1
|
El Darazi P, El Khoury L, El Hage K, Maroun RG, Hobaika Z, Piquemal JP, Gresh N. Quantum-Chemistry Based Design of Halobenzene Derivatives With Augmented Affinities for the HIV-1 Viral G 4/C 16 Base-Pair. Front Chem 2020; 8:440. [PMID: 32637391 PMCID: PMC7317088 DOI: 10.3389/fchem.2020.00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
The HIV-1 integrase (IN) is a major target for the design of novel anti-HIV inhibitors. Among these, three inhibitors which embody a halobenzene ring derivative (HR) in their structures are presently used in clinics. High-resolution X-ray crystallography of the complexes of the IN-viral DNA transient complex bound to each of the three inhibitors showed in all cases the HR ring to interact within a confined zone of the viral DNA, limited to the highly conserved 5′CpA 3′/5′TpG 3′ step. The extension of its extracyclic CX bond is electron-depleted, owing to the existence of the “sigma-hole.” It interacts favorably with the electron-rich rings of base G4. We have sought to increase the affinity of HR derivatives for the G4/C16 base pair. We thus designed thirteen novel derivatives and computed their Quantum Chemistry (QC) intermolecular interaction energies (ΔE) with this base-pair. Most compounds had ΔE values significantly more favorable than those of the HR of the most potent halobenzene drug presently used in clinics, Dolutegravir. This should enable the improvement in a modular piece-wise fashion, the affinities of halogenated inhibitors for viral DNA (vDNA). In view of large scale polarizable molecular dynamics simulations on the entirety of the IN-vDNA-inhibitor complexes, validations of the SIBFA polarizable method are also reported, in which the evolution of each ΔE(SIBFA) contribution is compared to its QC counterpart along this series of derivatives.
Collapse
Affiliation(s)
- Perla El Darazi
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR7616 CNRS, Paris, France.,UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Léa El Khoury
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR7616 CNRS, Paris, France.,UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Krystel El Hage
- SABNP, Univ. Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Richard G Maroun
- UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Zeina Hobaika
- UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR7616 CNRS, Paris, France.,Institut Universitaire de France, Paris, France.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Nohad Gresh
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR7616 CNRS, Paris, France
| |
Collapse
|
2
|
El Khoury L, El Hage K, Piquemal JP, Fermandjian S, Maroun RG, Gresh N, Hobaika Z. Spectrometric and computational studies of the binding of HIV-1 integrase inhibitors to viral DNA extremities. PEERJ PHYSICAL CHEMISTRY 2019. [DOI: 10.7717/peerj-pchem.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three integrase strand transfer inhibitors are in intensive clinical use, raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG). The onset of integrase resistance mutations limits their therapeutic efficiency. As put forth earlier, the drug affinity for the intasome could be improved by targeting preferentially the retroviral nucleobases, which are little, if at all, mutation-prone. We report experimental results of anisotropy fluorescence titrations of viral DNA by these three drugs. These show the DTG > EVG > RAL ranking of their inhibitory activities of the intasome to correspond to that of their free energies of binding, ∆Gs, to retroviral DNA, and that such a ranking is only governed by the binding enthalpies, ∆H, the entropy undergoing marginal variations. We sought whether this ranking might be reproduced through quantum chemistry (QC) Density Functional Theory calculations of intermolecular interaction energies between simplified models consisting of sole halobenzene ring and the highly conserved retroviral nucleobases G4 and C16. These calculations showed that binding of EVG has a small preference over DTG, while RAL ranked third. This indicates that additional interactions of the diketoacid parts of the drugs with DNA could be necessary to further enable preferential binding of DTG. The corresponding ∆Etotvalues computed with a polarizable molecular mechanics/dynamics procedure, Sum of Interactions Between Fragments Ab initio computed (SIBFA), showed good correlations with this ∆E(QC) ranking. These validations are an important step toward the use of polarizable molecular dynamics simulations on DTG or EVG derivatives in their complexes with the complete intasome, an application now motivated and enabled by the advent of currently developed and improved massively parallel software.
Collapse
Affiliation(s)
- Léa El Khoury
- Laboratoire de Chimie Théorique, UMR7616 CNRS, Sorbonne Université, Paris, France
- UR EGP, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Present address: Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Krystel El Hage
- Chemistry and Biology Nucleo(s)tides and Immunology for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomedicale, Paris, France
- Present address: Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, INSERM U829, Université Evry-Val d’Essonne, Evry, France
| | - Jean-Philip Piquemal
- UR EGP, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institut Universitaire de France, Paris, France
| | - Serge Fermandjian
- Chemistry and Biology Nucleo(s)tides and Immunology for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomedicale, Paris, France
| | - Richard G. Maroun
- UR EGP, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Nohad Gresh
- Laboratoire de Chimie Théorique, UMR7616 CNRS, Sorbonne Université, Paris, France
| | - Zeina Hobaika
- UR EGP, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| |
Collapse
|
3
|
Wang X, Chen S, Zhao C, Long L, Wang Y. Preparation of Dolutegravir Intermediate Diastereomer. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xianheng Wang
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road Zunyi 563003 China
| | - Song Chen
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road Zunyi 563003 China
| | - Changkuo Zhao
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road Zunyi 563003 China
| | - Liangye Long
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical University No. 6 Xue Fu West Road Zunyi 563003 China
| | - Yuhe Wang
- Department of PharmacyZunyi Medical University Affiliated Hospital No. 139 Dalian Road Zunyi 563003 China
| |
Collapse
|