-treatment decreased the immunohistochemistry profiler score of GFAP from positive to low positive and COX-2 from low positive to negative in the brain tissue, compared to the LPS group. CONCLUSION These findings highlight the potential preventive effects of OM phenolics against neuroinflammation and pave the way toward drug discovery and development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Reham Wagdy
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Reham M Abdel-Kader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt
| | - Ahmed H El-Khatib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Chemistry, Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Nabila Hamdi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt.
| |
Collapse
|
9
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
10
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
11
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
12
|
Chiu YJ, Lin TH, Chang KH, Lin W, Hsieh-Li HM, Su MT, Chen CM, Sun YC, Lee-Chen GJ. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Aβ-GFP SH-SY5Y cells against Aβ toxicity. Aging (Albany NY) 2022; 14:7568-7586. [PMID: 36170028 PMCID: PMC9550238 DOI: 10.18632/aging.204306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer’s disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aβ toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aβ-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aβ-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood–brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aβ cells, which may shed light on the potential application in therapeutics of AD.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
13
|
Munteanu IG, Grădinaru VR, Apetrei C. Sensitive Detection of Rosmarinic Acid Using Peptide-Modified Graphene Oxide Screen-Printed Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193292. [PMID: 36234420 PMCID: PMC9565883 DOI: 10.3390/nano12193292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 05/15/2023]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel sensors due to several reasons, including well-known synthesis protocols, diverse structures, and acting as highly selective substrates for enzymes. Bio-conjugation strategies can provide a simple and efficient way to convert peptide-analyte interaction information into a measurable signal, which can be further used for the manufacture of new peptide-based biosensors. This paper describes the sensitive properties of a peptide-modified graphene oxide screen-printed carbon electrode for accurate and sensitive detection of a natural polyphenol antioxidant compound, namely rosmarinic acid. Glutaraldehyde was chosen as the cross-linking agent because it is able to bind nonspecifically to the peptide. We demonstrated that the strong interaction between the immobilized peptide on the surface of the sensor and rosmarinic acid favors the addition of rosmarinic acid on the surface of the electrode, leading to an efficient preconcentration that determines a high sensitivity of the sensor for the detection of rosmarinic acid. The experimental conditions were optimized using different pH values and different amounts of peptide to modify the sensor surface, so that its analytical performances were optimal for rosmarinic acid detection. By using cyclic voltammetry (CV) as a detection method, a very low detection limit (0.0966 μM) and a vast linearity domain, ranging from 0.1 µM to 3.20 µM, were obtained. The novelty of this work is the development of a novel peptide-based sensor with improved performance characteristics for the quantification of rosmarinic acid in cosmetic products of complex composition. The FTIR method was used to validate the voltammetric method results.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
14
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
15
|
The effects of the ethanol extract of Cordia myxa leaves on the cognitive function in mice. BMC Complement Med Ther 2022; 22:215. [PMID: 35948926 PMCID: PMC9367120 DOI: 10.1186/s12906-022-03693-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cordia myxa L. (Boraginaceae) is widely distributed in tropical regions and it’s fruits, leaves and stem bark have been utilized in folk medicine for treating trypanosomiasis caused by Trypanosoma cruzi. A population-based study showed that T. cruzi infection is associated with cognitive impairments. Therefore, if C. myxa has ameliorating activities on cognitive function, it would be useful for both T. cruzi infection and cognitive impairments.
Methods
In this study, we evaluated the effects of an ethanol extract of leaves of C. myxa (ELCM) on memory impairments and sensorimotor gating deficits in mice. The phosphorylation level of protein was observed by the Western blot analysis.
Results
The administration of ELCM significantly attenuated scopolamine-induced cognitive dysfunction in mice, as measured by passive avoidance test and novel object recognition test. Additionally, in the acoustic startle response test, we observed that the administration of ELCM ameliorated MK-801-induced prepulse inhibition deficits. We found that these behavioral outcomes were related with increased levels of phosphorylation phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK-3β) in the cortex and extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus by western blot analysis.
Conclusions
These results suggest that ELCM would be a potential candidate for treating cognitive dysfunction and sensorimotor gating deficits observed in individuals with neurodegenerative diseases.
Collapse
|
16
|
Yu Y, Li Y, Qi K, Xu W, Wei Y. Rosmarinic acid relieves LPS-induced sickness and depressive-like behaviors in mice by activating the BDNF/Nrf2 signaling and autophagy pathway. Behav Brain Res 2022; 433:114006. [PMID: 35843463 DOI: 10.1016/j.bbr.2022.114006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is one of the main causes of sickness and depressive-like behavior. Rosmarinic acid (RA) has been shown to have a significant anti-neuroinflammatory effect. However, the protective effects and the underlying mechanism of RA on sickness and depressive-like behavior under conditions of neuroinflammation are still unclear. In the present study, we investigated the effects and the underlying mechanism of RA on lipopolysaccharide (LPS)-treated mice with sickness behavior. The behavioral effects of LPS treatment and RA administration were assessed using behavioral tests including a sucrose preference test and an open field test. The neuroprotective effects of RA in conditions of neuroinflammatory injury were determined by HE staining, Nissl staining, and immunofluorescent staining. Moreover, its underlying mechanism was analyzed by using real-time PCR analysis, western blot, and immunofluorescent analysis. The results indicated that RA dramatically mitigated sickness behaviors and histologic brain damage in mice exposed to LPS. In addition, RA administration markedly promoted the expression of brain-derived neurotrophic factor (BDNF)/erythroid 2-related factor 2 (Nrf2), the key regulatory proteins for Nrf2 activation (p21 and p62), the downstream antioxidant enzymes (HO-1, NQO1, GCLC), the autophagy-related proteins (LC3II and Beclin1), and mitochondrial respiratory enzyme genes (ME1, IDH1, 6-PGDH), while reducing the expression of pro-inflammatory genes (CD44, iNOS, TNFα, IL-1β). Moreover, the double-label immunofluorescent analysis revealed that RA increased the fluorescence intensity of LC3 mostly co-localized with neurons and co-expressed with Nrf2. Taken together, our research found that RA could effectively alleviate sickness behaviors and nerve injury caused by neuroinflammation, and its protective effects were mediated by the Nrf2 signaling pathway, which reduced cellular oxidative stress, inflammation, mitochondrial respiratory function damage, and autophagy imbalance. Therefore, RA has the potential to prevent or treat sickness and depressive-like behaviors under conditions of neuroinflammation.
Collapse
Affiliation(s)
- Yi Yu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Ye Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Keming Qi
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
17
|
Guan H, Luo W, Bao B, Cao Y, Cheng F, Yu S, Fan Q, Zhang L, Wu Q, Shan M. A Comprehensive Review of Rosmarinic Acid: From Phytochemistry to Pharmacology and Its New Insight. Molecules 2022; 27:3292. [PMID: 35630768 PMCID: PMC9143754 DOI: 10.3390/molecules27103292] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Polyphenolic acids are the widely occurring natural products in almost each herbal plant, among which rosmarinic acid (RA, C18H16O8) is well-known, and is present in over 160 species belonging to many families, especially the Lamiaceae. Aside from this herbal ingredient, dozens of its natural derivatives have also been isolated and characterized from many natural plants. In recent years, with the increasing focus on the natural products as alternative treatments, a large number of pharmacological studies have been carried out to demonstrate the various biological activities of RA such as anti-inflammation, anti-oxidation, anti-diabetes, anti-virus, anti-tumor, neuroprotection, hepatoprotection, etc. In addition, investigations concerning its biosynthesis, extraction, analysis, clinical applications, and pharmacokinetics have also been performed. Although many achievements have been made in various research aspects, there still exist some problems or issues to be answered, especially its toxicity and bioavailability. Thus, we hope that in the case of natural products, the present review can not only provide a comprehensive understanding on RA covering its miscellaneous research fields, but also highlight some of the present issues and future perspectives worth investigating later, in order to help us utilize this polyphenolic acid more efficiently, widely, and safely.
Collapse
Affiliation(s)
- Huaquan Guan
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.G.); (W.L.); (Q.F.)
| | - Wenbin Luo
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.G.); (W.L.); (Q.F.)
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiaoling Fan
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; (H.G.); (W.L.); (Q.F.)
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.B.); (Y.C.); (F.C.); (S.Y.); (L.Z.); (Q.W.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
18
|
Wang YC, Lu YB, Huang XL, Lao YF, Zhang L, Yang J, Shi M, Ma HL, Pan YW, Zhang YN. Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res 2022; 17:1711-1716. [PMID: 35017418 PMCID: PMC8820716 DOI: 10.4103/1673-5374.332130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myeloperoxidase is an important inflammatory factor in the myeloid system, primarily expressed in neutrophils and microglia. Myeloperoxidase and its active products participate in the occurrence and development of hemorrhagic and ischemic stroke, including damage to the blood-brain barrier and brain. As a specific inflammatory marker, myeloperoxidase can be used in the evaluation of vascular disease occurrence and development in stroke, and a large amount of experimental and clinical data has indicated that the inhibition or lack of myeloperoxidase has positive impacts on stroke prognosis. Many studies have also shown that there is a correlation between the overexpression of myeloperoxidase and the risk of stroke. The occurrence of stroke not only refers to the first occurrence but also includes recurrence. Therefore, myeloperoxidase is significant for the clinical evaluation and prognosis of stroke. This paper reviews the potential role played by myeloperoxidase in the development of vascular injury and secondary brain injury after stroke and explores the effects of inhibiting myeloperoxidase on stroke prognosis. This paper also analyzes the significance of myeloperoxidase etiology in the occurrence and development of stroke and discusses whether myeloperoxidase can be used as a target for the treatment and prediction of stroke.
Collapse
Affiliation(s)
- Yun-Chang Wang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Feng Lao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jun Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Mei Shi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hai-Long Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ya-Wen Pan
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yi-Nian Zhang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
19
|
The Neonicotinoid Thiacloprid Interferes with the Development, Brain Antioxidants, and Neurochemistry of Chicken Embryos and Alters the Hatchling Behavior: Modulatory Potential of Phytochemicals. BIOLOGY 2022; 11:biology11010073. [PMID: 35053072 PMCID: PMC8773094 DOI: 10.3390/biology11010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. TH resulted neurotoxic to chicken embryos and possibly neurotoxic to embryos of other vertebrates. Moreover, CA and RA exerted both an antioxidant and a neuroprotective effect on embryos. Abstract The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. The chicken eggs were in ovo inoculated with TH at different doses (0.1, 1, 10, and 100 ug/egg). TH increased the mortality and abnormality rates and altered the neurochemical parameters of exposed embryos dose-dependently. TH also decreased the brain level of monoamines and amino acid neurotransmitters and decreased the activities of acetylcholine esterase (AchE) and Na+/K+-ATPase. The brain activity of catalase (CAT) and superoxide dismutase (SOD) was diminished with downregulation of their mRNA expressions in the brain tissue. When TH was co-administered with CA and RA, the toxic impacts of the insecticide were markedly attenuated, and they showed a complementary effect when used in combination. Taken together, these findings suggested that TH is neurotoxic to chicken embryos and is possibly neurotoxic to embryos of other vertebrates. The findings also demonstrated the antioxidant and neuroprotective effects of CA and RA. Based on the present findings, the CA and RA can be used as invaluable ameliorative of TH-induced toxicity.
Collapse
|
20
|
Zhao C, Wang W, Yan K, Sun H, Han J, Hu Y. The therapeutic effect and mechanism of Qishen Yiqi dripping pills on cardiovascular and cerebrovascular diseases and diabetic complications. Curr Mol Pharmacol 2021; 15:547-556. [PMID: 34382512 DOI: 10.2174/1874467214666210811153610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
The alterations in vascular homeostasis is deeply involved in the development of numerous diseases, such as coronary heart disease, stroke, and diabetic complications. Changes in blood flow and endothelial permeability caused by vascular dysfunction are the common mechanisms for these three types of diseases. The disorders of glucose and lipid metabolism can result in changes of the energy production patterns in endothelium and surrounding cells which may consequently cause local energy metabolic disorders, oxidative stress and inflammatory responses. Traditional Chinese medicine (TCM) follows the principle of the "treatment by the syndrome differentiation". TCM considers of that coronary heart disease, stroke and diabetes complications all as the type of "Qi deficiency and Blood stasis" syndrome, which mainly happens to the vascular system. Therefore, the common pathogenesis of these three types of diseases suggests the treatment strategy by TCM should be in a close manner and named as "treating different diseases by the same treatment". Qishen Yiqi dripping pills is a modern Chinese herbal medicine which has been widely used for treatment of patients with coronary heart disease characterized as "Qi deficiency and blood stasis" in China. Recently, many clinical reports have demonstrated the potent therapeutic effects of Qishen Yiqi dripping pills on ischemic stroke and diabetic nephropathy. Based on these reports, we will summarize the clinical applications of Qishen Yiqi dripping pills on coronary heart disease, ischemic stroke and diabetic nephropathy, including the involved mechanisms with basic researches.
Collapse
Affiliation(s)
- Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Jihong Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin. China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| |
Collapse
|
21
|
Wang CC, Hsieh PW, Kuo JR, Wang SJ. Rosmarinic Acid, a Bioactive Phenolic Compound, Inhibits Glutamate Release from Rat Cerebrocortical Synaptosomes through GABA A Receptor Activation. Biomolecules 2021; 11:1029. [PMID: 34356653 PMCID: PMC8301814 DOI: 10.3390/biom11071029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Rosmarinic acid, a major component of rosemary, is a polyphenolic compound with potential neuroprotective effects. Asreducing the synaptic release of glutamate is crucial to achieving neuroprotectant's pharmacotherapeutic effects, the effect of rosmarinic acid on glutamate release was investigated in rat cerebrocortical nerve terminals (synaptosomes). Rosmarinic acid depressed the 4-aminopyridine (4-AP)-induced glutamate release in a concentration-dependent manner. The removal of extracellular calcium and the blockade of vesicular transporters prevented the inhibition of glutamate release by rosmarinic acid. Rosmarinic acid reduced 4-AP-induced intrasynaptosomal Ca2+ elevation. The inhibition of N-, P/Q-type Ca2+ channels and the calcium/calmodulin-dependent kinase II (CaMKII) prevented rosmarinic acid from having effects on glutamate release. Rosmarinic acid also reduced the 4-AP-induced activation of CaMKII and the subsequent phosphorylation of synapsin I, the main presynaptic target of CaMKII. In addition, immunocytochemistry confirmed the presence of GABAA receptors. GABAA receptor agonist and antagonist blocked the inhibitory effect of rosmarinic acid on 4-AP-evoked glutamate release. Docking data also revealed that rosmarinic acid formed a hydrogen bond with the amino acid residues of GABAA receptor. These results suggested that rosmarinic acid activates GABAA receptors in cerebrocortical synaptosomes to decrease Ca2+ influx and CaMKII/synapsin I pathway to inhibit the evoked glutamate release.
Collapse
Affiliation(s)
- Che-Chuan Wang
- Chi Mei Medical Center, Department of Neurosurgery, Tainan 71004, Taiwan; (C.-C.W.); (J.-R.K.)
- Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Pei-Wen Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan
| | - Jinn-Rung Kuo
- Chi Mei Medical Center, Department of Neurosurgery, Tainan 71004, Taiwan; (C.-C.W.); (J.-R.K.)
- Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Su-Jane Wang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
22
|
Seyed MA, Ayesha S, Azmi N, Al-Rabae FM, Al-Alawy AI, Al-Zahrani OR, Hawsawi Y. The neuroprotective attribution of Ocimum basilicum: a review on the prevention and management of neurodegenerative disorders. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Bioactive principles from various natural resources including medicinal herbs have always played a crucial role in healthcare settings and increasingly became key players in drug discovery and development for many biopharmaceutical applications. Additionally, natural products (NPs) have immense arrangement of distinctive chemical structures with diverse functional groups that motivated numerous investigators including synthetic chemists to discover new therapeutic entities. Numerous pre-clinical investigations involving the animal models have evident the usefulness of these NPs against various human diseases including neurodegenerative disorders (NDs).
Main text
Ocimum basilicum Linn (O. basilicum L.), also known as sweet basil, is well practiced in traditional healthcare systems and has been used to treat various human illnesses, which include malaria, skin disease, diarrhea, bronchitis, dysentery, arthritis, eye diseases, and insect bites and emphasize the significance of the ethno-botanical approach as a potential source of novel drug leads With the growing interest in advanced techniques, herbal medicine and medicinal plants explorations are still considered to be a novel resource for new pharmacotherapeutic discovery and development. O. basilicum L and its bioactive principles including apigenin, eugenol, myretenal, β-sitosterol, luteolin, rosmarinic acid, carnosic acid, essential oil (EO)-rich phenolic compounds, and others like anthocyanins and flavones could be of therapeutic values in NDs by exhibiting their neuro-protective efficacy on various signaling pathways. The present comprehensive review collected various related information using the following searching engines such as PubMed, Science Direct, Google Scholar, etc. and focused mainly the English written documents. The search period comprised of last two decades until present.
Conclusion
Although these efficacious plant genera of prime importance and has potential medical and socioeconomic importance, yet the pivotal evidence for its neuroprotective potential in novel clinical trials remains lacking. However, with the available wealth of obtainable literature on this medicinal plant, which supports this review and concludes that O. basilicum L may function as a promising therapeutics for the treatment of NDs.
Collapse
|
23
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
24
|
Wang J, Wang S, Guo H, Li Y, Jiang Z, Gu T, Su B, Hou W, Zhong H, Cheng D, Zhang X, Fang Z. Rosmarinic acid protects rats against post-stroke depression after transient focal cerebral ischemic injury through enhancing antioxidant response. Brain Res 2021; 1757:147336. [PMID: 33548269 DOI: 10.1016/j.brainres.2021.147336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022]
Abstract
Rosmarinic acid (RA), a natural polyphenol, possesses potent antioxidant and anti-inflammatory activities. To evaluate the ability of RA to cure ischemic stroke and post-stroke depression (PSD), rats were treated with various doses of RA after cerebral ischemia. Neurological deficits and infarct volume of the brain were measured. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) were examined at different time points. In addition, a forced swimming test and sucrose preference test were performed to detect the anti-depressive effects of RA. Our results revealed RA administration significantly alleviated neurological deficits and reduced infarct volumes. RA attenuated the decrease of SOD, CAT activities and GSH levels in the ischemic penumbra of the brain. Most importantly, RA treatment alleviated the depression behaviors. Increased expression of Nrf2 was also induced by RA, while down regulation Nrf2 by Nrf2-short-hairpin RNA sequences reversed the increasing activity of SOD and CAT induced by RA, as well as the protection against PSD. The present study indicates that RA exerts a potent neuroprotective effect against stroke and PSD, which could be a promising therapeutic intervention for stroke.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiyun Guo
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Li
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ting Gu
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Binxiao Su
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Dandan Cheng
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xijing Zhang
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Zongping Fang
- Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
25
|
Tubbs AS, Kennedy KER, Alfonso-Miller P, Wills CCA, Grandner MA. A Randomized, Double-Blind, Placebo-Controlled Trial of a Polyphenol Botanical Blend on Sleep and Daytime Functioning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063044. [PMID: 33809544 PMCID: PMC8000032 DOI: 10.3390/ijerph18063044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
Despite the high prevalence of subclinical sleep disturbances, existing treatments are either potent prescription medications or over-the-counter supplements with minimal scientific support and numerous side effects. However, preliminary evidence shows that polyphenols such as rosmarinic acid and epigallocatechin gallate can support healthy sleep without significant side effects. Therefore, the present study examined whether a polyphenol botanical blend (PBB) could improve sleep and/or daytime functioning in individuals with subclinical sleep disturbances. A total of 89 individuals completed a double-blind, randomized trial of daily treatment with PBB (n = 43) or placebo (n = 46) 30 min before bed for 30 days. Participants were monitored for changes in sleep (by sleep diary and an activity tracker), mood, and neurocognitive functioning. After 30 days, PBB improved diary sleep quality (p = 0.008) and reduced insomnia severity (p = 0.044) when compared to placebo. No other changes in sleep outcomes were observed. Additionally, PBB did not impair neurocognitive functioning, and some improvement was noted in vigilant attention, working memory, and risk assessment. Among individuals with subclinical sleep disturbances, PBB improved sleep quality, insomnia severity, and neurocognitive functioning over placebo. These findings indicate that polyphenol compounds may be useful for improving certain aspects of sleep without compromising neurocognitive functioning.
Collapse
Affiliation(s)
- Andrew S. Tubbs
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (K.E.R.K.); (C.C.A.W.); (M.A.G.)
- Correspondence: ; Tel.: +1-(520)-626-6346
| | - Kathryn E. R. Kennedy
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (K.E.R.K.); (C.C.A.W.); (M.A.G.)
| | | | - Chloe C. A. Wills
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (K.E.R.K.); (C.C.A.W.); (M.A.G.)
| | - Michael A. Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA; (K.E.R.K.); (C.C.A.W.); (M.A.G.)
| |
Collapse
|
26
|
Jafaripour L, Naserzadeh R, Alizamani E, Javad Mashhadi SM, Moghadam ER, Nouryazdan N, Ahmadvand H. Effects of Rosmarinic Acid on Methotrexate-induced Nephrotoxicity and Hepatotoxicity in Wistar Rats. Indian J Nephrol 2021; 31:218-224. [PMID: 34376933 PMCID: PMC8330652 DOI: 10.4103/ijn.ijn_14_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction: Methotrexate (MTX), used in the treatment of cancerous patients, causes toxicity in the different organs of the body. This study of rosmarinic acid (RA) is as an antioxidant on nephrotoxicity and hepatotoxicity induced by MTX. Methods: Rats (n = 32) were divided into four groups: sham; MTX; 100 mg\kg RA + MTX; 200 mg/kg RA + MTX. The amount of MTX was 20 mg/kg. 24 hours after injection of the last dose of MTX, the blood samples and kidneys and liver of rats were studied. The aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), urea, serum creatinine were assessed. Tissue antioxidant enzymes and malondialdehyde (MDA) levels were measured. The liver and kidney tissues were histopathologically examined. Results: MTX significantly increased the urea, creatinine, ALT, AST, ALP levels, and renal MDA and significantly decreased renal catalase (CAT), hepatic glutathione (GSH), and hepatic CAT activity. MTX induced necrosis, leukocyte infiltration, eosinophilic casts, glomerular damage in kidney tissue and necrosis, degeneration and cellular vacuolization in liver tissues. RA at 100 mg/kg caused a significant decrease in ALT and AST and at two doses significantly decreased urea, renal MDA, and liver MDA. RA at 200 mg/kg significantly increased the renal CAT and liver GSH. RA in two doses significantly decreased necrosis and Leukocyte infiltration. RA caused a significant decrease in degeneration and cellular vacuolization in liver tissues. Conclusions: RA with its antioxidant and anti-inflammatory characteristics decreased the MTX induced nephrotoxicity and hepatotoxicity.
Collapse
Affiliation(s)
- Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Reza Naserzadeh
- Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Ehsan Alizamani
- Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Nouryazdan
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
27
|
Demyanenko S, Nikul V, Rodkin S, Davletshin A, Evgen'ev MB, Garbuz DG. Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress Chaperones 2021; 26:103-114. [PMID: 32870479 PMCID: PMC7736593 DOI: 10.1007/s12192-020-01159-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ischaemic stroke is an acute interruption of the blood supply to the brain, which leads to rapid irreversible damage to nerve tissue. Ischaemic stroke is accompanied by the development of neuroinflammation and neurodegeneration observed around the affected brain area. Heat shock protein 70 (Hsp70) facilitates cell survival under a variety of different stress conditions. Hsp70 may be secreted from cells and exhibits cytoprotective activity. This activity most likely occurs by decreasing the levels of several proinflammatory cytokines through interaction with a few receptors specific to the innate immune system. Herein, we demonstrated that intranasal administration of recombinant human Hsp70 shows a significant twofold decrease in the volume of local ischaemia induced by photothrombosis in the mouse prefrontal brain cortex. Our results revealed that intranasal injections of recombinant Hsp70 decreased the apoptosis level in the ischaemic penumbra, stimulated axonogenesis and increased the number of neurons producing synaptophysin. Similarly, in the isolated crayfish stretch receptor, consisting of a single sensory neuron surrounded by the glial envelope, exogenous Hsp70 significantly decreased photoinduced apoptosis and necrosis of glial cells. The obtained data enable one to consider human recombinant Hsp70 as a promising compound that could be translated from the bench into clinical therapies.
Collapse
Affiliation(s)
- S Demyanenko
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - V Nikul
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - S Rodkin
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - A Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
28
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
29
|
Neuroprotective Effect of Syringic Acid by Modulation of Oxidative Stress and Mitochondrial Mass in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8297984. [PMID: 33457416 PMCID: PMC7787734 DOI: 10.1155/2020/8297984] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Diabetes is a metabolic complaint associated with oxidative stress and dysfunction of mitochondria. One of the most common complications of diabetes mellitus is neuropathy. This study evaluated the possible neuroprotective effects of syringic acid (SYR), a natural polyphenolic derivative of benzoic acid, on oxidative damage and mitochondria in the brain, spinal cord, and sciatic nerve of streptozotocin-induced diabetic rats. Different groups of rats including normal control, diabetics (induced by streptozotocin), diabetic groups treated with 25, 50, and 100 mg/kg of SYR, and non-diabetic group treated with only 100 mg/kg of SYR were treated for 6 weeks. Learning and memory function, physical coordination, and acetylcholinesterase (AChE) and antioxidant indexes, as well as mRNA expression of mitochondrial biogenesis, were measured in the brain, spinal cord, and sciatic nerves. Diabetic rats treated with 100 mg/kg SYR exhibited significantly improved learning, memory, and movement deficiency (p < 0.05). SYR 100 mg/kg also significantly upregulated the brain mRNA expression of PGC-1α and NRF-1, the key regulators of energy metabolism, oxidative phosphorylation, and mitochondrial biogenesis. In addition, SYR 100 mg/kg and SYR 50 mg/kg increased the mtDNA/nDNA ratio in the brain and the spinal cord of diabetic rats, respectively (p < 0.05). SYR attenuated the lipid peroxidation in all the tissues, but not significant effects were observed on GSH, AChE, catalase, and superoxide dismutase activity. In all the tests, nonsignificant differences were observed between the control and SYR 100 mg/kg groups. Moreover, SYR reduced inflammation and demyelination in sciatic nerves. This is the first study to reveal the regulation of mitochondrial biogenesis and energy metabolism by SYR, beyond its antioxidant role in the diabetic rats' brain and spinal tissues.
Collapse
|
30
|
Fachel FNS, Michels LR, Azambuja JH, Lenz GS, Gelsleichter NE, Endres M, Scholl JN, Schuh RS, Barschak AG, Figueiró F, Bassani VL, Henriques AT, Koester LS, Teixeira HF, Braganhol E. Chitosan-coated rosmarinic acid nanoemulsion nasal administration protects against LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats. Neurochem Int 2020; 141:104875. [PMID: 33039443 DOI: 10.1016/j.neuint.2020.104875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/22/2023]
Abstract
Rosmarinic acid (RA) lipid-nanotechnology-based delivery systems associate with mucoadhesive biopolymers for nasal administration has arisen as a new promising neuroprotective therapy for neurodegenerative disorders (ND). We have previously demonstrated the glioprotective effect of chitosan-coated RA nanoemulsions (RA CNE) against lipopolysaccharide (LPS)-induced damage in rat astrocyte primary culture. Here, we further investigate the protective effect of RA CNE nasal administration on LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats, since these in vivo studies were crucial to understand the impact of developed delivery systems in the RA neuroprotective effects. The animals were treated through nasal route with RA CNE (2 mg·mL-1), free RA (2 mg·mL-1), blank CNE, and saline (control and LPS groups) administrations (n.a., 100 μL per nostril) twice a day (7 a.m./7 p.m.) for six days. On the sixth day, the animals received the last treatments and LPS was intraperitoneally (i.p.) administrated (250 μg·kg-1). Overall results, proved for the first time that the RA CNE nasal administration elicits a neuroprotective effect against LPS-induced damage, which was associated with increased 1.6 times recognition index, decreased 5.0 and 1.9 times in GFAP+ cell count and CD11b expression, respectively, as well as increased 1.7 times SH in cerebellum and decreased 3.9 times TBARS levels in cerebral cortex in comparison with LPS group. RA CNE treatment also facilitates RA bioavailability in the brain, confirmed by RA quantification. Free RA also demonstrates a protective effect in some studied parameters, although no RA was quantified in the brain.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luana Roberta Michels
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Hofstätter Azambuja
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Gabriela Spies Lenz
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Nicolly Espindola Gelsleichter
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcelo Endres
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alethea Gatto Barschak
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amelia Teresinha Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1779-1795. [PMID: 32725282 DOI: 10.1007/s00210-020-01935-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the worldwide interest is growing to use medicinal plants and their active constituents to develop new potent medicines with fewer side effects. Precise dietary compounds have prospective beneficial applications for various neurodegenerative ailments. Rosmarinic acid is a polyphenol and is detectable most primarily in many Lamiaceae families, for instance, Rosmarinus officinalis also called rosemary. This review prepared a broad and updated literature review on rosmarinic acid elucidating its biological activities on some nervous system disorders. Rosmarinic acid has significant antinociceptive, neuroprotective, and neuroregenerative effects. In this regard, we classified and discussed our findings in different nervous system disorders including Alzheimer's disease, epilepsy, depression, Huntington's disease, familial amyotrophic lateral sclerosis, Parkinson's disease, cerebral ischemia/reperfusion injury, spinal cord injury, stress, anxiety, and pain.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Nourbakhsh F, Read MI, Barreto GE, Sahebkar A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease. IUBMB Life 2020; 72:2360-2281. [PMID: 32894821 DOI: 10.1002/iub.2369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 01/14/2023]
Abstract
The lysosome is a membrane-enclosed organelle in eukaryotic cells, which has basic pattern recognition for nutrient-dependent signal transduction. In Alzheimer's disease, the already declining autophagy-lysosomal function is exacerbated by an increased need for clearance of damaged proteins and organelles in aged cells. Recent evidence suggests that numerous diseases are linked to impaired autophagy upstream of lysosomes. In this way, a comprehensive survey on the pathophysiology of the disease seems necessary. Hence, in the first section of this review, we will discuss the ultimate findings in lysosomal signaling functions and how they affect cellular metabolism and trafficking under neurodegenerative conditions, specifically Alzheimer's disease. In the second section, we focus on how natural products and their derivatives are involved in the regulation of inflammation and lysosomal dysfunction pathways, including how these should be considered a crucial target for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
33
|
Taira Y, Yamashita T, Bian Y, Shang J, Matsumoto N, Sasaki R, Tadokoro K, Nomura E, Tsunoda K, Omote Y, Takemoto M, Hishikawa N, Ohta Y, Abe K. Antioxidative effects of a novel dietary supplement Neumentix in a mouse stroke model. J Stroke Cerebrovasc Dis 2020; 29:104818. [PMID: 32439352 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND During an acute stroke, reactive oxygen species are overproduced and the endogenous antioxidative defense systems are disrupted. Therefore, antioxidative therapy can be a promising scheme to reduce the severity of stroke. Neumentix is a novel antioxidative supplement produced from a patented mint line and contains a high content of rosmarinic acid (RA). Although Neumentix has proven diverse efficacy and safety in clinical trials, its effect on strokes is unclear. METHODS Mice that were treated with Neumentix or vehicle for 14 days underwent transient middle cerebral artery occlusion (tMCAO) for 60 min. Mice were sacrificed 5 days after tMCAO. RESULTS Neumentix preserved body weight after tMCAO, showed a high antioxidative effect in serum, and reduced infarction volume compared to the vehicle. The expression of 4-hydroxy-2-nonenal, Nε-(carboxymethyl) lysine, and 8-hydroxy-2'-deoxyguanosine was reduced in Neumentix-treated mice. CONCLUSION The antioxidative effect of Neumentix was confirmed. This is the first report to demonstrate the antioxidative effect of Neumentix on strokes.
Collapse
Affiliation(s)
- Yuki Taira
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Toru Yamashita
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Yuting Bian
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Jingwei Shang
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Namiko Matsumoto
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Ryo Sasaki
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Koh Tadokoro
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Emi Nomura
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Keiichiro Tsunoda
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Yoshio Omote
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Mami Takemoto
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Nozomi Hishikawa
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Yasuyuki Ohta
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan
| | - Koji Abe
- Departments of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Dentistry and Pharmacy, 2-5-1 Shikata-cho, Okayama Okayama Japan.
| |
Collapse
|
34
|
Arcambal A, Taïlé J, Couret D, Planesse C, Veeren B, Diotel N, Gauvin-Bialecki A, Meilhac O, Gonthier MP. Protective Effects of Antioxidant Polyphenols against Hyperglycemia-Mediated Alterations in Cerebral Endothelial Cells and a Mouse Stroke Model. Mol Nutr Food Res 2020; 64:e1900779. [PMID: 32447828 DOI: 10.1002/mnfr.201900779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/08/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.
Collapse
Affiliation(s)
- Angélique Arcambal
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Janice Taïlé
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Anne Gauvin-Bialecki
- Université de La Réunion, EA 2212 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Saint-Denis, La Réunion, 97490, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| |
Collapse
|
35
|
Chen S, Chen H, Du Q, Shen J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front Physiol 2020; 11:433. [PMID: 32508671 PMCID: PMC7248223 DOI: 10.3389/fphys.2020.00433] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation are two critical pathological processes of cerebral ischemia-reperfusion injury. Myeloperoxidase (MPO) is a critical inflammatory enzyme and therapeutic target triggering both oxidative stress and neuroinflammation in the pathological process of cerebral ischemia-reperfusion injury. MPO is presented in infiltrated neutrophils, activated microglial cells, neurons, and astrocytes in the ischemic brain. Activation of MPO can catalyze the reaction of chloride and H2O2 to produce HOCl. MPO also mediates oxidative stress by promoting the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), modulating the polarization and inflammation-related signaling pathways in microglia and neutrophils. MPO can be a therapeutic target for attenuating oxidative damage and neuroinflammation in ischemic stroke. Targeting MPO with inhibitors or gene deficiency significantly reduced brain infarction and improved neurological outcomes. This article discusses the important roles of MPO in mediating oxidative stress and neuroinflammation during cerebral ischemia-reperfusion injury and reviews the current understanding of the underlying mechanisms. Furthermore, we summarize the active compounds from medicinal herbs with potential as MPO inhibitors for anti-oxidative stress and anti-inflammation to attenuate cerebral ischemia-reperfusion injury, and as adjunct therapeutic agents for extending the window of thrombolytic treatment. We highlight that targeting MPO could be a promising strategy for alleviating ischemic brain injury, which merits further translational study.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
36
|
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother 2020; 125:109990. [PMID: 32070874 DOI: 10.1016/j.biopha.2020.109990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a worldwide concern. Many studies pointed out relevant preventive effect of grape seed powder (GSP) against deleterious brain ischemia/reperfusion (I/R) injury, but curative effect has been scarcely approached. The present work aimed at studying the preventive and curative effect of GSP against stroke using in-vitro and in-vivo models. Primary neuron-astrocyte cocultures were used to evaluate in-vitro GSP protective and curative effect on oxygen-glucose-deprivation (OGD). A murine I/R model, in which GSP was administered as delayed post stroke drug, to evaluate its potential clinically translatable therapy was used and behavioral tests were conducted after 15 days. Ultra-structure of hippocampus dentate gyrus using Transmission Electron Microscopy (TEM) was also undertaken. GSP prevented OGD-induced toxicity and cell death in a dose dependent manner and was neuroprotective as assessed by sustained cell viability (70 % ±1 for OGD + GSP and 37 % ±2 for OGD) and modulated cytokines and brain derived neurotrophic factor (BDNF) expression. GSP also promoted behavioral outcomes by increasing step-down inhibitory time from 17s±4 to 50s±11 and rat overall activities by improving scores in open field test to near control level. Furthermore, GSP protected hippocampus dentate gyrus area from I/R-induced drastic alterations as assessed by reduced autophagic vacuoles.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
37
|
Cin B, Ciloglu NS, Omar S, Kaya Terzi N. Effect of Rosmarinic Acid and Alcohol on Fat Graft Survival in Rat Model. Aesthetic Plast Surg 2020; 44:177-185. [PMID: 31637505 DOI: 10.1007/s00266-019-01519-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/05/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Autologous fat grafting is a common procedure performed for cosmetic and reconstructive purposes. Unpredictable graft survival is a major drawback, and a variety of improvements on technique such as using antioxidants have been reported to increase retention. The authors examined whether a natural rosemary plant extract known with antioxidant properties, rosmarinic acid, could improve the survival of the adipose tissue. METHODS Inguinal fat pads were harvested from 24 Sprague Dawley rats and implanted to the parascapular area. Rats were divided into three groups: rosmarinic acid and ethanol as solvent (RA), ethanol (E), and serum physiologic (C). These substances were administered intraperitoneally daily for 1 week and once a week for 7 weeks. Volume and weight measurements, blood specimens, weight and volume records, and histopathologic examinations were performed and analyzed. RESULTS The RA group demonstrated lower TOS, TGF-beta, TNF-alpha, and MDA values compared to E and C groups. TGF-beta increase was statistically insignificant, but TOS, TNF-alpha, MDA decrease was found statistically significant. Weight and volume losses were lower in the RA and E groups compared to the C group. The difference between the RA and E groups in terms of weight and volume loss was statistically insignificant. Histopathologically fat necrosis, inflammation, and fibrosis were less in the RA group compared to the E and C groups (p < 0.05). CONCLUSION Rosmarinic acid increased the fat graft volume retained and decreased cyst formation and abscess formation in the rat model. Further studies can be undertaken to investigate rosmarinic acid's local application as a tumescent and safety in humans. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Baris Cin
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Haydarpasa Numune Research and Training Hospital, Istanbul, Turkey.
- Edirne Sultan 1. Murat Devlet Hastanesi Plastik, Rekonstrüktif ve Estetik Cerrahi Kliniği, Hadmağa Mevkii, Helvacısakaoğlu Sokak, 22030, Edirne Merkez, Edirne, Turkey.
| | - Nesibe Sinem Ciloglu
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Haydarpasa Numune Research and Training Hospital, Istanbul, Turkey
| | - Shahruk Omar
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Haydarpasa Numune Research and Training Hospital, Istanbul, Turkey
| | - Neslihan Kaya Terzi
- Department of Pathology, Sultan Abdulhamit Han Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
38
|
Ali M, Zahid S. The neurogenic effects of rosmarinic acid in a mouse model of type 2 diabetes mellitus. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-979020200003180772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mahnoor Ali
- National University of Sciences and Technology, Pakistan
| | - Saadia Zahid
- National University of Sciences and Technology, Pakistan
| |
Collapse
|
39
|
Li M, Cui MM, Kenechukwu NA, Gu YW, Chen YL, Zhong SJ, Gao YT, Cao XY, Wang L, Liu FM, Wen XR. Rosmarinic acid ameliorates hypoxia/ischemia induced cognitive deficits and promotes remyelination. Neural Regen Res 2020; 15:894-902. [PMID: 31719255 PMCID: PMC6990785 DOI: 10.4103/1673-5374.268927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rosmarinic acid, a common ester extracted from Rosemary, Perilla frutescens, and Salvia miltiorrhiza Bunge, has been shown to have protective effects against various diseases. This is an investigation into whether rosmarinic acid can also affect the changes of white matter fibers and cognitive deficits caused by hypoxic injury. The right common carotid artery of 3-day-old rats was ligated for 2 hours. The rats were then prewarmed in a plastic container with holes in the lid, which was placed in 37°C water bath for 30 minutes. Afterwards, the rats were exposed to an atmosphere with 8% O2 and 92% N2 for 30 minutes to establish the perinatal hypoxia/ischemia injury models. The rat models were intraperitoneally injected with rosmarinic acid 20 mg/kg for 5 consecutive days. At 22 days after birth, rosmarinic acid was found to improve motor, anxiety, learning and spatial memory impairments induced by hypoxia/ischemia injury. Furthermore, rosmarinic acid promoted the proliferation of oligodendrocyte progenitor cells in the subventricular zone. After hypoxia/ischemia injury, rosmarinic acid reversed to some extent the downregulation of myelin basic protein and the loss of myelin sheath in the corpus callosum of white matter structure. Rosmarinic acid partially slowed down the expression of oligodendrocyte marker Olig2 and myelin basic protein and the increase of oligodendrocyte apoptosis marker inhibitors of DNA binding 2. These data indicate that rosmarinic acid ameliorated the cognitive dysfunction after perinatal hypoxia/ischemia injury by improving remyelination in corpus callosum. This study was approved by the Animal Experimental Ethics Committee of Xuzhou Medical University, China (approval No. 20161636721) on September 16, 2017.
Collapse
Affiliation(s)
- Man Li
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | | | - Yi-Wei Gu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu-Lin Chen
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Si-Jing Zhong
- Xuzhou Medical University Clinical Medical College, Xuzhou, Jiangsu Province, China
| | - Yu-Ting Gao
- Department of Clinical Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue-Yan Cao
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Li Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fu-Min Liu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang-Ru Wen
- Research Center for Neurobiology and Department of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
40
|
Zhang X, Shen X, Dong J, Liu WC, Song M, Sun Y, Shu H, Towse CL, Liu W, Liu CF, Jin X. Inhibition of Reactive Astrocytes with Fluorocitrate Ameliorates Learning and Memory Impairment Through Upregulating CRTC1 and Synaptophysin in Ischemic Stroke Rats. Cell Mol Neurobiol 2019; 39:1151-1163. [PMID: 31270712 PMCID: PMC11452224 DOI: 10.1007/s10571-019-00709-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke often causes motor and cognitive deficits. Deregulated glia gap junction communication, which is reflected by increased protein levels of glial fibrillary acidic protein (GFAP) and connexin 43 (Cx43), has been observed in ischemic hippocampus and has been associated with cognitive impairment in animal stroke models. Here, we tested the hypothesis that reactive astrocytes-mediated loss of synaptophysin (SYP) and CREB-regulated transcription coactivator 1 (CRTC1) contribute to dysfunction in glia gap junction communication and memory impairment after ischemic stroke. Male Sprague-Dawley rats were subjected to a 90-min middle cerebral artery occlusion (MCAO) with 7-day reperfusion. Fluorocitrate (1 nmol), the reversible inhibitor of the astrocytic tricarboxylic acid cycle, was injected into the right lateral ventricle of MCAO rats once every 2 days starting immediately before reperfusion. The Morris water maze was used to assess memory in conjunction with western blotting and immunostaining to detect protein expression and distribution in the hippocampus. Our results showed that ischemic stroke caused significant memory impairment accompanied by increased protein levels of GFAP and Cx43 in hippocampal tissue. In addition, the levels of several key memory-related important proteins including SYP, CRTC1, myelin basic protein and high-mobility group-box-1 were significantly reduced in the hippocampal tissue. Of note, inhibition of reactive astrocytes with fluorocitrate was shown to significantly reverse the above noted changes induced by ischemic stroke. Taken together, our findings demonstrate that inhibiting reactive astrocytes with fluorocitrate immediately before reperfusion may protect against ischemic stroke-induced memory impairment through the upregulation of CRTC1 and SYP.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xianzhi Shen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiali Dong
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Min Song
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yanyun Sun
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hui Shu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Clare-Louise Towse
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, 518035, China.
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xinchun Jin
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, Jiangsu Key Laboratory of Neuropsychiatric Diseases, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| |
Collapse
|
41
|
Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM. Antioxidant Therapies for Neuroprotection-A Review. J Clin Med 2019; 8:E1659. [PMID: 31614572 PMCID: PMC6832623 DOI: 10.3390/jcm8101659] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Although moderate concentrations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are crucial for various physiological processes within the human body, their overproduction leads to oxidative stress, defined as the imbalance between the production and accumulation of ROS and the ability of the body to neutralize and eliminate them. In the brain, oxidative stress exhibits significant effects, due to its increased metabolical activity and limited cellular regeneration. Thus, oxidative stress is a major factor in the progressive loss of neurons structures and functions, leading to the development of severe neurodegenerative disorders. In this context, recent years have witnessed tremendous advancements in the field of antioxidant therapies, with a special emphasis for neuroprotection. The aim of this paper is to provide an overview of the oxidative stress and antioxidant defense mechanisms and to present the most recent studies on antioxidant therapies for neuroprotection.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
42
|
Ding Y, Zhang Z, Yue Z, Ding L, Zhou Y, Huang Z, Huang H. Rosmarinic Acid Ameliorates H 2O 2-Induced Oxidative Stress in L02 Cells Through MAPK and Nrf2 Pathways. Rejuvenation Res 2019; 22:289-298. [PMID: 30379115 DOI: 10.1089/rej.2018.2107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Liver cells are easily damaged by oxidative stress during progression both in liver development and throughout adult life, resulting in tissue pathology that ranges from simple hepatitis to nonalcoholic fatty liver disease. In this study, we determined the attenuation of oxidative stress in liver cells with pretreatment of rosmarinic acid (RA), which is an antioxidant agent from Rosmarinus officinalis. The human liver cell line L02 was damaged by hydrogen peroxide (H2O2). In the RA treatment group, the viability of L02 cells increased and the intracellular reactive oxygen species levels decreased compared with the H2O2-induced damage group. Analysis of flow cytometry revealed that the percentage of G2/M cell cycle arrest and cell apoptosis decreased in the RA treatment group. This alteration was associated with activation of a G2/M DNA damage and oxidative stress apoptotic signal. Furthermore, we determined the redox-sensitive protein expression of mitogen-activated protein kinases (MAPKs), quinone acceptor oxidoreductase 1 (NQO1), and nuclear factor E2-related factor 2 (Nrf2), and the expression of both MAPKs and Nrf2 was activated in the RA group. Results showed that the relevant protein expression of MAPKs and Nrf2 was activated in the RA group. Thus, RA protected L02 cells from oxidative damage through suppressing cell cycle arrest and cell apoptosis with the activation of MAPK and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yahui Ding
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
- 2School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhiyang Zhang
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
- 2School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhongbao Yue
- 3Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, China
| | - Liugang Ding
- 3Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, China
| | - Yong Zhou
- 3Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, China
| | - Zebo Huang
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
- 4School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hongliang Huang
- 1School of Biosciences & Biopharmaceutics and Center for Bioresources & Drug Discovery, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
43
|
Bittner Fialová S, Kello M, Čoma M, Slobodníková L, Drobná E, Holková I, Garajová M, Mrva M, Zachar V, Lukáč M. Derivatization of Rosmarinic Acid Enhances its in vitro Antitumor, Antimicrobial and Antiprotozoal Properties. Molecules 2019; 24:E1078. [PMID: 30893808 PMCID: PMC6470549 DOI: 10.3390/molecules24061078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/23/2023] Open
Abstract
On its own, rosmarinic acid possesses multiple biological activities such as anti-inflammatory, antimicrobial, cardioprotective and antitumor properties, and these are the consequence of its ROS scavenging and inhibitory effect on inflammation. In this study, two quaternary phosphonium salts of rosmarinic acid were prepared for the purpose of increasing its penetration into biological systems with the aim of improving its antimicrobial, antifungal, antiprotozoal and antitumor activity. The synthetized molecules, the triphenylphosphonium and tricyclohexylphosphonium salts of rosmarinic acid, exhibited significantly stronger inhibitory effects on the growth of HCT116 cells with IC50 values of 7.28 or 8.13 μM in comparison to the initial substance, rosmarinic acid (>300 μM). For the synthesized derivatives, we detected a greater than three-fold increase of activity against Acanthamoeba quina, and a greater than eight-fold increase of activity against A. lugdunensis in comparison to rosmarinic acid. Furthermore, we recorded significantly higher antimicrobial activity of the synthetized derivatives when compared to rosmarinic acid itself. Both synthetized quaternary phosphonium salts of rosmarinic acid appear to be promising antitumor and antimicrobial agents, as well as impressive molecules for further research.
Collapse
Affiliation(s)
- Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia.
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia.
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Eva Drobná
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakov 8, 832 32 Bratislava, Slovakia.
| | - Ivana Holková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakov 8, 832 32 Bratislava, Slovakia.
| | - Mária Garajová
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Martin Mrva
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Vlastimil Zachar
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakov 8, 832 32 Bratislava, Slovakia.
| | - Miloš Lukáč
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakov 8, 832 32 Bratislava, Slovakia.
| |
Collapse
|
44
|
Pirzad Jahromi G, Imani E, Nasehi M, Shahriari A. Effect of Achillea millefolium aqueous extract on memory deficit and anxiety caused by stroke in ovariectomized rats. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction: Some studies indicated that the decrease of estrogen level in menopausal woman results in increasing the risk of stroke. Although estrogen is a neuroprotective factor, high consumption of this compound may develop breast cancer and endometriosis. The present study investigated the effect of Achilles millefolium extract, containing estrogenlike compounds, on memory impairment and anxiogenic-like behaviors caused by cerebral ischemia in ovariectomized rats. Methods: Permanent middle cerebral artery ligation was performed, as a model for studying postmenopausal condition, in 48 female Wistar rats weighing 200-250 g. The aqueous extract of A. millefolium was prepared and gavaged for 4 weeks after inducing cerebral ischemia. Memory and anxiety-like behavior assessments were evaluated by step-through and elevated plus maze apparatus, respectively. Result: According to the results, cerebral ischemia in ovariectomized rats induced amnesia and anxiogenic-like behaviors which were restored by 7 mg/kg of A. millefolium aqueous extract. Furthermore, inactivation of estrogen receptors (ERs) by tamoxifen (100 µg/kg, intraperitoneally) blocked the restoration effect of A. millefolium on behaviors induced by cerebral ischemia. Conclusion: It could be concluded that, oral administration of A. millefolium extract is able to restore memory impairment and anxiogenic-like behaviors induced by ischemia via ERs in ovariectomized rat.
Collapse
Affiliation(s)
- Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Esmail Imani
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Shahriari
- Chemical Injuries Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Systems Pharmacology-Based Approach to Comparatively Study the Independent and Synergistic Mechanisms of Danhong Injection and Naoxintong Capsule in Ischemic Stroke Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1056708. [PMID: 30863452 PMCID: PMC6378776 DOI: 10.1155/2019/1056708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 01/06/2019] [Indexed: 12/26/2022]
Abstract
To provide evidence for the better clinical use of traditional Chinese medicine preparations (TCMPs), comparison of the pharmacological mechanisms between TCMPs with similar therapeutic effect is necessary. However, methodology for dealing with this issue is still scarce. Danhong injection (DHI) and Naoxintong capsule (NXT) are representative TCMPs for ischemic stroke (IS) treatment, which are also frequently used in combination. Here they were employed as research objects to demonstrate the feasibility of systems pharmacology approach in elucidation of the independent and combined effect of TCMPs. By incorporating chemical screening, target prediction, and network construction, a feasible systems pharmacology model has been established to systematically uncover the underlying action mechanisms of DHI, NXT, or their pair in IS treatment. Systematic analysis of the created TCMP-Compound-Target-Disease network revealed that DHI and NXT shared common targets such as PTGS2, F2, ADRB1, IL6, ALDH2, and CCL2, which were involved in the vasomotor system regulation, blood-brain barrier disruption, redox imbalance, neurotrophin activity, and brain inflammation. In comparative mechanism study, the merged DHI/NXT-IS PPI network and pathway enrichment analysis indicated that DHI and NXT exerted the therapeutic effects mainly through immune system and VEGF signaling pathways. Meanwhile, they had their own unique pathways, e.g., calcium signaling pathway for DHI and gap junction for NXT. While for their synergistic mechanism, DHI and NXT participated in chemokine signaling pathway, T cell receptor signaling pathway, VEGF signaling pathway, gap junction, and so on. Our study provided an optimized strategy for dissecting the different and combined effect of TCMPs with similar actions.
Collapse
|
46
|
Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. Effect of Rosmarinic Acid on the Serum Parameters of Glucose and Lipid Metabolism and Oxidative Stress in Estrogen-Deficient Rats. Nutrients 2019; 11:E267. [PMID: 30691017 PMCID: PMC6412204 DOI: 10.3390/nu11020267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Rosmarinic acid is found in medicinal and spice plants such as rosemary, lemon balm, and mint. The aim of the study was to investigate the effect of rosmarinic acid on parameters of glucose and lipid metabolism and parameters of oxidative stress in rats in the early phase of estrogen deficiency. The study was carried out on mature female Wistar rats divided into the following groups: sham-operated control rats, ovariectomized control rats, and ovariectomized rats treated orally with rosmarinic acid at a dose of 10 mg/kg or 50 mg/kg daily for 28 days. The concentration of sex hormones, parameters related to glucose and lipid metabolism as well as parameters of antioxidant abilities and oxidative damage were determined in the blood serum. In the ovariectomized control rats, the homeostasis model assessment of insulin resistance (HOMA-IR) index and cholesterol concentration increased, the superoxide dismutase activity increased, and the reduced glutathione concentration decreased. Administration of rosmarinic acid at both doses induced decreases in the fructosamine concentration and HOMA-IR, an increase in the concentration of reduced glutathione, and a decrease in the concentration of advanced oxidation protein products in ovariectomized rats. Moreover, rosmarinic acid at a dose of 50 mg/kg induced a decrease in the total cholesterol and triglyceride concentrations. The results indicate that rosmarinic acid may be useful in the prevention of metabolic disorders associated with estrogen deficiency, however further studies are necessary.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| |
Collapse
|
47
|
Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem Int 2019; 122:47-58. [PMID: 30439384 DOI: 10.1016/j.neuint.2018.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders (ND) are characterized by slow and progressive neuronal dysfunction induced by the degeneration of neuronal cells in the central nervous system (CNS). Recently, the neuroprotective effects of natural compounds with anti-inflammatory and antioxidant activities has been clearly demonstrated. This appears to be an attractive therapeutic approach for ND, particularly regarding the use of polyphenols. In this review, we present an overview of the neuroprotective potential of rosmarinic acid (RA) and discuss the use of nanotechnology as a novel approach to treating ND. RA presents a variety of biological important activities, i.e. the modulation of pro-inflammatory cytokine expression, prevention of neurodegeneration and damage reduction. However, its poor bioavailability represents a limitation in terms of pharmacodynamics. In this sense, nanotechnology-based carriers could allow for the administration of higher but still safe amounts of RA, aiming for CNS delivery. Nasal administration could be a pleasant route for delivery to the CNS, as this represents a direct route to the CNS. With these advantages, RA-loaded nanotechnology-based therapy through the nasal route could be promising approach for the treatment of ND.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kleyton Santos Veras
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amelia Teresinha Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Taram F, Ignowski E, Duval N, Linseman DA. Neuroprotection Comparison of Rosmarinic Acid and Carnosic Acid in Primary Cultures of Cerebellar Granule Neurons. Molecules 2018; 23:E2956. [PMID: 30428519 PMCID: PMC6278428 DOI: 10.3390/molecules23112956] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease, are characterized by the progressive loss of neurons in specific regions of the brain and/or spinal cord. Neuronal cell loss typically occurs by either apoptotic or necrotic mechanisms. Oxidative stress and nitrosative stress, along with excitotoxicity and caspase activation, have all been implicated as major underlying causes of neuronal cell death. Diverse nutraceuticals (bioactive compounds found in common foods) have been shown to have neuroprotective effects in a variety of in vitro and in vivo disease models. In the current study, we compared the neuroprotective effects of two polyphenolic compounds, rosmarinic acid and carnosic acid, which are both found at substantial concentrations in the herb rosemary. The capacity of these compounds to rescue primary cultures of rat cerebellar granule neurons (CGNs) from a variety of stressors was investigated. Both polyphenols significantly reduced CGN death induced by the nitric oxide donor, sodium nitroprusside (nitrosative stress). Rosmarinic acid uniquely protected CGNs from glutamate-induced excitotoxicity, while only carnosic acid rescued CGNs from caspase-dependent apoptosis induced by removal of depolarizing extracellular potassium (5K apoptotic condition). Finally, we found that carnosic acid protects CGNs from 5K-induced apoptosis by activating a phosphatidylinositol 3-kinase (PI3K) pro-survival pathway. The shared and unique neuroprotective effects of these two compounds against diverse modes of neuronal cell death suggest that future preclinical studies should explore the potential complementary effects of these rosemary polyphenols on neurodegenerative disease progression.
Collapse
Affiliation(s)
- Faten Taram
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Elizabeth Ignowski
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | - Nathan Duval
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave., Denver, CO 80208, USA.
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave., Denver, CO 80208, USA.
| |
Collapse
|
49
|
Abstract
Inflammation plays a pivotal role in the development of ischemic brain damage. Astrocyte activation promotes the production of several proinflammatory mediators, such as TNF-α and iNOS. Eventually, neuronal death occurs, leading to the development of motor and memory deficits in patients. Boldine is the main alkaloid in the leaves and bark of the Peumus boldus Molina, and has anti-inflammatory and antioxidant properties. The aim of this work was to investigate the neuroprotective effect of boldine on neuroinflammation and memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) in mice. Thirty minutes before pMCAO and during the next 5 days, animals received vehicle (0.025 µmol/l HCl) or boldine (8, 16 and 25 mg/kg, intraperitoneally). The extension of the infarct area, neurological scores, and myeloperoxidase activity were evaluated 24 h after pMCAO. Locomotor activity, working, and aversive memory were evaluated 72 h after pMCAO, object recognition memory was tested 96 h after pMCAO, and spatial memory was tested 120 h after pMCAO. Cresyl violet, Fluoro-Jade C staining, and immunohistochemical for GFAP, TNF-α, and iNOS were also carried out. The treatment with boldine significantly decreased the infarct area, improved the neurological scores, and increased cell viability. The vertical exploratory activity and aversive, spatial, object recognition, and working memory deficits induced by pMCAO were prevented by boldine. Moreover, myeloperoxidase activity and GFAP, TNF-α, and iNOS immunoreactivity were decreased significantly by boldine. Although various mechanisms such as its antioxidant activity should be considered, these results suggest that the neuroprotective effect of boldine might be related in part to its anti-inflammatory properties.
Collapse
|
50
|
Cui HY, Zhang XJ, Yang Y, Zhang C, Zhu CH, Miao JY, Chen R. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling. Neural Regen Res 2018; 13:2119-2128. [PMID: 30323140 PMCID: PMC6199925 DOI: 10.4103/1673-5374.241463] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rosmarinic acid (RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice (Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA (20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor (10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3K/Akt signaling pathway inhibitor LY294002 (10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hai-Ying Cui
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Xiang-Jian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Yi Yang
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Chun-Hua Zhu
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Jiang-Yong Miao
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei Province, China
| |
Collapse
|