1
|
Fares MB, Alijevic O, Johne S, Overk C, Hashimoto M, Kondylis A, Adame A, Dulize R, Peric D, Nury C, Battey J, Guedj E, Sierro N, Mc Hugh D, Rockenstein E, Kim C, Rissman RA, Hoeng J, Peitsch MC, Masliah E, Mathis C. Nicotine-mediated effects in neuronal and mouse models of synucleinopathy. Front Neurosci 2023; 17:1239009. [PMID: 37719154 PMCID: PMC10501483 DOI: 10.3389/fnins.2023.1239009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson's disease. The plant alkaloid "nicotine" was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear. Methods In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice. We also established a novel humanized neuronal model of α-Syn aggregation and toxicity based on treatment of dopaminergic neurons derived from human induced pluripotent stem cells (iPSC) with α-Syn preformed fibrils (PFF) and applied this model to investigate the effects of nicotine and other compounds and their modes of action. Results and discussion Overall, our results showed that nicotine attenuated α-Syn-provoked neuropathology in both models. Moreover, when investigating the role of nicotinic acetylcholine receptor (nAChR) signaling in nicotine's neuroprotective effects in iPSC-derived dopaminergic neurons, we observed that while α4-specific antagonists reduced the nicotine-induced calcium response, α4 agonists (e.g., AZD1446 and anatabine) mediated similar neuroprotective responses against α-Syn PFF-provoked neurodegeneration. Our results show that nicotine attenuates α-Syn-provoked neuropathology in vivo and in a humanized neuronal model of synucleinopathy and that activation of α4β2 nicotinic receptors might mediate these neuroprotective effects.
Collapse
Affiliation(s)
| | - Omar Alijevic
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Stephanie Johne
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Makoto Hashimoto
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | | | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - James Battey
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Damian Mc Hugh
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Changyoun Kim
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
2
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
3
|
Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022; 492:92-107. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022]
Abstract
Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.
Collapse
|
4
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
5
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
6
|
Jiang Y, Ma H, Wang X, Wang Z, Yang Y, Li L, Feng T. Protective Effect of the α7 Nicotinic Receptor Agonist PNU-282987 on Dopaminergic Neurons Against 6-Hydroxydopamine, Regulating Anti-neuroinflammatory and the Immune Balance Pathways in Rat. Front Aging Neurosci 2021; 12:606927. [PMID: 33568987 PMCID: PMC7868536 DOI: 10.3389/fnagi.2020.606927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023] Open
Abstract
Neuroinflammation and inner immune dysfunction are increasingly accepted as important components of the etiopathogenesis of Parkinson’s disease (PD). According to emerging evidence, a7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel, plays an important role in inflammatory reactions and is also expressed on the surface of T cells. In particular, regulatory T cells (Tregs) are critical for the maintenance of immunological tolerance. In the present study, we investigated the roles of α7nAChR in inhibiting inflammation and maintaining the immune balance in rats with 6-hydroxydopamine (6-OHDA)-induced lesions and the possible mechanisms regulating the proportion of Tregs in vivo. Adult male Wistar rats (n = 90) were subjected to a unilateral injection of 6-OHDA into the left medial forebrain bundle, and PNU-282987, an α7nAChR agonist, was intraperitoneally injected 2 h prior to the induction of lesions by 6-OHDA and again at days 1, 7, and 13 postlesion. Behavioral tests and immunohistochemical staining to detect the expression of tyrosine hydroxylase (TH) in the bilateral substantial nigra (SN) were performed. Subsequently, CD4+ T lymphocytes and the expression of forkhead/winged helix transcription factor p3 (Foxp3, which is a marker of Treg cells) in the SN were also assessed using immunofluorescence staining. The expression of glial fibrillary acidic protein (GFAP) in the SN was determined by performing immunohistochemical staining. Additionally, the protein levels of α7nAChR, extracellular signal-regulated kinase (Erk) phosphorylated-Erk (p-Erk) and Foxp3 in the ventral midbrain were determined using Western blotting, and the relative expression of the TNF-α, IL-1β, and IL-10 mRNAs were detected using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). We found that PNU-282987 significantly improved the motor deficits induced by 6-OHDA, reduced the loss of TH in the SN, suppressed the overactivation of GFAP+ cells and expression of related inflammatory cytokines, and increased the number of Foxp3+ cells. In addition, we also showed that PNU-282987 significantly increased the protein expression of the a7nAchR, p-Erk, and Foxp3 in 6-OHDA-lesioned rats (p < 0.05). These results indicated that α7nAChR activation could exert an anti-inflammatory effect and participate in the process of modulating the immune balance during 6-OHDA-induced injury, potentially through the α7nAChR/p-Erk/Foxp3 signaling pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Center for Movement Disorders Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huizi Ma
- Center for Movement Disorders Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuemei Wang
- Center for Movement Disorders Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhan Wang
- Center for Movement Disorders Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaqin Yang
- Center for Movement Disorders Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Longling Li
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Tao Feng
- Center for Movement Disorders Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
7
|
Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of Parkinson's disease. J Chem Neuroanat 2020; 112:101890. [PMID: 33220427 DOI: 10.1016/j.jchemneu.2020.101890] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022]
Abstract
Isolongifolene (ILF), a novel tricyclic sesquiterpene compound isolated from the Indian herb Murraya koenigii (M. koenigii), has been previously demonstrated to have a neuroprotective effect against rotenone-induced oxidative stress, mitochondrial dysfunction, and apoptosis in in vitro model. However, these neuroprotective and anti-apoptotic effects of ILF are not well understood and must be further investigated to elucidate the underlying molecular mechanism of ILF in animal experiments. The objective of this study was to evaluate the neuroprotective effect of ILF on motor impediments, neurochemical variables, anti-oxidative indices, and apoptotic protein expression in a rotenone-induced rat model of Parkinson's disease (PD). PD was induced in male albino Wistar rats via injection of 2.5 mg/kg rotenone for 4 weeks. Rotenone produces PD-like effects by promoting mitochondrial complex I inhibition and microglial activation properties. The protective effect of three different doses of ILF 5, 10 and 20 mg/kg were evaluated for spontaneous locomotion, rotarod performance, and striatal dopamine (DA) content. The results showed that ILF dose-dependently ameliorated the rotenone-induced striatal DA loss and motor impairment from 10 mg/kg. Therefore, we selected 10 mg/kg as the ILF dose for further investigation. Chronic administration of rotenone caused PD-related pathological processes like oxidative stress, and produced a significant decrease in tyrosine hydroxylase (TH), DA transporter (DAT), Vesicular monoamine transporter 2 (VMAT2), and a significant upregulated in α-synuclein and apoptotic protein expression of Bax, Cyt-C and caspases -3, -8 and -9 as well as by decreasing Bcl2 expression. Treatment with ILF 10 mg/kg mitigated oxidative stress in rotenone-treated rats. Furthermore, ILF dramatically alleviated rotenone-induced toxicity and cell death by increasing TH, DAT and VMAT2 expression and reducing the upregulation of α-synuclein, Bax, Cyt-C, caspases -3, -8 and -9. Together, our results confirm that ILF's protective effect against rotenone-induced PD is mediated through anti-oxidant and anti-apoptotic properties. However, further in-depth investigations on ILF's anti-inflammatory and mitochondrial protective abilities are needed to establish ILF as a potential drug candidate for the treatment of Parkinson's disease.
Collapse
|
8
|
Abstract
Motor control in the striatum is an orchestra played by various neuronal populations. Loss of harmony due to dopamine deficiency is considered the primary pathological cause of the symptoms of Parkinson’s disease (PD). Recent progress in experimental approaches has enabled us to examine the striatal circuitry in a much more comprehensive manner, not only reshaping our understanding of striatal functions in movement regulation but also leading to new opportunities for the development of therapeutic strategies for treating PD. In addition to dopaminergic innervation, giant aspiny cholinergic interneurons (ChIs) within the striatum have long been recognized as a critical node for balancing dopamine signaling and regulating movement. With the roles of ChIs in motor control further uncovered and more specific manipulations available, striatal ChIs and their corresponding receptors are emerging as new promising therapeutic targets for PD. This review summarizes recent progress in functional studies of striatal circuitry and discusses the translational implications of these new findings for the treatment of PD.
Collapse
|
9
|
Characterization of AN317, a novel selective agonist of α6β2-containing nicotinic acetylcholine receptors. Biochem Pharmacol 2020; 174:113786. [DOI: 10.1016/j.bcp.2019.113786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022]
|
10
|
Calabresi P, Standaert DG. Dystonia and levodopa-induced dyskinesias in Parkinson's disease: Is there a connection? Neurobiol Dis 2019; 132:104579. [PMID: 31445160 PMCID: PMC6834901 DOI: 10.1016/j.nbd.2019.104579] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Dystonia and levodopa-induced dyskinesia (LID) are both hyperkinetic movement disorders. Dystonia arises most often spontaneously, although it may be seen after stroke, injury, or as a result of genetic causes. LID is associated with Parkinson's disease (PD), emerging as a consequence of chronic therapy with levodopa, and may be either dystonic or choreiform. LID and dystonia share important phenomenological properties and mechanisms. Both LID and dystonia are generated by an integrated circuit involving the cortex, basal ganglia, thalamus and cerebellum. They also share dysregulation of striatal cholinergic signaling and abnormalities of striatal synaptic plasticity. The long duration nature of both LID and dystonia suggests that there may be underlying epigenetic dysregulation as a proximate cause. While both may improve after interventions such as deep brain stimulation (DBS), neither currently has a satisfactory medical therapy, and many people are disabled by the symptoms of dystonia and LID. Further study of the fundamental mechanisms connecting these two disorders may lead to novel approaches to treatment or prevention.
Collapse
Affiliation(s)
- Paolo Calabresi
- Neurological Clinic, Department of Medicine, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia 06132, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
12
|
Quik M, Boyd JT, Bordia T, Perez X. Potential Therapeutic Application for Nicotinic Receptor Drugs in Movement Disorders. Nicotine Tob Res 2019; 21:357-369. [PMID: 30137517 PMCID: PMC6379038 DOI: 10.1093/ntr/nty063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Emerging studies indicate that striatal cholinergic interneurons play an important role in synaptic plasticity and motor control under normal physiological conditions, while their disruption may lead to movement disorders. Here we discuss the involvement of the cholinergic system in motor dysfunction, with a focus on the role of the nicotinic cholinergic system in Parkinson's disease and drug-induced dyskinesias. Evidence for a role for the striatal nicotinic cholinergic system stems from studies showing that administration of nicotine or nicotinic receptor drugs protects against nigrostriatal degeneration and decreases L-dopa-induced dyskinesias. In addition, nicotinic receptor drugs may ameliorate tardive dyskinesia, Tourette's syndrome and ataxia, although further study is required to understand their full potential in the treatment of these disorders. A role for the striatal muscarinic cholinergic system in movement disorders stems from studies showing that muscarinic receptor drugs acutely improve Parkinson's disease motor symptoms, and may reduce dyskinesias and dystonia. Selective stimulation or lesioning of striatal cholinergic interneurons suggests they are primary players in this regulation, although multiple central nervous systems appear to be involved. IMPLICATIONS Accumulating data from preclinical studies and clinical trials suggest that drugs targeting CNS cholinergic systems may be useful for symptomatic treatment of movement disorders. Nicotinic cholinergic drugs, including nicotine and selective nAChR receptor agonists, reduce L-dopa-induced dyskinesias, as well as antipsychotic-induced tardive dyskinesia, and may be useful in Tourette's syndrome and ataxia. Subtype selective muscarinic cholinergic drugs may also provide effective therapies for Parkinson's disease, dyskinesias and dystonia. Continued studies/trials will help address this important issue.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - James T Boyd
- University of Vermont Medical Center Neurology, Burlington, VT
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Xiomara Perez
- Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
13
|
Leino S, Kohtala S, Rantamäki T, Koski SK, Rannanpää S, Salminen O. Dyskinesia and brain-derived neurotrophic factor levels after long-term levodopa and nicotinic receptor agonist treatments in female mice with near-total unilateral dopaminergic denervation. BMC Neurosci 2018; 19:77. [PMID: 30497382 PMCID: PMC6267795 DOI: 10.1186/s12868-018-0478-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The treatment of Parkinson's disease is often complicated by levodopa-induced dyskinesia (LID). Nicotinic acetylcholine receptor agonists can alleviate LID in animal models but may be less effective in conditions of severe dopaminergic denervation. While the mechanisms of LID remain incompletely understood, elevated corticostriatal levels of the brain-derived neurotrophic factor (BDNF) have been suggested to play a role. Here, female mice with near-total unilateral 6-hydroxydopamine-induced nigrostriatal lesions were chronically treated with levodopa, and the effects of the α7 nicotinic receptor partial agonist AZD0328 and nicotine on LID were assessed. At the end of the experiment, BDNF protein levels in the prefrontal cortex and striatum were measured. RESULTS Five-day treatments with three escalating doses of AZD0328 and a 10-week treatment with nicotine failed to alleviate LID. BDNF levels in the lesioned striatum correlated positively with LID severity, but no evidence was found for a levodopa-induced elevation of corticostriatal BDNF in the lesioned hemisphere. The nicotine treatment decreased BDNF levels in the prefrontal cortex but had no effect on striatal BDNF. CONCLUSIONS The findings suggest that treatment of LID with nicotinic agonists may lose its effectiveness as the disease progresses, represent further evidence for a role for BDNF in LID, and expand previous knowledge on the effects of long-term nicotine treatment on BDNF.
Collapse
Affiliation(s)
- Sakari Leino
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Samuel Kohtala
- Laboratory of Neurotherapeutics, Division of Physiology and Neuroscience, Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Division of Physiology and Neuroscience, Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Sini K Koski
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Saara Rannanpää
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Outi Salminen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
14
|
Genetic Knockdown of mGluR5 in Striatal D1R-Containing Neurons Attenuates L-DOPA-Induced Dyskinesia in Aphakia Mice. Mol Neurobiol 2018; 56:4037-4050. [PMID: 30259400 DOI: 10.1007/s12035-018-1356-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
L-DOPA is the main pharmacological therapy for Parkinson's disease. However, long-term exposure to L-DOPA induces involuntary movements termed dyskinesia. Clinical trials show that dyskinesia is attenuated by metabotropic glutamate receptor type 5 (mGluR5) antagonists. Further, the onset of dyskinesia is delayed by nicotine and mGluR5 expression is lower in smokers than in non-smokers. However, the mechanisms by which mGluR5 modulates dyskinesia and how mGluR5 and nicotine interact have not been established. To address these issues, we studied the role of mGluR5 in D1R-containing neurons in dyskinesia and examined whether nicotine reduces dyskinesia via mGluR5. In the aphakia mouse model of Parkinson's disease, we selectively knocked down mGluR5 in D1R-containing neurons (aphakia-mGluR5KD-D1). We found that genetic downregulation of mGluR5 decreased dyskinesia in aphakia mice. Although chronic nicotine increased the therapeutic effect of L-DOPA in both aphakia and aphakia-mGluR5KD-D1 mice, it caused a robust reduction in dyskinesia only in aphakia, and not in aphakia-mGluR5KD-D1 mice. Downregulating mGluR5 or nicotine treatment after L-DOPA decreased ERK and histone 3 activation, and FosB expression. Combining nicotine and mGluR5 knockdown did not have an added antidyskinetic effect, indicating that the effect of nicotine might be mediated by downregulation of mGluR5 expression. Treatment of aphakia-mGluR5KD-D1 mice with a negative allosteric modulator did not further modify dyskinesia, suggesting that mGluR5 in non-D1R-containing neurons does not play a role in its development. In conclusion, this work suggests that mGluR5 antagonists reduce dyskinesia by mainly affecting D1R-containing neurons and that the effect of nicotine on dyskinetic signs in aphakia mice is likely via mGluR5.
Collapse
|
15
|
Attenuated dopaminergic neurodegeneration and motor dysfunction in hemiparkinsonian mice lacking the α5 nicotinic acetylcholine receptor subunit. Neuropharmacology 2018; 138:371-380. [PMID: 29940207 DOI: 10.1016/j.neuropharm.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/04/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
Preclinical studies suggest the involvement of various subtypes of nicotinic acetylcholine receptors in the pathophysiology of Parkinson's disease, a neurodegenerative disorder characterized by the death of dopaminergic neurons in the substantia nigra pars compacta (SNC). We studied for the first time the effects of α5 nicotinic receptor subunit gene deletion on motor behavior and neurodegeneration in mouse models of Parkinson's disease and levodopa-induced dyskinesia. Unilateral dopaminergic lesions were induced in wild-type and α5-KO mice by 6-hydroxydopamine injections into the striatum or the medial forebrain bundle. Subsequently, rotational behavior induced by dopaminergic drugs was measured. A subset of animals received chronic treatments with levodopa and nicotine to assess levodopa-induced dyskinesia and antidyskinetic effects by nicotine. SNC lesion extent was assessed with tyrosine hydroxylase immunohistochemistry and stereological cell counting. Effects of α5 gene deletion on the dopaminergic system were investigated by measuring ex vivo striatal dopamine transporter function and protein expression, dopamine and metabolite tissue concentrations and dopamine receptor mRNA expression. Hemiparkinsonian α5-KO mice exhibited attenuated rotational behavior after amphetamine injection and attenuated levodopa-induced dyskinesia. In the intrastriatal lesion model, dopaminergic cell loss in the medial cluster of the SNC was less severe in α5-KO mice. Decreased striatal dopamine uptake in α5-KO animals suggested reduced dopamine transporter function as a mechanism of attenuated neurotoxicity. Nicotine reduced dyskinesia severity in wild-type but not α5-KO mice. The attenuated dopaminergic neurodegeneration and motor dysfunction observed in hemiparkinsonian α5-KO mice suggests potential for α5 subunit-containing nicotinic receptors as a novel target in the treatment of Parkinson's disease.
Collapse
|
16
|
Johnston TH, Lacoste AMB, Visanji NP, Lang AE, Fox SH, Brotchie JM. Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease. Neuropharmacology 2018; 147:11-27. [PMID: 29907424 DOI: 10.1016/j.neuropharm.2018.05.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
Abstract
In this review, we discuss the opportunity for repurposing drugs for use in l-DOPA-induced dyskinesia (LID) in Parkinson's disease. LID is a particularly suitable indication for drug repurposing given its pharmacological diversity, translatability of animal-models, availability of Phase II proof-of-concept (PoC) methodologies and the indication-specific regulatory environment. A compound fit for repurposing is defined as one with appropriate human safety-data as well as animal safety, toxicology and pharmacokinetic data as found in an Investigational New Drug (IND) package for another indication. We first focus on how such repurposing candidates can be identified and then discuss development strategies that might progress such a candidate towards a Phase II clinical PoC. We discuss traditional means for identifying repurposing candidates and contrast these with newer approaches, especially focussing on the use of computational and artificial intelligence (AI) platforms. We discuss strategies that can be categorised broadly as: in vivo phenotypic screening in a hypothesis-free manner; in vivo phenotypic screening based on analogy to a related disorder; hypothesis-driven evaluation of candidates in vivo and in silico screening with a hypothesis-agnostic component to the selection. To highlight the power of AI approaches, we describe a case study using IBM Watson where a training set of compounds, with demonstrated ability to reduce LID, were employed to identify novel repurposing candidates. Using the approaches discussed, many diverse candidates for repurposing in LID, originally envisaged for other indications, will be described that have already been evaluated for efficacy in non-human primate models of LID and/or clinically. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
- Tom H Johnston
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Atuka Inc., Toronto, ON, Canada.
| | | | - Naomi P Visanji
- Edmund J Safra Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Anthony E Lang
- Edmund J Safra Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Susan H Fox
- Edmund J Safra Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Jonathan M Brotchie
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Atuka Inc., Toronto, ON, Canada
| |
Collapse
|
17
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
18
|
Tanimura A, Pancani T, Lim SAO, Tubert C, Melendez AE, Shen W, Surmeier DJ. Striatal cholinergic interneurons and Parkinson's disease. Eur J Neurosci 2018; 47:1148-1158. [PMID: 28677242 PMCID: PMC6074051 DOI: 10.1111/ejn.13638] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 11/27/2022]
Abstract
Giant, aspiny cholinergic interneurons (ChIs) have long been known to be key nodes in the striatal circuitry controlling goal-directed actions and habits. In recent years, new experimental approaches, like optogenetics and monosynaptic rabies virus mapping, have expanded our understanding of how ChIs contribute to the striatal activity underlying action selection and the interplay of dopaminergic and cholinergic signaling. These approaches also have begun to reveal how ChI function is distorted in disease states affecting the basal ganglia, like Parkinson's disease (PD). This review gives a brief overview of our current understanding of the functional role played by ChIs in striatal physiology and how this changes in PD. The translational implications of these discoveries, as well as the gaps that remain to be bridged, are discussed as well.
Collapse
Affiliation(s)
- Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tristano Pancani
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sean Austin O Lim
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cecilia Tubert
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alexandra E Melendez
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dalton James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
19
|
The striatal cholinergic system in L-dopa-induced dyskinesias. J Neural Transm (Vienna) 2018; 125:1251-1262. [PMID: 29492663 DOI: 10.1007/s00702-018-1845-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions. Consequently, an imbalance between these systems is associated with basal ganglia disorders. Here, we provide an overview of how striatal cholinergic interneurons modulate striatal activity under normal and pathological conditions. Numerous studies show that nigrostriatal damage such as that occurs with Parkinson's disease affects cholinergic receptor-mediated striatal activity. This altered cholinergic signaling is an important contributor to Parkinson's disease as well as to the dyskinesias that develop with L-dopa therapy, the gold standard for treatment. Indeed, multiple preclinical studies show that cholinergic receptor drugs may be beneficial for the treatment of L-dopa-induced dyskinesias. In this review, we discuss the evidence indicating that therapeutic modulation of the cholinergic system, particularly targeting of nicotinic cholinergic receptors, may offer a novel approach to manage this debilitating side effect of dopamine replacement therapy for Parkinson's disease.
Collapse
|
20
|
Effects of antidyskinetic nicotine treatment on dopamine release in dorsal and ventral striatum. Neurosci Lett 2018; 672:40-45. [PMID: 29474871 DOI: 10.1016/j.neulet.2018.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/08/2018] [Accepted: 02/19/2018] [Indexed: 11/23/2022]
Abstract
The treatment of Parkinson's disease is often complicated by levodopa-induced dyskinesia (LID), and antidyskinetic treatment options are currently sparse. Nicotinic acetylcholine receptors have been suggested as potential targets for treatment of LID, as nicotinic agonists have been reported to alleviate LID in animal models. We aimed at the first independent replication of an antidyskinetic effect by nicotine using a mouse model of LID, and at investigation of its mechanisms by studying the release of [3H]dopamine from synaptosomes prepared from the dorsal and ventral striatum. Chronic nicotine treatment in drinking water inhibited the development of LID in mice lesioned unilaterally with 6-hydroxydopamine and treated chronically with levodopa and benserazide. The antidyskinetic nicotine treatment had no effect on [3H]dopamine release mediated by α4β2* nicotinic receptors, but decreased α6β2*-mediated [3H]dopamine release in the lesioned dorsal striatum and the ventral striatum. In addition, nicotine treatment restored [3H]dopamine release in the lesioned ventral striatum to intact levels. The results support a role for nicotinic receptors as drug targets for treatment of LID, and suggest that striatal presynaptic α6β2* receptors are important mediators of nicotine's antidyskinetic effect.
Collapse
|
21
|
Aldrin-Kirk P, Heuer A, Rylander Ottosson D, Davidsson M, Mattsson B, Björklund T. Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 2017; 109:148-162. [PMID: 29037828 DOI: 10.1016/j.nbd.2017.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
The intricate balance between dopaminergic and cholinergic neurotransmission in the striatum has been thoroughly difficult to characterize. It was initially described as a seesaw with a competing function of dopamine versus acetylcholine. Recent technical advances however, have brought this view into question suggesting that the two systems work rather in concert with the cholinergic interneurons (ChIs) driving dopamine release. In this study, we have utilized two transgenic Cre-driver rat lines, a choline acetyl transferase ChAT-Cre transgenic rat and a novel double-transgenic tyrosine hydroxylase TH-Cre/ChAT-Cre rat to further elucidate the role of striatal ChIs in normal motor function and in Parkinson's disease. Here we show that selective and reversible activation of ChIs using chemogenetic (DREADD) receptors increases locomotor function in intact rats and potentiate the therapeutic effect of L-DOPA in the rats with lesions of the nigral dopamine system. However, the potentiation of the L-DOPA effect is accompanied by an aggravation of L-DOPA induced dyskinesias (LIDs). These LIDs appear to be driven primarily through the indirect striato-pallidal pathway since the same effect can be induced by the D2 agonist Quinpirole. Taken together, the results highlight the intricate regulation of balance between the two output pathways from the striatum orchestrated by the ChIs.
Collapse
Affiliation(s)
- Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden
| | - Daniella Rylander Ottosson
- Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden; Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden
| | - Bengt Mattsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden; Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
22
|
Kljakic O, Janickova H, Prado VF, Prado MAM. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J Neurochem 2017; 142 Suppl 2:90-102. [PMID: 28421605 DOI: 10.1111/jnc.14003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior. Our review highlights the recent research into identifying mechanisms that regulate the secretion and function of Glu and ACh released by CINs and the roles these neurons play in regulating dopamine secretion and striatal activity. In particular, we focus on how the transporters for ACh (VAChT) and Glu (VGLUT3) influence the storage of neurotransmitters in CINs. We further discuss how these individual neurotransmitters regulate striatal computation and distinct aspects of behavior that are regulated by the striatum. We suggest that understanding the distinct and complementary functional roles of these two neurotransmitters may prove beneficial in the development of therapies for Parkinson's disease and addiction. Overall, understanding how Glu and ACh secreted by CINs impacts striatal activity may provide insight into how different populations of 'bilingual' neurons are able to develop sophisticated regulation of their targets by interacting with multiple receptors but also by regulating each other's vesicular storage. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Perez XA, Zhang D, Bordia T, Quik M. Striatal D1 medium spiny neuron activation induces dyskinesias in parkinsonian mice. Mov Disord 2017; 32:538-548. [PMID: 28256010 DOI: 10.1002/mds.26955] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dyskinesias are a disabling motor complication that arises with prolonged l-dopa treatment. Studies using D1 receptor drugs and genetically modified mice suggest that medium spiny neurons expressing D1 receptors play a primary role in l-dopa-induced dyskinesias. However, the specific role of these neurons in dyskinesias is not fully understood. METHODS We used optogenetics, which allows for precise modulation of select neurons in vivo, to investigate whether striatal D1-expressing medium spiny neuron activity regulates abnormal involuntary movements or dyskinesia in parkinsonian mice. D1-cre mice unilaterally lesioned with 6-hydroxydopamine received striatal injections of cre-dependent channelrhodopsin2 virus or control virus. After stable virus expression, the effect of optical stimulation on dyskinesia was tested in l-dopa-naïve and l-dopa-primed mice. RESULTS Single-pulse and burst-optical stimulation of D1-expressing medium spiny neurons induced dyskinesias in l-dopa-naïve channelrhodopsin2 mice. In stably dyskinetic mice, l-dopa injection induced dyskinesia to a similar or somewhat greater extent than optical stimulation. Combined l-dopa administration and stimulation resulted in an additive increase in dyskinesias, indicating that other mechanisms also contribute. Molecular studies indicate that changes in extracellular signal-regulated kinase phosphorylation in D1-expressing medium spiny neurons are involved. Optical stimulation did not ameliorate parkinsonism in l-dopa-naïve mice. However, it improved parkinsonism in l-dopa-primed mice to a similar extent as l-dopa administration. None of the stimulation paradigms enhanced dyskinesia or modified parkinsonism in l-dopa-naïve or l-dopa-primed control virus mice. CONCLUSION The data provide direct evidence that striatal D1-expressing medium spiny neuron stimulation is sufficient to induce dyskinesias and contributes to the regulation of motor control. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiomara A Perez
- Bioscience Division, SRI International, Menlo Park, California, USA
| | - Danhui Zhang
- Bioscience Division, SRI International, Menlo Park, California, USA
| | - Tanuja Bordia
- Bioscience Division, SRI International, Menlo Park, California, USA
| | - Maryka Quik
- Bioscience Division, SRI International, Menlo Park, California, USA
| |
Collapse
|
24
|
Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson's disease. NPJ PARKINSONS DISEASE 2016; 2:16001. [PMID: 28725692 PMCID: PMC5516588 DOI: 10.1038/npjparkd.2016.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
In view of its ability to explain the most frequent motor symptoms of Parkinson’s Disease (PD), degeneration of dopaminergic neurons has been considered one of the disease’s main pathophysiological features. Several studies have shown that neurodegeneration also affects noradrenergic, serotoninergic, cholinergic and other monoaminergic neuronal populations. In this work, the characteristics of cholinergic deficits in PD and their clinical correlates are reviewed. Important neurophysiological processes at the root of several motor and cognitive functions remit to cholinergic neurotransmission at the synaptic, pathway, and circuital levels. The bulk of evidence highlights the link between cholinergic alterations and PD motor symptoms, gait dysfunction, levodopa-induced dyskinesias, cognitive deterioration, psychosis, sleep abnormalities, autonomic dysfunction, and altered olfactory function. The pathophysiology of these symptoms is related to alteration of the cholinergic tone in the striatum and/or to degeneration of cholinergic nuclei, most importantly the nucleus basalis magnocellularis and the pedunculopontine nucleus. Several results suggest the clinical usefulness of antimuscarinic drugs for treating PD motor symptoms and of inhibitors of the enzyme acetylcholinesterase for the treatment of dementia. Data also suggest that these inhibitors and pedunculopontine nucleus deep-brain stimulation might also be effective in preventing falls. Finally, several drugs acting on nicotinic receptors have proved efficacious for treating levodopa-induced dyskinesias and cognitive impairment and as neuroprotective agents in PD animal models. Results in human patients are still lacking.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Institute of Cardiologic Research, National Scientific and Research Council (ININCA-CONICET), Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA-CONICET, Faculty of Medical Sciences, Buenos Aires, Argentina
| |
Collapse
|
25
|
Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, Quik M. α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord 2015; 30:1901-1911. [PMID: 26573698 DOI: 10.1002/mds.26453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND ABT-126 is a novel, safe, and well-tolerated α7 nicotinic receptor agonist in a Phase 2 Alzheimer's disease study. We tested the antidyskinetic effect of ABT-126 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys with moderate and more severe nigrostriatal damage. METHODS Monkeys (n = 21, set 1) were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 1-2×. When parkinsonian, they were gavaged with levodopa (10 mg/kg)/carbidopa (2.5 mg/kg) twice daily and dyskinesias rated. They were then given nicotine in drinking water (n = 5), or treated with vehicle (n = 6) or ABT-126 (n = 10) twice daily orally 30 min before levodopa. Set 1 was then re-lesioned 1 to 2 times for a total of 3 to 4 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections. The antidyskinetic effect of ABT-126, nicotine, and the β2* nicotinic receptor agonist ABT-894 was re-assessed. Another group of monkeys (n = 23, set 2) were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only 1× to 2×. They were treated with levodopa/carbidopa, administered the α7 agonist ABT-107 (n = 6), ABT-894 (n = 6), nicotine (n = 5), or vehicle (n = 6) and dyskinesias evaluated. All monkeys were euthanized and the dopamine transporter measured. RESULTS With moderate nigrostriatal damage (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 1×-2×), ABT-126 dose-dependently decreased dyskinesias (∼60%), with similar results seen with ABT-894 (∼60%) or nicotine (∼60%). With more severe damage (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 3-4×), ABT-126 and nicotine reduced dyskinesias, but ABT-894 did not. The dopamine transporter was 41% and 8.9% of control, with moderate and severe nigrostriatal damage, respectively. No drug modified parkinsonism. CONCLUSION The novel α7 nicotinic receptor drug ABT-126 reduced dyskinesias in monkeys with both moderate and severe nigrostriatal damage. ABT-126 may be useful to reduce dyskinesias in both early- and later-stage Parkinson's disease.
Collapse
Affiliation(s)
- Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT 84148
| | - Michael W Decker
- AbbVie, Inc, 1 North Waukegan Road, North Chicago, IL 60064-6125
| | - Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025
| |
Collapse
|
26
|
Perez XA. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson's Disease. Neuropsychol Rev 2015; 25:371-83. [PMID: 26553323 DOI: 10.1007/s11065-015-9303-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
One of the primary deficits in Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson's disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD.
Collapse
Affiliation(s)
- Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
27
|
Quik M, Zhang D, McGregor M, Bordia T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2015; 97:399-407. [PMID: 26093062 PMCID: PMC4600450 DOI: 10.1016/j.bcp.2015.06.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence suggests that CNS α7 nicotinic acetylcholine receptors (nAChRs) are important targets for the development of therapeutic approaches for Parkinson's disease. This progressive neurodegenerative disorder is characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Currently l-dopa is the gold standard treatment for Parkinson's disease motor problems, particularly in the early disease stages. However, it does not improve the other symptoms, nor does it reduce the inevitable disease progression. Novel therapeutic strategies for Parkinson's disease are therefore critical. Extensive pre-clinical work using a wide variety of experimental models shows that nicotine and nAChR agonists protect against damage to nigrostriatal and other neuronal cells. This observation suggests that nicotine and/or nAChR agonists may be useful as disease modifying agents. Additionally, studies in several parkinsonian animal models including nonhuman primates show that nicotine reduces l-dopa-induced dyskinesias, a side effect of l-dopa therapy that may be as incapacitating as Parkinson's disease itself. Work with subtype selective nAChR agonists indicate that α7 nAChRs are involved in mediating both the neuroprotective and antidyskinetic effects, thus offering a targeted strategy with optimal beneficial effects and minimal adverse responses. Here, we review studies demonstrating a role for α7 nAChRs in protection against neurodegenerative effects and for the reduction of l-dopa-induced dyskinesias. Altogether, this work suggests that α7 nAChRs may be useful targets for reducing Parkinson's disease progression and for the management of the dyskinesias that arise with l-dopa therapy.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| |
Collapse
|
28
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
29
|
Sérrière S, Doméné A, Vercouillie J, Mothes C, Bodard S, Rodrigues N, Guilloteau D, Routier S, Page G, Chalon S. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [(18)F]LBT-999 in a Parkinson's Disease Rat Model. Front Med (Lausanne) 2015; 2:61. [PMID: 26389120 PMCID: PMC4556971 DOI: 10.3389/fmed.2015.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 12/02/2022] Open
Abstract
The inverse association between nicotine intake and Parkinson's disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [(18)F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [(3)H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD.
Collapse
Affiliation(s)
- Sophie Sérrière
- UMR INSERM U930, Université François Rabelais, Tours, France
| | - Aurélie Doméné
- UMR INSERM U930, Université François Rabelais, Tours, France
| | | | | | - Sylvie Bodard
- UMR INSERM U930, Université François Rabelais, Tours, France
| | - Nuno Rodrigues
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d’Orléans, Orléans, France
| | - Denis Guilloteau
- UMR INSERM U930, Université François Rabelais, Tours, France
- CHRU de Tours, Hopital Bretonneau, Tours, France
| | - Sylvain Routier
- UMR CNRS 7311, Institut de Chimie Organique et Analytique, Université d’Orléans, Orléans, France
| | - Guylène Page
- EA3808 – CiMoTheMA, Université de Poitiers, Poitiers, France
| | - Sylvie Chalon
- UMR INSERM U930, Université François Rabelais, Tours, France
| |
Collapse
|
30
|
Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S. The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology 2015; 96:274-88. [PMID: 25701707 PMCID: PMC4486515 DOI: 10.1016/j.neuropharm.2015.02.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is ubiquitously expressed in both the central nervous system and in the periphery. CHRNA7 is genetically linked to multiple disorders with cognitive deficits, including schizophrenia, bipolar disorder, ADHD, epilepsy, Alzheimer's disease, and Rett syndrome. The regulation of CHRNA7 is complex; more than a dozen mechanisms are known, one of which is a partial duplication of the parent gene. Exons 5-10 of CHRNA7 on chromosome 15 were duplicated and inserted 1.6 Mb upstream of CHRNA7, interrupting an earlier partial duplication of two other genes. The chimeric CHRFAM7A gene product, dupα7, assembles with α7 subunits, resulting in a dominant negative regulation of function. The duplication is human specific, occurring neither in primates nor in rodents. The duplicated α7 sequence in exons 5-10 of CHRFAM7A is almost identical to CHRNA7, and thus is not completely queried in high throughput genetic studies (GWAS). Further, pre-clinical animal models of the α7nAChR utilized in drug development research do not have CHRFAM7A (dupα7) and cannot fully model human drug responses. The wide expression of CHRNA7, its multiple functions and modes of regulation present challenges for study of this gene in disease. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Melissa L Sinkus
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Sharon Graw
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| | - Randal G Ross
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Henry A Lester
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| |
Collapse
|
31
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
32
|
Ivanenkov YA, Veselov MS, Chufarova NV, Majouga AG, Kudryavceva AA, Ivachtchenko AV. Non-dopamine receptor ligands for the treatment of Parkinson's disease. Insight into the related chemical/property space. Mol Divers 2015; 20:345-65. [PMID: 25956815 DOI: 10.1007/s11030-015-9598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Extensive biochemical and clinical studies have increasingly recognized Parkinson's disease as a highly complex and multi-faceted neurological disorder having branched non-motor symptoms including sleep disorders, pain, constipation, psychosis, depression, and fatigue. A wide range of biological targets in the brain deeply implicated in this pathology resulted in a plethora of novel small-molecule compounds with promising activity. This review thoroughly describes the chemical space of non-dopamine receptor ligands in terms of diversity, isosteric/bioisosteric morphing, and molecular descriptors.
Collapse
Affiliation(s)
- Yan A Ivanenkov
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141700, Russian Federation. .,ChemDiv, 6605 Nancy Ridge Drive, San Diego, CA, 92121, USA. .,Chemistry Department, Moscow State University, Leninskie Gory, Building 1/3, Moscow, 119991, Russian Federation.
| | - Mark S Veselov
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141700, Russian Federation.,Chemistry Department, Moscow State University, Leninskie Gory, Building 1/3, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow, 119049, Russian Federation
| | - Nina V Chufarova
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141700, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow, 119049, Russian Federation
| | - Alexander G Majouga
- Chemistry Department, Moscow State University, Leninskie Gory, Building 1/3, Moscow, 119991, Russian Federation.,National University of Science and Technology MISiS, 9 Leninskiy pr., Moscow, 119049, Russian Federation
| | - Anna A Kudryavceva
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | | |
Collapse
|
33
|
Bordia T, McGregor M, McIntosh JM, Drenan RM, Quik M. Evidence for a role for α6(∗) nAChRs in l-dopa-induced dyskinesias using Parkinsonian α6(∗) nAChR gain-of-function mice. Neuroscience 2015; 295:187-97. [PMID: 25813704 DOI: 10.1016/j.neuroscience.2015.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of α6β2(∗) nAChRs in LIDs, we used gain-of-function α6(∗) nAChR (α6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and α6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3μg/ml) into the medial forebrain bundle. Three to 4wk later, they were administered l-dopa (3mg/kg) plus benserazide (15mg/kg) until stably dyskinetic. l-dopa-induced abnormal involuntary movements (AIMs) were similar in α6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300μg/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in α6L9S mice at a maximally tolerated nicotine dose of 20μg/ml. However, the nAChR antagonist mecamylamine (1mg/kg ip 30min before l-dopa) reduced l-dopa-induced AIMs in both α6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in α6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive α6β2(∗) nAChRs may desensitize less readily. The present data show that α6β2(∗) nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease.
Collapse
Affiliation(s)
- T Bordia
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - M McGregor
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - J M McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Department of Psychiatry, University of Utah, Salt Lake City, UT 84148, USA; Department of Biology, University of Utah, Salt Lake City, UT 84148, USA
| | - R M Drenan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - M Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
34
|
Quik M, Bordia T, Zhang D, Perez XA. Nicotine and Nicotinic Receptor Drugs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:247-71. [DOI: 10.1016/bs.irn.2015.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Zhang D, McGregor M, Decker MW, Quik M. The α7 nicotinic receptor agonist ABT-107 decreases L-Dopa-induced dyskinesias in parkinsonian monkeys. J Pharmacol Exp Ther 2014; 351:25-32. [PMID: 25034405 PMCID: PMC4165030 DOI: 10.1124/jpet.114.216283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Previous studies in Parkinsonian rats and monkeys have shown that β2-selective nicotinic acetylcholine receptor (nAChR) agonists reduce l-Dopa-induced dyskinesias (LIDs), a serious complication of l-Dopa therapy for Parkinson's disease. Since rodent studies also suggested an involvement of α7 nAChRs in LIDs, we tested the effect of the potent, selective α7 agonist ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole]. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned monkeys were gavaged with l-Dopa/carbidopa (10 and 2.5 mg/kg, respectively) twice daily, which resulted in stable LIDs. A dose-response study (0.03-1.0 mg/kg) showed that oral ABT-107 decreased LIDs by 40-60%. LIDs returned to control levels only after a 6-week ABT-107 washout, suggesting that long-term molecular changes were involved. Subsequent readministration of ABT-107 decreased LIDs by 50-60%, indicating that tolerance did not develop. ABT-107 had no effect on Parkinsonism or cognitive performance. We next tested ABT-107 together with the β2 agonist ABT-894 [(3-(5,6-dichloro-pyridin-3-yl)-1(S),5 (S)-3,6-diazabicyclo[3.2.0]heptane], previously shown to reduce LIDs in Parkinsonian monkeys. In one study, the monkeys were first given oral ABT-894 (0.01 mg/kg), which maximally decreased LIDs by 50-60%; they were then also treated with 0.1 mg/kg ABT-107, a dose that maximally reduced LIDs. The effect of combined treatment on LIDs was similar to that with either drug alone. Comparable results were observed in a group of monkeys first treated with ABT-107 and then also given ABT-894. Thus, α7 and β2 nAChR-selective drugs may function via a final common mechanism to reduce LIDs. The present results suggest that drugs targeting either α7 or β2 nAChRs may be useful as antidyskinetic agents in Parkinson's disease.
Collapse
Affiliation(s)
- Danhui Zhang
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| | - Matthew McGregor
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| | - Michael W Decker
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| | - Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| |
Collapse
|
36
|
Di Paolo T, Grégoire L, Feuerbach D, Elbast W, Weiss M, Gomez-Mancilla B. AQW051, a novel and selective nicotinic acetylcholine receptor α7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord 2014; 20:1119-23. [PMID: 25172125 DOI: 10.1016/j.parkreldis.2014.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/17/2014] [Accepted: 05/12/2014] [Indexed: 11/16/2022]
Abstract
Nicotinic acetylcholine receptor (nAChR)-mediated signaling has been implicated in levodopa (l-Dopa)-induced dyskinesias (LID). This study investigated the novel selective α7 nAChR partial agonist (R)-3-(6-ρ-Tolyl-pyridin-3-yloxy)-1-aza-bicyclo(2.2.2)octane (AQW051) for its antidyskinetic activity in l-Dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned cynomolgus monkeys. Six MPTP monkeys were repeatedly treated with l-Dopa to develop reproducible dyskinesias. AQW051 (2, 8, and 15 mg/kg) administered 1 h before l-Dopa treatment did not affect their parkinsonian scores or locomotor activity, but did significantly extend the duration of the l-Dopa antiparkinsonian response, by 30 min at the highest AQW051 dose (15 mg/kg). Dyskinesias were significantly reduced for the total period of l-Dopa effect following treatment with 15 mg/kg; achieving a reduction of 60% in median values. Significant reductions in 1 h peak dyskinesia scores and maximal dyskinesias were also observed with AQW051 (15 mg/kg). To understand the exposure-effect relationship and guide dose selection in clinical trials, plasma concentration-time data for the 15 mg/kg AQW051 dose were collected from three of the MPTP monkeys in a separate pharmacokinetic experiment. No abnormal behavioral or physiological effects were reported following AQW051 treatment. Our results show that AQW051 at a high dose can reduce LID without compromising the benefits of l-Dopa and extend the duration of the l-Dopa antiparkinsonian response in MPTP monkeys. This supports the clinical testing of α7 nAChR agonists to modulate LID and extend the duration of the therapeutic effect of l-Dopa.
Collapse
Affiliation(s)
- Thérèse Di Paolo
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec, QC, Canada
| | - Dominik Feuerbach
- Novartis Institutes for BioMedical Research Basel, Basel, Switzerland; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, QC, Canada
| | - Walid Elbast
- Novartis Institutes for BioMedical Research Basel, Basel, Switzerland; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, QC, Canada
| | - Markus Weiss
- Novartis Institutes for BioMedical Research Basel, Basel, Switzerland; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, QC, Canada
| | - Baltazar Gomez-Mancilla
- Novartis Institutes for BioMedical Research Basel, Basel, Switzerland; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, QC, Canada.
| |
Collapse
|
37
|
Quik M, Zhang D, Perez XA, Bordia T. Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 2014; 144:50-9. [PMID: 24836728 DOI: 10.1016/j.pharmthera.2014.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023]
Abstract
A large body of evidence using experimental animal models shows that the nicotinic cholinergic system is involved in the control of movement under physiological conditions. This work raised the question whether dysregulation of this system may contribute to motor dysfunction and whether drugs targeting nicotinic acetylcholine receptors (nAChRs) may be of therapeutic benefit in movement disorders. Accumulating preclinical studies now show that drugs acting at nAChRs improve drug-induced dyskinesias. The general nAChR agonist nicotine, as well as several nAChR agonists (varenicline, ABT-089 and ABT-894), reduces l-dopa-induced abnormal involuntary movements or dyskinesias up to 60% in parkinsonian nonhuman primates and rodents. These dyskinesias are potentially debilitating abnormal involuntary movements that arise as a complication of l-dopa therapy for Parkinson's disease. In addition, nicotine and varenicline decrease antipsychotic-induced abnormal involuntary movements in rodent models of tardive dyskinesia. Antipsychotic-induced dyskinesias frequently arise as a side effect of chronic drug treatment for schizophrenia, psychosis and other psychiatric disorders. Preclinical and clinical studies also show that the nAChR agonist varenicline improves balance and coordination in various ataxias. Lastly, nicotine has been reported to attenuate the dyskinetic symptoms of Tourette's disorder. Several nAChR subtypes appear to be involved in these beneficial effects of nicotine and nAChR drugs including α4β2*, α6β2* and α7 nAChRs (the asterisk indicates the possible presence of other subunits in the receptor). Overall, the above findings, coupled with nicotine's neuroprotective effects, suggest that nAChR drugs have potential for future drug development for movement disorders.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
38
|
Abstract
3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia (LID) is a debilitating side effect of long-term dopamine replacement therapy in Parkinson's Disease. At present, there are few therapeutic options for treatment of LID and mechanisms contributing to the development and maintenance of these drug-induced motor complications are not well understood. We have previously shown that pharmacological reduction of cholinergic tone attenuates the expression of LID in parkinsonian mice with established dyskinesia after chronic L-DOPA treatment. The present study was undertaken to provide anatomically specific evidence for the role of striatal cholinergic interneurons by ablating them before initiation of L-DOPA treatment and determining whether it decreases LID. We used a novel approach to ablate striatal cholinergic interneurons (ChIs) via Cre-dependent viral expression of the diphtheria toxin A subunit (DT-A) in hemiparkinsonian transgenic mice expressing Cre recombinase under control of the choline acetyltransferase promoter. We show that Cre recombinase-mediated DT-A ablation selectively eliminated ChIs when injected into striatum. The depletion of ChIs markedly attenuated LID without compromising the therapeutic efficacy of L-DOPA. These results provide evidence that ChIs play a key and selective role in LID and that strategies to reduce striatal cholinergic tone may represent a promising approach to decreasing L-DOPA-induced motor complications in Parkinson's disease.
Collapse
|
39
|
Zhang D, Bordia T, McGregor M, McIntosh JM, Decker MW, Quik M. ABT-089 and ABT-894 reduce levodopa-induced dyskinesias in a monkey model of Parkinson's disease. Mov Disord 2014; 29:508-17. [PMID: 24515328 PMCID: PMC3990279 DOI: 10.1002/mds.25817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/16/2013] [Accepted: 12/30/2013] [Indexed: 12/18/2022] Open
Abstract
Levodopa-induced dyskinesias (LIDs) are a serious complication of levodopa therapy for Parkinson's disease for which there is little treatment. Accumulating evidence shows that nicotinic acetylcholine receptor (nAChR) drugs decrease LIDs in parkinsonian animals. Here, we examined the effect of two β2 nAChR agonists, ABT-089 and ABT-894, that previously were approved for phase 2 clinical trials for other indications. Two sets of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys were administered levodopa/carbidopa (10 mg/kg and 2.5 mg/kg, respectively) twice daily 5 days a week until they were stably dyskinetic. Each set had a vehicle-treated group, an nAChR agonist-treated group, and a nicotine-treated group as a positive control. Set A monkeys had previously received other nAChR drugs (nAChR drug-primed), whereas Set B monkeys were initially nAChR drug-naive. Both sets were administered the partial agonist ABT-089 (range, 0.01-1.0 mg/kg) orally 5 days a week twice daily 30 minutes before levodopa with each dose given for 1 to 5 weeks. ABT-089 decreased LIDs by 30% to 50% compared with vehicle-treated monkeys. Nicotine reduced LIDs by 70% in a parallel group. After 4 weeks of washout, the effect of the full agonist ABT-894 (range, 0.0001-0.10 mg/kg) was assessed on LIDs in Set A and Set B. ABT-894 reduced LIDs by 70%, similar to nicotine. Both drugs acted equally well at α4β2* and α6β2* nAChRs; however, ABT-089 was 30 to 60 times less potent than ABT-894. Tolerance did not develop for the time periods tested (range, 3-4 months). The nAChR drugs did not worsen parkinsonism or cognitive ability. Emesis, a common problem with nAChR drugs, was not observed. ABT-894 and ABT-089 appear to be good candidate nAChR drugs for the management of LIDs in Parkinson's disease.
Collapse
Affiliation(s)
- Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025; USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025; USA
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025; USA
| | - J. Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84148 and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT 84112
| | | | - Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025; USA
| |
Collapse
|
40
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
41
|
Effect of nicotine on l-dopa-induced dyskinesia in animal models of Parkinson’s disease: a systematic review and meta-analysis. Neurol Sci 2014; 35:653-62. [DOI: 10.1007/s10072-014-1652-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/22/2014] [Indexed: 02/05/2023]
|
42
|
Zhang D, Mallela A, Sohn D, Carroll FI, Bencherif M, Letchworth S, Quik M. Nicotinic receptor agonists reduce L-DOPA-induced dyskinesias in a monkey model of Parkinson's disease. J Pharmacol Exp Ther 2013; 347:225-34. [PMID: 23902940 PMCID: PMC3781407 DOI: 10.1124/jpet.113.207639] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/30/2013] [Indexed: 01/12/2023] Open
Abstract
Abnormal involuntary movements or dyskinesias are a serious complication of long-term l-DOPA treatment of Parkinson's disease, for which there are few treatment options. Accumulating preclinical data show that nicotine decreases l-DOPA-induced dyskinesias (LIDs), suggesting that it may be a useful antidyskinetic therapy for Parkinson's disease. Here, we investigated whether nicotinic acetylcholine receptor (nAChR) agonists reduced LIDs in nonhuman primates. We first tested the nonselective nAChR agonist 1, 6,7,8,9-tetrahydro-6,10-methano-6H-pyrazino[2,3-h][3]benzazepine (varenicline), which offers the advantage that it is approved by the U.S. Food and Drug Administration for use in humans. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys (n = 23) were first administered l-DOPA/carbidopa (10/2.5 mg/kg) twice daily 5 days/week until stably dyskinetic. Oral varenicline (0.03-0.10 mg/kg) decreased LIDs ∼50% compared with vehicle-treated monkeys, whereas nicotine treatment (300 µg/ml in drinking water) reduced LIDs by 70% in a parallel group of animals. We next tested the selective α4β2*/α6β2* nAChR agonist TC-8831 [3-cyclopropylcarbonyl-3,6-diazabicyclo[3.1.1]heptane] on LIDs in the same set of monkeys after a 10-week washout. We also tested TC-8831 in another set of MPTP-lesioned monkeys (n = 16) that were nAChR drug-naïve. Oral TC-8831 (0.03-0.3 mg/kg) reduced LIDs in both sets by 30-50%. After a washout period, repeat TC-8831 dosing led to a greater decline in LIDs (60%) in both sets of monkeys that was similar to the effect of nicotine. Tolerance to any nAChR drug did not develop over the course of the study (3-4 months). NAChR drug treatment did not worsen parkinsonism or cognitive ability. These data suggest that nAChR agonists may be useful for the management of dyskinesias in l-DOPA-treated Parkinson's disease patients.
Collapse
Affiliation(s)
- Danhui Zhang
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., A.M., D.S., M.Q.); Research Triangle Institute, Research Triangle Park, North Carolina (F.I.C.); and Targacept, Inc., Winston-Salem, North Carolina (M.B., S.L.)
| | | | | | | | | | | | | |
Collapse
|