1
|
Xue Y, Xu C, Lv M, Li J, Wen K, Geng T, Gong D, Liu L, Fallahshahroudi A, Zheng Y. PRIAM1 participates in the inhibition of inflammation and acetylcholinesterase activity in goose fatty liver formation. Poult Sci 2025; 104:105219. [PMID: 40344705 DOI: 10.1016/j.psj.2025.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
Goose fatty liver, a product of short-term overfeeding, is notable for its high nutritional value and unique tolerance to severe steatosis without inflammation, in contrast to human nonalcoholic fatty liver disease (NAFLD). It is known that choline can alleviate nonalcoholic steatohepatitis and liver cirrhosis, inhibit cell apoptosis, promote lecithin synthesis and fat transportation out of the liver, and relieve cardiovascular disease-related symptoms (e.g., hyperlipidemia and hypercholesterolemia). This study investigates the role of Proline Rich Membrane Anchor 1 (PRIMA1) in inhibiting inflammation through choline metabolism during goose fatty liver formation. Overfeeding of geese resulted in increased body and liver weights, elevated fat content, and significantly higher expression of PRIMA1, accompanied by decreased LITAF and CRP (important pro-inflammatory cytokines) expression and reduced acetylcholinesterase (AchE) activity, which was assessed by the amount of produced choline. The overexpression of PRIMA1 in goose primary hepatocytes (GPHs) enhanced AchE activity. Consistently, glucose-induced upregulation of PRIMA1 expression in GPHs was accompanied by increased AchE activity. Further combined treatment with glucose and PRIMA1 knockdown in GPHs showed that downregulation of PRIMA1 attenuated the suppression of LITAF and CRP expression caused by glucose addition, but had no effect on the rise in AchE activity. These findings indicate that PRIMA1 may play a role in promoting choline metabolism and protecting against liver inflammation, offering insights into potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Ying Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China.
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Mengqing Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - JiaHui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Kang Wen
- Yangzhou Animal Husbandry Veterinary and Fishery Technical Guidance Station, Yangzhou 225009PR China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Amir Fallahshahroudi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 75256, Sweden.
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Kong J, Yao Z, Chen J, Zhao Q, Li T, Dong M, Bai Y, Liu Y, Lin Z, Xie Q, Zhang X. Comparative Transcriptome Analysis Unveils Regulatory Factors Influencing Fatty Liver Development in Lion-Head Geese under High-Intake Feeding Compared to Normal Feeding. Vet Sci 2024; 11:366. [PMID: 39195820 PMCID: PMC11359645 DOI: 10.3390/vetsci11080366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The lion-head goose is the only large goose species in China, and it is one of the largest goose species in the world. Lion-head geese have a strong tolerance for massive energy intake and show a priority of fat accumulation in liver tissue through special feeding. Therefore, the aim of this study was to investigate the impact of high feed intake compared to normal feeding conditions on the transcriptome changes associated with fatty liver development in lion-head geese. In this study, 20 healthy adult lion-head geese were randomly assigned to a control group (CONTROL, n = 10) and high-intake-fed group (CASE, n = 10). After 38 d of treatment, all geese were sacrificed, and liver samples were collected. Three geese were randomly selected from the CONTROL and CASE groups, respectively, to perform whole-transcriptome analysis to analyze the key regulatory genes. We identified 716 differentially expressed mRNAs, 145 differentially expressed circRNAs, and 39 differentially expressed lncRNAs, including upregulated and downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in molecular function. The node degree analysis and centrality metrics of the mRNA-lncRNA-circRNA triple regulatory network indicate the presence of crucial functional nodes in the network. We identified differentially expressed genes, including HSPB9, Pgk1, Hsp70, ME2, malic enzyme, HSP90, FADS1, transferrin, FABP, PKM2, Serpin2, and PKS, and we additionally confirmed the accuracy of sequencing at the RNA level. In this study, we studied for the first time the important differential genes that regulate fatty liver in high-intake feeding of the lion-head goose. In summary, these differentially expressed genes may play important roles in fatty liver development in the lion-head goose, and the functions and mechanisms should be investigated in future studies.
Collapse
Affiliation(s)
- Jie Kong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Ziqi Yao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515000, China; (J.C.); (Z.L.)
| | - Qiqi Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Mengyue Dong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Yuhang Bai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Zhenping Lin
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515000, China; (J.C.); (Z.L.)
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.K.); (Z.Y.); (Q.Z.); (T.L.); (M.D.); (Y.B.)
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- Zhongshan Innovation Center, South China Agricultural University, Zhongshan 528400, China
| |
Collapse
|
3
|
Wei R, Han C. Insights into the influence of three types of sugar on goose fatty liver formation from endoplasmic reticulum stress (ERS). Poult Sci 2024; 103:103466. [PMID: 38277893 PMCID: PMC10840336 DOI: 10.1016/j.psj.2024.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
This study analyzed the formation of goose fatty liver due to endoplasmic reticulum stress (ERS) caused by 3 types of sugar. Transcriptome analysis was performed for liver tissues from geese fed a traditional diet (maize flour), geese overfed with traditional diet, and geese overfed with diet supplemented with glucose, fructose, or sucrose. Correlation analysis of the liver tissue transcriptomes showed that differentially expressed genes (DEGs) involved in ERS were significantly negatively correlated with DEGs involved in inflammation response in the sucrose overfeeding group, and significantly positively correlated with the DEGs involved in lipid metabolism in fructose overfeeding group. Goose primary hepatocytes were isolated in vitro and then treated with glucose or fructose. Some were also treated with ERS inhibitor 4-phenylbutyric acid (4-PBA). In the hepatocytes, mRNA expression of X-Box Binding Protein 1 (XBP1), activating transcription factor 6 (AFT6) and glucose-regulated protein 78 (GRP78) genes increased in the two sugar groups (glucose and fructose), but were suppressed by adding 4-PBA. The mRNA expression data, protein kinase contents, and triglyceride (TG) and very low-density lipoprotein (VLDL) concentrations all suggest that ERS regulates lipid deposition induced by glucose and fructose via elevating lipid synthesis, inhibiting fatty acid oxidation, and decreasing lipid transportation. In conclusion, glucose, or fructose cause ERS and then ERS causes lipid deposition in goose primary hepatocytes. Three types of sugar cause lipid accumulation and then lipid accumulation prevents ERS during goose fatty liver formation, which suggests a potential mechanism protects goose livers from ERS. The different sugars may induce lipid deposition in different ways.
Collapse
Affiliation(s)
- Rongxue Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
4
|
Wei R, Han C, Wei S, Teng Y, Li L, Liu H, Hu S, Kang B, Xu H. Integrative analysis of transcriptome and lipidome reveals fructose pro-steatosis mechanism in goose fatty liver. Front Nutr 2023; 9:1052600. [PMID: 36704791 PMCID: PMC9871465 DOI: 10.3389/fnut.2022.1052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
To further explore the fructose pro-steatosis mechanism, we performed an integrative analysis of liver transcriptome and lipidome as well as peripheral adipose tissues transcriptome analysis using samples collected from geese overfed with maize flour (control group) and geese overfed with maize flour supplemented with 10% fructose (treatment group). Overfeeding period of the treatment group was significantly shorter than that of the control group (p < 0.05). Dietary supplementation with 10% fructose induced more severe steatosis in goose liver. Compared with the control group, the treatment group had lower in ceramide levels (p < 0.05). The key differentially expressed genes (DEGs) (control group vs. treatment group) involved in liver fatty acid biosynthesis and steroid biosynthesis were downregulated. The conjoint analysis between DEGs and different lipids showed that fatty acid biosynthesis and steroid biosynthesis were the highest impact score pathways. In conclusion, fructose expedites goose liver lipid accumulation maximization during overfeeding.
Collapse
Affiliation(s)
- Rongxue Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shouhai Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Wei R, Ning R, Han C, Wei S, Teng Y, Li L, Liu H, Hu S, Kang B, Xu H. Lipidomics analysis reveals new insights into the goose fatty liver formation. Poult Sci 2022; 102:102428. [PMID: 36586388 PMCID: PMC9811251 DOI: 10.1016/j.psj.2022.102428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation.
Collapse
Affiliation(s)
- Rongxue Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Rong Ning
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Shouhai Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yongqiang Teng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shengqiang Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Bo Kang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hengyong Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| |
Collapse
|
6
|
Wei R, Deng D, Teng Y, Lu C, Luo Z, Abdulai M, Liu H, Xu H, Li L, Hu S, Hu J, Wei S, Zeng X, Han C. Study on the effect of different types of sugar on lipid deposition in goose fatty liver. Poult Sci 2022; 101:101729. [PMID: 35172237 PMCID: PMC8850742 DOI: 10.1016/j.psj.2022.101729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
|
7
|
Xing Y, Xu C, Lin X, Zhao M, Gong D, Liu L, Geng T. Complement C3 participates in the development of goose fatty liver potentially by regulating the expression of FASN and ETNK1. Anim Sci J 2021; 92:e13527. [PMID: 33615637 DOI: 10.1111/asj.13527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in humans, domestic animals and poultry. Different from upregulation of complement C3 in human NAFLD, C3 expression is inhibited in goose fatty liver (GFL), implying a specific role of C3 in GFL. This study was mainly focused on uncovering the uniqueness of goose liver cells in the regulation of C3 expression and identifying the downstream genes of C3 to improve understanding on the specific role of C3 in GFL. The results showed that C3 expression was inhibited in the liver, muscle and fat tissues of the overfed versus control (normally fed) geese. Oleate and insulin could inhibit C3 expression in goose primary hepatocytes but induce it in mouse primary hepatocytes. A total of 1,123 differentially expressed genes (DEGs) were affected by C3 overexpression and were mainly enriched in immune response/inflammation and catabolism-related KEGG pathways. Additionally, the representative downstream genes (FASN and ETNK1) of C3 could mediate the role of C3 in the development of GFL. In conclusion, the suppression of C3 in GFL is at least partially attributed to hyperinsulinemia, hyperlipidemia and uniqueness of goose liver cells. Complement C3 does not only affect hepatic steatosis but also affect inflammation/immune response in GFL.
Collapse
Affiliation(s)
- Ya Xing
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Cheng Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Xiao Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
8
|
Liu T, Xing Y, Fan X, Chen Z, Zhao C, Liu L, Zhao M, Hu X, Dong B, Wang J, Cui H, Gong D, Geng T. Fasting and overfeeding affect the expression of the immunity- or inflammation-related genes in the liver of poultry via endogenous retrovirus. Poult Sci 2021; 100:973-981. [PMID: 33518151 PMCID: PMC7858184 DOI: 10.1016/j.psj.2020.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
It is known that nutrition and immunity are connected, but the mechanism is not very clear. Endogenous retroviruses (ERV) account for 8 to 10% of the human and mouse genomes and play an important role in some biological processes of animals. Recent studies indicate that the activation of ERV can affect the expression of the immunity- or inflammation-related genes, and the activities of ERV are subjected to regulation of many factors including nutritional factors. Therefore, we hypothesize that nutritional status can affect the expression of the immunity- or inflammation-related genes via ERV. To verify this hypothesis, the nutritional status of animals was altered by fasting or overfeeding, and the expression of intact ERV (ERVK18P, ERVK25P) and immunity- or inflammation-related genes (DDX41, IFIH1, IFNG, IRF7, STAT3) in the liver was determined by quantitative PCR, followed by overexpressing ERVK25P in goose primary hepatocytes and determining the expression of the immunity- or inflammation-related genes. The data showed that compared with the control group (no fasting), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the fasted chickens but decreased in the liver of the fasted geese. Moreover, compared with the control group (routinely fed), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the overfed geese. In addition, overexpression of ERVK25P in goose primary hepatocytes can induce the expression of the immunity- or inflammation-related genes. In conclusion, these findings suggest that ERV mediate the effects of fasting and overfeeding on the expression of the immunity- or inflammation-related genes, the mediation varied with poultry species, and ERV and the immunity- or inflammation-related genes may be involved in the development of goose fatty liver. This study provides a potential mechanism for the connection between nutrition and immunity.
Collapse
Affiliation(s)
- Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xue Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenzhen Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuming Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Biao Dong
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Jian Wang
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hengmi Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Wei RX, Ye FJ, He F, Song Q, Xiong XP, Yang WL, Gang X, Hu JW, Hu B, Xu HY, Li L, Liu HH, Zeng XY, Chen L, Kang B, Han CC. Comparison of overfeeding effects on gut physiology and microbiota in two goose breeds. Poult Sci 2020; 100:100960. [PMID: 33652539 PMCID: PMC7936201 DOI: 10.1016/j.psj.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
To have a better understanding of how the “gut–liver axis” mediates the lipid deposition in the liver, a comparison of overfeeding influence on intestine physiology and microbiota between Gang Goose and Tianfu Meat Goose was performed in this study. After force-feeding, compared with Gang Goose, Tianfu Meat Goose had better fat storage capacity in liver (397.94 vs. 166.54 for foie gras weight (g), P < 0.05; 6.37 vs. 2.92% for the ratio of liver to body, P < 0.05; 60.01 vs. 46.64% for fat content, P < 0.05) and the less subcutaneous adipose tissue weight (1240.96 g vs. 1440.46 g, P < 0.05). After force-feeding, the digestion–absorption capacity of Tianfu Meat Goose was higher than that of Gang Goose (5.56 vs. 3.64 and 4.63 vs. 3.68 for the ratio of villus height to crypt depth in duodenum and ileum, respectively, P < 0.05; 1394.96 vs. 782.59 and 1314.76 vs. 766.17 for the invertase activity (U/mg-prot), in duodenum and ileum, respectively, P < 0.05; 6038.36 vs. 3088.29 and 4645.29 vs. 3927.61 for the activity of maltase (U/mg-prot), in duodenum and ileum, respectively, P < 0.05). Force-feeding decreased the gene expression of Escherichia coli in the ileum of Tianfu Meat Goose; force-feeding increased the number of gut microbiota Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction band in Tianfu Meat Goose and decreased the number in Gang Goose. In conclusion, compared with Gang Goose, the lipid deposition in the liver and the intestine digestion–absorption capacity and stability were higher in Tianfu Meat Goose. Thereby, Tianfu Meat Goose is the better breed for foie gras production for prolonged force-feeding; Gang Goose possesses better fat storage capacity in subcutaneous adipose tissue. However, Gang Goose has lower gut stability responding to force-feeding, so Gang Goose is suited to force-feeding in a short time to gain the body weight and subcutaneous fat as an overfed duck for roast duck.
Collapse
Affiliation(s)
- R X Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F J Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Q Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X P Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - W L Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Gang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - J W Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H Y Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Y Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - L Chen
- Xichang Huanong Poultry Co., Xichang, Sichuan 615000, P.R. China
| | - B Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - C C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
10
|
Wei R, Han C, Deng D, Ye F, Gan X, Liu H, Li L, Xu H, Wei S. Research progress into the physiological changes in metabolic pathways in waterfowl with hepatic steatosis. Br Poult Sci 2020; 62:118-124. [DOI: 10.1080/00071668.2020.1812527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- R. Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - C. Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - D. Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - F. Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - X. Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H. Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - L. Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H. Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - S. Wei
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, P.R. China
| |
Collapse
|
11
|
Liu L, Wang Q, Wang Q, Zhao X, Zhao P, Geng T, Gong D. Role of miR29c in goose fatty liver is mediated by its target genes that are involved in energy homeostasis and cell growth. BMC Vet Res 2018; 14:325. [PMID: 30400792 PMCID: PMC6219092 DOI: 10.1186/s12917-018-1653-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/17/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A short period of overfeeding can lead to severe hepatic steatosis in the goose, which is physiological, suggesting that geese, as a descendent of a migrating ancestor, may have evolutionally developed a unique mechanism that operates in contrast to the mechanism underlying pathological fatty liver in humans or other mammals. In this study, we report that suppression of miR29c and upregulation of its target genes in goose fatty liver vs. normal liver could be part of a unique mechanism that contributes to the regulation of energy homeostasis and cell growth. RESULTS Our data showed that miR29c expression was comprehensively inhibited in energy homeostasis-related tissues (the liver, fat and muscle) of overfed vs. normally fed geese, which is different from miR29c induction that occurs in tissues of the diabetic rat. To address the function of miR29c, three predicted target genes (i.e., Insig1, Sgk1 and Col3a1) that participate in energy homeostasis or cell growth were validated by a dual-fluorescence reporter system and other in vitro assays. Importantly, expression of Insig1, Sgk1 and Col3a1 was upregulated in goose fatty liver. In line with these observations, treatment of goose hepatocytes with high glucose or palmitate suppressed the expression of miR29c but induced the expression of the target genes, suggesting that hyperglycemia and hyperlipidemia, at least partially, contribute to the suppression of miR29c and induction of the target genes in goose fatty liver. In addition, pharmacological assays indicated that RFX1 was a transcription factor involved in the expression of miR29c. CONCLUSIONS This study suggests that miR29c may play a role in the regulation of energy homeostasis and tissue growth via its target genes, contributing to the tolerance of the goose to severe hepatic steatosis.
Collapse
Affiliation(s)
- Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Qian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Qianqian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Xing Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Pan Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
12
|
Ibtisham F, An L, Li T, Niu Y, Xiao M, Zhang L, Jia R. Growth Patterns of Two Chinese Native Goose Breeds. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - L An
- Guangdong Ocean University, China
| | - T Li
- Guangdong Ocean University, China
| | - Y Niu
- Guangdong Ocean University, China
| | - M Xiao
- Guangdong Ocean University, China
| | - L Zhang
- Guangdong Ocean University, China
| | - R Jia
- Guangdong Ocean University, China
| |
Collapse
|