1
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Barbier-Torres L, Chhimwal J, Kim SY, Ramani K, Robinson A, Yang H, Van Eyk J, Liangpunsakul S, Seki E, Mato JM, Lu SC. S-Adenosylmethionine Negatively Regulates the Mitochondrial Respiratory Chain Repressor MCJ in the Liver. Int J Biol Sci 2024; 20:1218-1237. [PMID: 38385082 PMCID: PMC10878152 DOI: 10.7150/ijbs.90104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 02/23/2024] Open
Abstract
MCJ (Methylation-Controlled J protein), an endogenous repressor of the mitochondrial respiratory chain, is upregulated in multiple liver diseases but little is known about how it is regulated. S-adenosylmethionine (SAMe), the biological methyl donor, is frequently depleted in chronic liver diseases. Here, we show that SAMe negatively regulates MCJ in the liver. While deficiency in methionine adenosyltransferase alpha 1 (MATα1), enzyme that catalyzes SAMe biosynthesis, leads to hepatic MCJ upregulation, MAT1A overexpression and SAMe treatment reduced MCJ expression. We found that MCJ is methylated at lysine residues and that it interacts with MATα1 in liver mitochondria, likely to facilitate its methylation. Lastly, we observed that MCJ is upregulated in alcohol-associated liver disease, a condition characterized by reduced MAT1A expression and SAMe levels along with mitochondrial injury. MCJ silencing protected against alcohol-induced mitochondrial dysfunction and lipid accumulation. Our study demonstrates a new role of MATα1 and SAMe in reducing hepatic MCJ expression.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - So Yeon Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Robinson
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Los Angeles, CA, USA
| | - Heping Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Van Eyk
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Los Angeles, CA, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Basque Research and Technology Assembly (BRTA), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|
4
|
You W, Liu S, Ji J, Ling D, Tu Y, Zhou Y, Chen W, Valencak TG, Wang Y, Shan T. Growth arrest and DNA damage-inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha. J Cachexia Sarcopenia Muscle 2023; 14:326-341. [PMID: 36511343 PMCID: PMC9891974 DOI: 10.1002/jcsm.13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle fat infiltration is a common feature during ageing, obesity and several myopathies associated with muscular dysfunction and sarcopenia. However, the regulatory mechanisms of intramuscular adipogenesis and strategies to reduce fat infiltration in muscle remain unclear. Here, we identified the growth arrest and DNA damage-inducible alpha (GADD45A), a stress-inducible histone folding protein, as a critical regulator of intramuscular fat (IMAT) infiltration. METHODS To explore the role of GADD45A on IMAT infiltration and muscle regeneration, the gain or loss function of GADD45A in intramuscular preadipocytes was performed. The adipocyte-specific GADD45A knock-in (KI) mice and high IMAT-infiltrated muscle model by glycerol injection (50 μL of 50% v/v GLY) were generated. RNA-sequencing, histological changes, gene expression, lipid metabolism, mitochondrial function and the effect of dietary factor epigallocatechin-3-gallate (EGCG) treatment (100 mg/kg) on IMAT infiltration were studied. RESULTS The unbiased transcriptomics data analysis indicated that GADD45A expression positively correlates with IMAT infiltration and muscle metabolic disorders in humans (correlation: young vs. aged people, Gadd45a and Cebpa, r2 = 0.20, P < 0.05) and animals (correlation: wild-type [WT] vs. mdx mice, Gadd45a and Cebpa, r2 = 0.38, P < 0.05; NaCl vs. GLY mice, Gadd45a and Adipoq/Fabp4, r2 = 0.80/0.71, both P < 0.0001). In vitro, GADD45A overexpression promotes intramuscular preadipocyte adipogenesis, upregulating the expression of adipogenic genes (Ppara: +47%, Adipoq: +28%, P < 0.001; Cebpa: +135%, Fabp4: +16%, P < 0.01; Pparg: +66%, Leptin: +77%, P < 0.05). GADD45A knockdown robustly decreased lipid accumulation (Pparg: -57%, Adipoq: -35%, P < 0.001; Fabp4: -37%, P < 0.01; Leptin: -28%, P < 0.05). GADD45A KI mice exhibit inhibited skeletal muscle regeneration (myofibres: -40%, P < 0.01) and enhanced IMAT infiltration (adipocytes: +20%, P < 0.05). These KI mice have impaired exercise endurance and mitochondrial function. Mechanistically, GADD45A affects ATP synthase F1 subunit alpha (ATP5A1) ubiquitination degradation (ubiquitinated ATP5A1, P < 0.001) by recruiting the E3 ubiquitin ligase TRIM25, which decreases ATP synthesis (ATP production: -23%, P < 0.01) and inactivates the cAMP/PKA/LKB1 signalling pathway (cAMP: -36%, P < 0.01; decreased phospho-PKA and phospho-LKB1 protein content, P < 0.01). The dietary factor EGCG can protect against muscle fat infiltration (triglyceride: -64%, P < 0.05) via downregulating GADD45A (decreased GADD45A protein content, P < 0.001). CONCLUSIONS Our findings reveal a crucial role of GADD45A in regulating muscle repair and fat infiltration and suggest that inhibition of GADD45A by EGCG might be a potential strategy to combat fat infiltration and its associated muscle dysfunction.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Shiqi Liu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Jianfei Ji
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Defeng Ling
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yuang Tu
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Yanbing Zhou
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Wentao Chen
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | | | - Yizhen Wang
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| | - Tizhong Shan
- College of Animal SciencesZhejiang UniversityHangzhouZhejiangChina
- The Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhouChina
- Zhejiang Provincial Laboratory of Feed and Animal NutritionHangzhouChina
| |
Collapse
|
5
|
Mani S, Jindal D, Chopra H, Jha SK, Singh SK, Ashraf GM, Kamal M, Iqbal D, Chellappan DK, Dey A, Dewanjee S, Singh KK, Ojha S, Singh I, Gautam RK, Jha NK. ROCK2 Inhibition: A Futuristic Approach for the Management of Alzheimer's Disease. Neurosci Biobehav Rev 2022; 142:104871. [PMID: 36122738 DOI: 10.1016/j.neubiorev.2022.104871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 12/06/2022]
Abstract
Neurons depend on mitochondrial functions for membrane excitability, neurotransmission, and plasticity.Mitochondrialdynamicsare important for neural cell maintenance. To maintain mitochondrial homeostasis, lysosomes remove dysfunctionalmitochondria through mitophagy. Mitophagy promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria. In many neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), mitophagy is disrupted in neurons.Mitophagy is regulated by several proteins; recently,Rho-associated coiled-coil containing protein kinase 2 (ROCK2) has been suggested to negatively regulate the Parkin-dependent mitophagy pathway.Thus, ROCK2inhibitionmay bea promising therapyfor NDDs. This review summarizesthe mitophagy pathway, the role of ROCK2in Parkin-dependentmitophagyregulation,and mitophagy impairment in the pathology of AD. We further discuss different ROCK inhibitors (synthetic drugs, natural compounds,and genetherapy-based approaches)and examine their effects on triggering neuronal growth and neuroprotection in AD and other NDDs. This comprehensive overview of the role of ROCK in mitophagy inhibition provides a possible explanation for the significance of ROCK inhibitors in the therapeutic management of AD and other NDDs.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Disease, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Divya Jindal
- Centre for Emerging Disease, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Keshav K Singh
- Department of Genetics, UAB School of Medicine, The University of Alabama at Birmingham
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Inderbir Singh
- MM School of Pharmacy, MM University, Sadopur-Ambala -134007, India
| | - Rupesh K Gautam
- MM School of Pharmacy, MM University, Sadopur-Ambala -134007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| |
Collapse
|
6
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Zhu S, Liu F, Zhang R, Xiong Z, Zhang Q, Hao L, Chen S. Neuroprotective Potency of Neolignans in Magnolia officinalis Cortex Against Brain Disorders. Front Pharmacol 2022; 13:857449. [PMID: 35784755 PMCID: PMC9244706 DOI: 10.3389/fphar.2022.857449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, neurological diseases including Alzheimer’s disease, Parkinson’s disease and stroke are one of the main causes of death in the world. At the same time, the incidence of psychiatric disorders including depression and anxiety has been increasing. Accumulating elderly and stressed people suffer from these brain disorders, which is undoubtedly a huge burden on the modern aging society. Neolignans, the main active ingredients in Magnolia officinalis cortex, were reported to have neuroprotective effects. In addition, the key bioactive ingredients of neolignans, magnolol (1) and honokiol (2), were proved to prevent and treat neurological diseases and psychiatric disorders by protecting nerve cells and brain microvascular endothelial cells (BMECs). Furthermore, neolignans played a role in protecting nerve cells via regulation of neuronal function, suppression of neurotoxicity, etc. This review summarizes the neuroprotective effect, primary mechanisms of the leading neolignans and provides new prospects for the treatment of brain disorders in the future.
Collapse
Affiliation(s)
- Shun Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongxiang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Hao
- Huarun Sanjiu (ya’an) Pharmaceutical Group Co., LTD., Ya’an, China
| | - Shiyin Chen
- Department of Orthopedics of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Fang Liu, ; Shiyin Chen,
| |
Collapse
|
8
|
Trinity JD, Drummond MJ, Fermoyle CC, McKenzie AI, Supiano MA, Richardson RS. Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health. J Appl Physiol (1985) 2022; 132:835-861. [PMID: 35112929 PMCID: PMC8934676 DOI: 10.1152/japplphysiol.00607.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cardiovasomobility is a novel concept that encompasses the integration of cardiovascular and skeletal muscle function in health and disease with critical modification by physical activity, or lack thereof. Compelling evidence indicates that physical activity improves health while a sedentary, or inactive, lifestyle accelerates cardiovascular and skeletal muscle dysfunction and hastens disease progression. Identifying causative factors for vascular and skeletal muscle dysfunction, especially in humans, has proven difficult due to the limitations associated with cross-sectional investigations. Therefore, experimental models of physical inactivity and disuse, which mimic hospitalization, injury, and illness, provide important insight into the mechanisms and consequences of vascular and skeletal muscle dysfunction. This review provides an overview of the experimental models of disuse and inactivity and focuses on the integrated responses of the vasculature and skeletal muscle in response to disuse/inactivity. The time course and magnitude of dysfunction evoked by various models of disuse/inactivity are discussed in detail, and evidence in support of the critical roles of mitochondrial function and oxidative stress are presented. Lastly, strategies aimed at preserving vascular and skeletal muscle dysfunction during disuse/inactivity are reviewed. Within the context of cardiovasomobility, experimental manipulation of physical activity provides valuable insight into the mechanisms responsible for vascular and skeletal muscle dysfunction that limit mobility, degrade quality of life, and hasten the onset of disease.
Collapse
Affiliation(s)
- Joel D Trinity
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Caitlin C Fermoyle
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Alec I McKenzie
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Mark A Supiano
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Salt Lake City Veteran Affairs Medical Center Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Yousefi R, Jevdokimenko K, Kluever V, Pacheu-Grau D, Fornasiero EF. Influence of Subcellular Localization and Functional State on Protein Turnover. Cells 2021; 10:cells10071747. [PMID: 34359917 PMCID: PMC8306977 DOI: 10.3390/cells10071747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis is an equilibrium of paramount importance that maintains cellular performance by preserving an efficient proteome. This equilibrium avoids the accumulation of potentially toxic proteins, which could lead to cellular stress and death. While the regulators of proteostasis are the machineries controlling protein production, folding and degradation, several other factors can influence this process. Here, we have considered two factors influencing protein turnover: the subcellular localization of a protein and its functional state. For this purpose, we used an imaging approach based on the pulse-labeling of 17 representative SNAP-tag constructs for measuring protein lifetimes. With this approach, we obtained precise measurements of protein turnover rates in several subcellular compartments. We also tested a selection of mutants modulating the function of three extensively studied proteins, the Ca2+ sensor calmodulin, the small GTPase Rab5a and the brain creatine kinase (CKB). Finally, we followed up on the increased lifetime observed for the constitutively active Rab5a (Q79L), and we found that its stabilization correlates with enlarged endosomes and increased interaction with membranes. Overall, our data reveal that both changes in protein localization and functional state are key modulators of protein turnover, and protein lifetime fluctuations can be considered to infer changes in cellular behavior.
Collapse
Affiliation(s)
- Roya Yousefi
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; (R.Y.); (K.J.); (V.K.)
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany;
| | - Kristina Jevdokimenko
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; (R.Y.); (K.J.); (V.K.)
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; (R.Y.); (K.J.); (V.K.)
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany;
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; (R.Y.); (K.J.); (V.K.)
- Correspondence:
| |
Collapse
|
10
|
Sulkshane P, Ram J, Thakur A, Reis N, Kleifeld O, Glickman MH. Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol 2021; 45:102047. [PMID: 34175667 PMCID: PMC8254004 DOI: 10.1016/j.redox.2021.102047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The contribution of the Ubiquitin-Proteasome System (UPS) to mitophagy has been largely attributed to the E3 ubiquitin ligase Parkin. Here we show that in response to the oxidative stress associated with hypoxia or the hypoxia mimic CoCl2, the damaged and fragmented mitochondria are removed by Parkin-independent mitophagy. Mitochondria isolated from hypoxia or CoCl2-treated cells exhibited extensive ubiquitination, predominantly Lysine 48-linked and involves the degradation of key mitochondrial proteins such as the mitofusins MFN1/2, or the import channel component TOM20. Reflecting the critical role of mitochondrial protein degradation, proteasome inhibition blocked CoCl2-induced mitophagy. The five conserved ubiquitin-binding autophagy receptors (p62, NDP52, Optineurin, NBR1, TAX1BP1) were dispensable for the ensuing mitophagy, suggesting that the mitophagy step itself was independent of ubiquitination. Instead, the expression of two ubiquitin-independent mitophagy receptor proteins BNIP3 and NIX was induced by hypoxia or CoCl2-treatment followed by their recruitment to the oxidation-damaged mitochondria. By employing BNIP3/NIX double knockout and DRP1-null cell lines, we confirmed that mitochondrial clearance relies on DRP1-dependent mitochondrial fragmentation and BNIP3/NIX-mediated mitophagy. General antioxidants such as N-Acetyl Cysteine (NAC) or the mitochondria-specific Mitoquinone prevented HIF-1α stabilization, ameliorated hypoxia-related mitochondrial oxidative stress, and suppressed mitophagy. We conclude that the UPS and receptor-mediated autophagy converge to eliminate oxidation-damaged mitochondria. Mitochondria-derived ROS contributes to HIF-1α stabilization during hypoxia. Oxidation-induced mitophagy entails ubiquitin-dependent and -independent steps. PINK1/Parkin & Ub-binding receptors are dispensable for oxidation-induced mitophagy. DRP1-dependent fragmentation facilitates oxidation-induced mitophagy. BNIP3/NIX partake in hypoxia-induced mitophagy, independent of mitochondrial ubiquitination.
Collapse
Affiliation(s)
- Prasad Sulkshane
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Jonathan Ram
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Anita Thakur
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Noa Reis
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Oded Kleifeld
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Michael H Glickman
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
11
|
Li S, Zhang J, Liu C, Wang Q, Yan J, Hui L, Jia Q, Shan H, Tao L, Zhang M. The Role of Mitophagy in Regulating Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617256. [PMID: 34113420 PMCID: PMC8154277 DOI: 10.1155/2021/6617256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are multifaceted organelles that serve to power critical cellular functions, including act as power generators of the cell, buffer cytosolic calcium overload, production of reactive oxygen species, and modulating cell survival. The structure and the cellular location of mitochondria are critical for their function and depend on highly regulated activities such as mitochondrial quality control (MQC) mechanisms. The MQC is regulated by several sets of processes: mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy, and other mitochondrial proteostasis mechanisms such as mitochondrial unfolded protein response (mtUPR) or mitochondrial-derived vesicles (MDVs). These processes are important for the maintenance of mitochondrial homeostasis, and alterations in the mitochondrial function and signaling are known to contribute to the dysregulation of cell death pathways. Recent studies have uncovered regulatory mechanisms that control the activity of the key components for mitophagy. In this review, we discuss how mitophagy is controlled and how mitophagy impinges on health and disease through regulating cell death.
Collapse
Affiliation(s)
- Sunao Li
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Jiaxin Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Chao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Hui
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Qiufang Jia
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Medala VK, Gollapelli B, Dewanjee S, Ogunmokun G, Kandimalla R, Vallamkondu J. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer's disease. J Neurosci Res 2021; 99:1120-1135. [PMID: 33465841 DOI: 10.1002/jnr.24781] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and progressive neurodegenerative disease. The presence of β-amyloid (Aβ) plaques and phosphorylated Tau tangles are considered to be the two main hallmarks of AD. Recent findings have shown that different changes in the structure and dynamics of mitochondria play an important role in AD pathology progression. Mitochondrial changes in AD are expressed as enhanced mitochondrial fragmentation, altered mitochondrial dynamics, and changes in the expression of mitochondrial biogenesis genes in vitro and in vivo models. Therefore, targeting mitochondria and associated mitochondrial proteins seems to be a promising alternative instead of targeting Aβ and Tau in the prevention of Alzheimer's disease. The dynamin-related protein (Drp1) is one such protein that plays an important role in the regulation of mitochondrial division and maintenance of mitochondrial structures. Few researchers have shown that inhibition of Drp1 GTPase activity in neuronal cells rescues excessive mitochondrial fragmentation. In addition, the growing evidence revealed that Drp1 can interact with both Aβ and Tau protein in human brain tissues and mouse models. In this review, we would like to update existing knowledge about various changes in and around mitochondria related to the pathogenesis of Alzheimer's disease, with particular emphasis on mitophagy and autophagy.
Collapse
Affiliation(s)
| | - Buchaiah Gollapelli
- Department of Physics, National Institute of Technology-Warangal, Warangal, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Department of Biochemistry, Kakatiya Medical College, Warangal, India
| | | |
Collapse
|
13
|
Sulkshane P, Ram J, Glickman MH. Ubiquitination of Intramitochondrial Proteins: Implications for Metabolic Adaptability. Biomolecules 2020; 10:biom10111559. [PMID: 33207558 PMCID: PMC7697252 DOI: 10.3390/biom10111559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are constantly subjected to stressful conditions due to their unique physiology and organization. The resulting damage leads to mitochondrial dysfunction, which underlies many pathophysiological conditions. Hence, constant surveillance is required to closely monitor mitochondrial health for sound maintenance of cellular metabolism and thus, for viability. In addition to internal mitochondrial chaperones and proteases, mitochondrial health is also governed by host cell protein quality control systems. The ubiquitin-proteasome system (UPS) and autophagy constitute the main pathways for removal of damaged or superfluous proteins in the cytosol, nucleus, and from certain organelles such as the Endoplasmic Reticulum (ER) and mitochondria. Although stress-induced ubiquitin-dependent degradation of mitochondrial outer membrane proteins has been widely studied, mechanisms of intramitochondrial protein ubiquitination has remained largely elusive due to the predominantly cytosolic nature of UPS components, separated from internal mitochondrial proteins by a double membrane. However, recent research has illuminated examples of intramitochondrial protein ubiquitination pathways and highlighted their importance under basal and stressful conditions. Owing to the dependence of mitochondria on the error-prone process of protein import from the cytosol, it is imperative that the cell eliminate any accumulated proteins in the event of mitochondrial protein import deficiency. Apparently, a significant portion of this activity involves ubiquitination in one way or another. In the present review article, following a brief introduction to mitochondrial protein quality control mechanisms, we discuss our recent understanding of intramitochondrial protein ubiquitination, its importance for basal function of mitochondria, metabolic implications, and possible therapeutic applications.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Correspondence: (P.S.); (M.H.G.); Tel.: +972-58779-2319 (P.S.); +972-4-829-4552 (M.H.G.)
| | | | - Michael H Glickman
- Correspondence: (P.S.); (M.H.G.); Tel.: +972-58779-2319 (P.S.); +972-4-829-4552 (M.H.G.)
| |
Collapse
|
14
|
The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 2020; 163:105248. [PMID: 33065283 DOI: 10.1016/j.phrs.2020.105248] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.
Collapse
|
15
|
Vögtle F. Open questions on the mitochondrial unfolded protein response. FEBS J 2020; 288:2856-2869. [DOI: 10.1111/febs.15569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Friederike‐Nora Vögtle
- Institute of Biochemistry and Molecular Biology ZBMZ Faculty of Medicine University of Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Germany
| |
Collapse
|
16
|
Ravanelli S, den Brave F, Hoppe T. Mitochondrial Quality Control Governed by Ubiquitin. Front Cell Dev Biol 2020; 8:270. [PMID: 32391359 PMCID: PMC7193050 DOI: 10.3389/fcell.2020.00270] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are essential organelles important for energy production, proliferation, and cell death. Biogenesis, homeostasis, and degradation of this organelle are tightly controlled to match cellular needs and counteract chronic stress conditions. Despite providing their own DNA, the vast majority of mitochondrial proteins are encoded in the nucleus, synthesized by cytosolic ribosomes, and subsequently imported into different mitochondrial compartments. The integrity of the mitochondrial proteome is permanently challenged by defects in folding, transport, and turnover of mitochondrial proteins. Therefore, damaged proteins are constantly sequestered from the outer mitochondrial membrane and targeted for proteasomal degradation in the cytosol via mitochondrial-associated degradation (MAD). Recent studies identified specialized quality control mechanisms important to decrease mislocalized proteins, which affect the mitochondrial import machinery. Interestingly, central factors of these ubiquitin-dependent pathways are shared with the ER-associated degradation (ERAD) machinery, indicating close collaboration between both tubular organelles. Here, we summarize recently described cellular stress response mechanisms, which are triggered by defects in mitochondrial protein import and quality control. Moreover, we discuss how ubiquitin-dependent degradation is integrated with cytosolic stress responses, particularly focused on the crosstalk between MAD and ERAD.
Collapse
Affiliation(s)
- Sonia Ravanelli
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Fabian den Brave
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Deshwal S, Fiedler KU, Langer T. Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity. Annu Rev Biochem 2020; 89:501-528. [PMID: 32075415 DOI: 10.1146/annurev-biochem-062917-012739] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.
Collapse
Affiliation(s)
- Soni Deshwal
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Kai Uwe Fiedler
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
18
|
Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein. Int J Mol Sci 2019; 20:ijms20215338. [PMID: 31717806 PMCID: PMC6861992 DOI: 10.3390/ijms20215338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disorder, caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin protein (Htt). Mitochondrial dysfunction and impairment of the ubiquitin-proteasome system (UPS) are hallmarks of HD neurons. The extraneural manifestations of HD are still unclear. We investigated the crosstalk between mitochondria and proteolytic function in skin fibroblasts from juvenile HD patients. We found reduced mitosis, increased cell size, elevated ROS and increased mitochondrial membrane potential in juvenile HD fibroblasts, while cellular viability was maintained. Mitochondrial OXPHOS analysis did not reveal significant differences compared to control. However, the level of mitochondrial fusion and fission proteins was significantly lower and branching in the mitochondria network was reduced. We hypothesized that juvenile HD fibroblasts counterbalance cellular damage and mitochondrial network deficit with altered proteasome activity to promote cell survival. Our data reveal that juvenile HD fibroblasts exhibit higher proteasome activity, which was associated with elevated gene and protein expression of parkin. Moreover, we demonstrate elevated proteasomal degradation of the mitochondrial fusion protein Mfn1 in diseased cells compared to control cells. Our data suggest that juvenile HD fibroblasts respond to mutant polyQ expansion of Htt with enhanced proteasome activity and faster turnover of specific UPS substrates to protect cells.
Collapse
|
19
|
Mitochondrial Transport and Turnover in the Pathogenesis of Amyotrophic Lateral Sclerosis. BIOLOGY 2019; 8:biology8020036. [PMID: 31083575 PMCID: PMC6627920 DOI: 10.3390/biology8020036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/20/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
Neurons are high-energy consuming cells, heavily dependent on mitochondria for ATP generation and calcium buffering. These mitochondrial functions are particularly critical at specific cellular sites, where ionic currents impose a large energetic burden, such as at synapses. The highly polarized nature of neurons, with extremely large axoplasm relative to the cell body, requires mitochondria to be efficiently transported along microtubules to reach distant sites. Furthermore, neurons are post-mitotic cells that need to maintain pools of healthy mitochondria throughout their lifespan. Hence, mitochondrial transport and turnover are essential processes for neuronal survival and function. In neurodegenerative diseases, the maintenance of a healthy mitochondrial network is often compromised. Numerous lines of evidence indicate that mitochondrial impairment contributes to neuronal demise in a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), where degeneration of motor neurons causes a fatal muscle paralysis. Dysfunctional mitochondria accumulate in motor neurons affected by genetic or sporadic forms of ALS, strongly suggesting that the inability to maintain a healthy pool of mitochondria plays a pathophysiological role in the disease. This article critically reviews current hypotheses on mitochondrial involvement in the pathogenesis of ALS, focusing on the alterations of mitochondrial axonal transport and turnover in motor neurons.
Collapse
|
20
|
Gauba E, Chen H, Guo L, Du H. Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer's disease. Neurobiol Dis 2019; 121:138-147. [PMID: 30266287 PMCID: PMC6250052 DOI: 10.1016/j.nbd.2018.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction is pivotal in inducing synaptic injury and neuronal stress in Alzheimer's disease (AD). Mitochondrial F1Fo ATP synthase deregulation is a hallmark mitochondrial defect leading to oxidative phosphorylation (OXPHOS) failure in this neurological disorder. Oligomycin sensitivity conferring protein (OSCP) is a crucial F1Fo ATP synthase subunit. Decreased OSCP levels and OSCP interaction with amyloid β (Aβ) constitute key aspects of F1Fo ATP synthase pathology in AD-related conditions. However, the detailed mechanisms promoting such AD-related OSCP changes have not been fully resolved. Here, we have found increased physical interaction of OSCP with Cyclophilin D (CypD) in AD cases as well as in an AD animal model (5xFAD mice). Genetic depletion of CypD mitigates OSCP loss via ubiquitin-dependent OSCP degradation in 5xFAD mice. Moreover, the ablation of CypD also attenuates OSCP/Aβ interaction in AD mice. The relieved OSCP changes by CypD depletion in 5xFAD mice are along with preserved F1Fo ATP synthase function, restored mitochondrial bioenergetics as well as improved mouse cognition. The simplest interpretation of our results is that CypD is a critical mediator that promotes OSCP deficits in AD-related conditions. Therefore, to block the deleterious impact of CypD on OSCP has the potential to be a promising therapeutic strategy to correct mitochondrial dysfunction for AD therapy.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, The University of Texas at Dallas, United States
| | - Hao Chen
- Department of Biological Sciences, The University of Texas at Dallas, United States
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, United States
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, United States.
| |
Collapse
|
21
|
Yu Y, Li W, Ren L, Yang C, Li D, Han X, Sun Y, Lv C, Han F. Inhibition of autophagy enhanced cobalt chloride‑induced apoptosis in rat alveolar type II epithelial cells. Mol Med Rep 2018; 18:2124-2132. [PMID: 29956802 PMCID: PMC6072215 DOI: 10.3892/mmr.2018.9209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a type of cellular stress that may result in apoptosis and autophagy. The molecular mechanisms underlying the association between autophagy and apoptosis remain unclear, particularly in hypoxic conditions. Transmission electron microscope, AO-PI staining, flow cytometry and western blot were used to examine the crosstalk between autophagy and apoptosis in hypoxic conditions. Rat alveolar type II epithelial RLE-6TN cells were cultured in a long-term hypoxic environment established by cobalt (II) chloride. It was demonstrated that autophagy and apoptosis occurred in RLE-6TN cells under hypoxic conditions. Treatment of RLE-6TN cells with the autophagy inhibitor 3-methyladenine increased the generation of reactive oxygen species, mitochondrial damage and hypoxia-induced apoptosis. The expression of caspases, particularly caspase-9, increased and may have participated in these processes. The data indicated that the inhibition of autophagy enhanced apoptosis through the mitochondria-mediated intrinsic pathway. These findings provide important insight into the molecular mechanism of autophagy and apoptosis crosstalk. This may provide new insights into pulmonary disease surveillance, diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Yu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wanting Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Liqin Ren
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Chunyan Yang
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Dongze Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xin Han
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yeying Sun
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changjun Lv
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fang Han
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
22
|
Carneiro FRG, Lepelley A, Seeley JJ, Hayden MS, Ghosh S. An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages. Cell Rep 2018; 22:2654-2666. [PMID: 29514094 PMCID: PMC5909989 DOI: 10.1016/j.celrep.2018.02.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
ECSIT is a mitochondrial complex I (CI)-associated protein that has been shown to regulate the production of mitochondrial reactive oxygen species (mROS) following engagement of Toll-like receptors (TLRs). We have generated an Ecsit conditional knockout (CKO) mouse strain to study the in vivo role of ECSIT. ECSIT deletion results in profound alteration of macrophage metabolism, leading to a striking shift to reliance on glycolysis, complete disruption of CI activity, and loss of the CI holoenzyme and multiple subassemblies. An increase in constitutive mROS production in ECSIT-deleted macrophages prevents further TLR-induced mROS production. Surprisingly, ECSIT-deleted cells accumulate damaged mitochondria because of defective mitophagy. ECSIT associates with the mitophagy regulator PINK1 and exhibits Parkin-dependent ubiquitination. However, upon ECSIT deletion, we observed increased mitochondrial Parkin without the expected increase in mitophagy. Taken together, these results demonstrate a key role of ECSIT in CI function, mROS production, and mitophagy-dependent mitochondrial quality control.
Collapse
Affiliation(s)
- Flávia R G Carneiro
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; FIOCRUZ, Center for Technological Development in Health (CDTS), Rio de Janeiro, Brazil
| | - Alice Lepelley
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John J Seeley
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Matthew S Hayden
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Section of Dermatology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
23
|
Kawamata H, Manfredi G. Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases. J Cell Biol 2017; 216:3917-3929. [PMID: 29167179 PMCID: PMC5716291 DOI: 10.1083/jcb.201709172] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mitochondria participate in essential processes in the nervous system such as energy and intermediate metabolism, calcium homeostasis, and apoptosis. Major neurodegenerative diseases are characterized pathologically by accumulation of misfolded proteins as a result of gene mutations or abnormal protein homeostasis. Misfolded proteins associate with mitochondria, forming oligomeric and fibrillary aggregates. As mitochondrial dysfunction, particularly of the oxidative phosphorylation system (OXPHOS), occurs in neurodegeneration, it is postulated that such defects are caused by the accumulation of misfolded proteins. However, this hypothesis and the pathological role of proteinopathies in mitochondria remain elusive. In this study, we critically review the proposed mechanisms whereby exemplary misfolded proteins associate with mitochondria and their consequences on OXPHOS.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
24
|
Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18122507. [PMID: 29168786 PMCID: PMC5751110 DOI: 10.3390/ijms18122507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Zhengqing Wan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Yongyi Zou
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Henok Kessete Afewerky
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Tongmei Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
25
|
Nielson JR, Fredrickson EK, Waller TC, Rendón OZ, Schubert HL, Lin Z, Hill CP, Rutter J. Sterol Oxidation Mediates Stress-Responsive Vms1 Translocation to Mitochondria. Mol Cell 2017; 68:673-685.e6. [PMID: 29149595 PMCID: PMC5837041 DOI: 10.1016/j.molcel.2017.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022]
Abstract
Vms1 translocates to damaged mitochondria in response to stress, whereupon its binding partner, Cdc48, contributes to mitochondrial protein homeostasis. Mitochondrial targeting of Vms1 is mediated by its conserved mitochondrial targeting domain (MTD), which, in unstressed conditions, is inhibited by intramolecular binding to the Vms1 leucine-rich sequence (LRS). Here, we report a 2.7 Å crystal structure of Vms1 that reveals that the LRS lies in a hydrophobic groove in the autoinhibited MTD. We also demonstrate that the oxidized sterol, ergosterol peroxide, is necessary and sufficient for Vms1 localization to mitochondria, through binding the MTD in an interaction that is competitive with binding to the LRS. These data support a model in which stressed mitochondria generate an oxidized sterol receptor that recruits Vms1 to support mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Jason R Nielson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Eric K Fredrickson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - T Cameron Waller
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Olga Zurita Rendón
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
26
|
Protein homeostasis of a metastable subproteome associated with Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:E5703-E5711. [PMID: 28652376 DOI: 10.1073/pnas.1618417114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia. A hallmark of this disease is the presence of aberrant deposits containing by the Aβ peptide (amyloid plaques) and the tau protein (neurofibrillary tangles) in the brains of affected individuals. Increasing evidence suggests that the formation of these deposits is closely associated with the age-related dysregulation of a large set of highly expressed and aggregation-prone proteins, which make up a metastable subproteome. To understand in more detail the origins of such dysregulation, we identify specific components of the protein homeostasis system associated with these metastable proteins by using a gene coexpression analysis. Our results reveal the particular importance of the protein trafficking and clearance mechanisms, including specific branches of the endosomal-lysosomal and ubiquitin-proteasome systems, in maintaining the homeostasis of the metastable subproteome associated with Alzheimer's disease.
Collapse
|
27
|
Zhang S, Li C, Wang R, Chen Y, Shu S, Huang R, Zhang D, Li J, Xiao S, Yao N, Yang C. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling. PLANT PHYSIOLOGY 2017; 173:2294-2307. [PMID: 28250067 PMCID: PMC5373041 DOI: 10.1104/pp.16.00008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/27/2017] [Indexed: 05/18/2023]
Abstract
Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.
Collapse
Affiliation(s)
- Shengchun Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Cui Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Rui Wang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Yaxue Chen
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Si Shu
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Ruihua Huang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Daowei Zhang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Jian Li
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Shi Xiao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Nan Yao
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China (S.Z., C.L., R.W., Y.C., S.S., R.H., D.Z. C.Y.); and
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China (J.L., S.X., N.Y.)
| |
Collapse
|
28
|
Guo X, Qi X. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:552-559. [PMID: 27913212 DOI: 10.1016/j.bbadis.2016.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022]
Abstract
Proteasome-dependent turnover of mitochondrial outer membrane (OMM)-associated proteins is one of the mechanisms for maintaining proper mitochondrial quality and function. However, the underlying pathways and their implications in human disease are poorly understood. Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder caused by expanded CAG repeats in the N terminal of the huntingtin gene (mutant Huntingtin, mtHtt). In this study, we show an extensive degradation of the OMM protein MCL1 (Myeloid cell leukemia sequence 1) in both HD mouse striatal cells and HD patient fibroblasts. The decrease in MCL1 level is associated with mitochondrial and cellular damage. Valosin-containing-protein (VCP) is an AAA-ATPase central to protein turnover via the ubiquitin proteasome system (UPS). We found that VCP translocates to mitochondria and promotes MCL1 degradation in HD cell cultures. Either down-regulation of VCP by RNA interference or inhibition of VCP by a dominant negative mutant abolishes MCL1 degradation in HD cell cultures. We further show that UBX-domain containing protein 1 (UBXD1), a known co-factor of VCP assisting in the recognition of substrates for protein degradation, selectively binds to MCL1 and interacts with VCP to mediate MCL1 extraction from the mitochondria. These results indicate that the OMM protein MCL1 is degraded by the VCP-UBXD1 complex and that the process is promoted by the presence of mtHtt. Therefore, our finding provides a new insight into the mechanism of mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Chen Z, Liu X, Ma S. The Roles of Mitochondria in Autophagic Cell Death. Cancer Biother Radiopharm 2016; 31:269-276. [PMID: 27754749 DOI: 10.1089/cbr.2016.2057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zongyan Chen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- Department of Diagnostic Imaging, Center for Radiological Research, Weihai Chest Hospital, Weihai, China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- Department of Radiation Oncology, Center for Radiological Research, The 2nd Hospital Affiliated to Jilin University, Changchun, China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
30
|
Shao Y, Figeys D, Ning Z, Mailloux R, Chan HM. Methylmercury can induce Parkinson's-like neurotoxicity similar to 1-methyl-4- phenylpyridinium: a genomic and proteomic analysis on MN9D dopaminergic neuron cells. J Toxicol Sci 2016; 40:817-28. [PMID: 26558463 DOI: 10.2131/jts.40.817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to environmental chemicals has been implicated as a possible risk factor for the development of neurodegenerative diseases. Our previous study showed that methylmercury (MeHg) exposure can disrupt synthesis, uptake and metabolism of dopamine similar to 1-methyl-4-phenylpyridinium (MPP(+)). The objective of this study was to investigate the effects of MeHg exposure on gene and protein profiles in a dopaminergic MN9D cell line. MN9D cells were treated with MeHg (1-5 μM) and MPP(+) (10-40 μM) for 48 hr. Real-time PCR Parkinson's disease (PD) arrays and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) were performed for the analysis. PD PCR array results showed that 19% genes were significantly changed in the 2.5 μM MeHg treated cells, and 39% genes were changed in the 5 μM MeHg treated cells. In comparison, MPP(+) treatment (40 µM) resulted in significant changes in 25% genes. A total of 15 common genes were altered by both MeHg and MPP(+), and dopaminergic signaling transduction was the most affected pathway. Proteomic analysis identified a total of 2496 proteins, of which 188, 233 and 395 proteins were differentially changed by 1 μM and 2.5 μM MeHg, and MPP(+) respectively. A total of 61 common proteins were changed by both MeHg and MPP(+) treatment. The changed proteins were mainly involved in energetic generation-related metabolism pathway (propanoate metabolism, pyruvate metabolism and fatty acid metabolism), oxidative phosphorylation, proteasome, PD and other neurodegenerative disorders. A total of 7 genes/proteins including Ube2l3 (Ubiquitin-conjugating enzyme E2 L3) and Th (Tyrosine 3-monooxygenase) were changed in both genomic and proteomic analysis. These results suggest that MeHg and MPP(+) share many similar signaling pathways leading to the pathogenesis of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yueting Shao
- Natural Resources and Environmental Studies Program, University of Northern British Columbia, Canada
| | | | | | | | | |
Collapse
|
31
|
Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis. Trends Cell Biol 2016; 26:577-586. [PMID: 27004699 DOI: 10.1016/j.tcb.2016.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms.
Collapse
|
32
|
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 2016; 137:489-505. [DOI: 10.1111/jnc.13575] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Justin J. Yerbury
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Lezanne Ooi
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Andrew Dillin
- Department of Molecular and Cell Biology; Li Ka Shing Center for Biomedical and Health Sciences; The University of California; California USA
- Howard Hughes Medical Institute; The University of California; Berkeley California USA
| | - Darren N. Saunders
- School of Medical Sciences; Faculty of Medicine; University of New South Wales; Randwick New South Wales Australia
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Darlinghurst New South Wales Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Philip M. Beart
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Parkville Victoria Australia
| | - Neil R. Cashman
- Department of Medicine (Neurology); University of British Columbia and Vancouver Coastal Health Research Institute; Brain Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Mark R. Wilson
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Heath Ecroyd
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| |
Collapse
|
33
|
Franz A, Kevei É, Hoppe T. Double-edged alliance: mitochondrial surveillance by the UPS and autophagy. Curr Opin Cell Biol 2015; 37:18-27. [DOI: 10.1016/j.ceb.2015.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
|
34
|
The roles of mitochondria in radiation-induced autophagic cell death in cervical cancer cells. Tumour Biol 2015; 37:4083-91. [PMID: 26490979 DOI: 10.1007/s13277-015-4190-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022] Open
Abstract
Mitochondria as the critical powerhouse of eukaryotic cells play important roles in regulating cell survival or cell death. Under numerous stimuli, impaired mitochondria will generate massive reactive oxygen species (ROS) which participate in the regulation of vital signals and could even determine the fate of cancer cells. While the roles of mitochondria in radiation-induced autophagic cell death still need to be elucidated. Human cervical cancer cell line, Hela, was used, and the SOD2 silencing model (SOD2-Ri) was established by gene engineering. Cell viability was detected by methyl thiazolyl tetrazolium (MTT) assays, MitoTracker Green staining was used to detect mitochondrial mass, Western blot was used to detect protein expression, and the level of ROS, autophagy, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. Ionizing radiation (IR) could induce the increase of MAPLC3-II/MAPLC3-I ratio, Beclin1 expression, and ROS generation but decrease the MMP in a time-dependent manner. After SOD2 silencing, the IR-induced changes of ROS and the MMP were significantly enhanced. Moreover, both the radio sensitivity and autophagy increased in SOD2-Ri cells. Whereas, compared with SOD2-Ri, the opposite results were obtained by NAC, an antioxidant. After the treatment with the inhibitor of mitochondrial electron-transport chain complex II, thenoyltrifluoroacetone (TTFA), the rate of autophagy, ROS, and the total cell death induced by IR increased. In addition, the decrease of MMP was more obvious. However, these results were reversed by cyclosporine A (CsA). IR could induce ROS generation and mitochondrial damage which lead to autophagic cell death in Hela cells.
Collapse
|
35
|
Georgiou DK, Dagnino-Acosta A, Lee CS, Griffin DM, Wang H, Lagor WR, Pautler RG, Dirksen RT, Hamilton SL. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism. J Biol Chem 2015; 290:23751-65. [PMID: 26245899 DOI: 10.1074/jbc.m115.643544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle.
Collapse
Affiliation(s)
- Dimitra K Georgiou
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Adan Dagnino-Acosta
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Chang Seok Lee
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Deric M Griffin
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Hui Wang
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - William R Lagor
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Robia G Pautler
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| | - Robert T Dirksen
- the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Susan L Hamilton
- From the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and
| |
Collapse
|
36
|
Comparison of the structure, function and autophagic maintenance of mitochondria in nigrostriatal and tuberoinfundibular dopamine neurons. Brain Res 2015; 1622:240-51. [PMID: 26141374 DOI: 10.1016/j.brainres.2015.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/18/2015] [Accepted: 06/16/2015] [Indexed: 11/23/2022]
Abstract
A pathological hallmark of Parkinson׳s disease (PD) is progressive degeneration of nigrostriatal dopamine (NSDA) neurons, which underlies the motor symptoms of PD. While there is severe loss of midbrain NSDA neurons, tuberoinfundibular (TI) DA neurons in the mediobasal hypothalamus (MBH) remain intact. In the present study, confocal microscopic analysis revealed that mitochondrial content and numbers of mitophagosomes were lower in NSDA neuronal cell bodies in the substantia nigra pars compacta (SNpc) compared to TIDA neuronal cell bodies in the arcuate nucleus (ARC) of C57BL/6J male mice. Mitochondrial respiration, mass, membrane potential and morphology were determined using bioenergetic, flow cytometric and transmission electron microscopic analyses of synaptosomes isolated from discrete brain regions containing axon terminals of NSDA and TIDA neurons. Maximum and spare respiratory capacities, and mitochondrial mass were lower in synaptosomal mitochondria derived from the striatum (ST) as compared with the MBH, which correlated with lower numbers of mitochondria per synaptosome in these brain regions. In contrast, there was no regional difference in mitochondrial basal, maximum or spare respirations following inhibition of Complex I activity with rotenone. These results reveal that higher numbers of viable mitochondria are correlated with more extensive autophagic mitochondrial quality maintenance in TIDA neurons as compared with NSDA neurons.
Collapse
|
37
|
Moon HE, Paek SH. Mitochondrial Dysfunction in Parkinson's Disease. Exp Neurobiol 2015; 24:103-16. [PMID: 26113789 PMCID: PMC4479806 DOI: 10.5607/en.2015.24.2.103] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNc) with motor and nonmotor symptoms. Defective mitochondrial function and increased oxidative stress (OS) have been demonstrated as having an important role in PD pathogenesis, although the underlying mechanism is not clear. The etiopathogenesis of sporadic PD is complex with variable contributions of environmental factors and genetic susceptibility. Both these factors influence various mitochondrial aspects, including their life cycle, bioenergetic capacity, quality control, dynamic changes of morphology and connectivity (fusion, fission), subcellular distribution (transport), and the regulation of cell death pathways. Mitochondrial dysfunction has mainly been reported in various non-dopaminergic cells and tissue samples from human patients as well as transgenic mouse and fruit fly models of PD. Thus, the mitochondria represent a highly promising target for the development of PD biomarkers. However, the limited amount of dopaminergic neurons prevented investigation of their detailed study. For the first time, we established human telomerase reverse transcriptase (hTERT)-immortalized wild type, idiopathic and Parkin deficient mesenchymal stromal cells (MSCs) isolated from the adipose tissues of PD patients, which could be used as a good cellular model to evaluate mitochondrial dysfunction for the better understanding of PD pathology and for the development of early diagnostic markers and effective therapy targets of PD. In this review, we examine evidence for the roles of mitochondrial dysfunction and increased OS in the neuronal loss that leads to PD and discuss how this knowledge further improve the treatment for patients with PD.
Collapse
Affiliation(s)
- Hyo Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| |
Collapse
|
38
|
Karunadharma PP, Basisty N, Chiao YA, Dai DF, Drake R, Levy N, Koh WJ, Emond MJ, Kruse S, Marcinek D, Maccoss MJ, Rabinovitch PS. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB J 2015; 29:3582-92. [PMID: 25977255 DOI: 10.1096/fj.15-272666] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 11/11/2022]
Abstract
The mitochondrial respiratory chain (RC) produces most of the cellular ATP and requires strict quality-control mechanisms. To examine RC subunit proteostasis in vivo, we measured RC protein half-lives (HLs) in mice by liquid chromatography-tandem mass spectrometry with metabolic [(2)H3]-leucine heavy isotope labeling under divergent conditions. We studied 7 tissues/fractions of young and old mice on control diet or one of 2 diet regimens (caloric restriction or rapamycin) that altered protein turnover (42 conditions in total). We observed a 6.5-fold difference in mean HL across tissues and an 11.5-fold difference across all conditions. Normalization to the mean HL of each condition showed that relative HLs were conserved across conditions (Spearman's ρ = 0.57; P < 10(-4)), but were highly heterogeneous between subunits, with a 7.3-fold mean range overall, and a 2.2- to 4.6-fold range within each complex. To identify factors regulating this conserved distribution, we performed statistical analyses to study the correlation of HLs to the properties of the subunits. HLs significantly correlated with localization within the mitochondria, evolutionary origin, location of protein-encoding, and ubiquitination levels. These findings challenge the notion that all subunits in a complex turnover at comparable rates and suggest that there are common rules governing the differential proteolysis of RC protein subunits under divergent cellular conditions.
Collapse
Affiliation(s)
- Pabalu P Karunadharma
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Nathan Basisty
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Ying Ann Chiao
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Dao-Fu Dai
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Rachel Drake
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Nick Levy
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - William J Koh
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Mary J Emond
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Shane Kruse
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - David Marcinek
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Michael J Maccoss
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| | - Peter S Rabinovitch
- *Department of Pathology, Department of Environmental Health and Biostatistics, Department of Radiology, and Department of Genome Sciences, University of Washington, Seattle, Washington, USA; and The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
39
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
40
|
Li Y, Wu Z, Gao X, Zhu Q, Jin Y, Wu A, Huang ACJ. Anchanling reduces pathology in a lactacystin- induced Parkinson's disease model. Neural Regen Res 2015; 7:165-70. [PMID: 25767493 PMCID: PMC4353108 DOI: 10.3969/j.issn.1673-5374.2012.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
A rat model of Parkinson's disease was induced by injecting lactacystin stereotaxically into the left mesencephalic ventral tegmental area and substantia nigra pars compacta. After rats were intragastrically perfused with Anchanling, a Chinese medicine, mainly composed of magnolol, for 5 weeks, when compared with Parkinson's disease model rats, tyrosine hydroxylase expression was increased, α-synuclein and ubiquitin expression was decreased, substantia nigra cell apoptosis was reduced, and apomorphine-induced rotational behavior was improved. Results suggested that Anchanling can ameliorate Parkinson's disease pathology possibly by enhancing degradation activity of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yinghong Li
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Zhengzhi Wu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China ; Shenzhen Institute of Gerontology, Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Xiaowei Gao
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Qingwei Zhu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Yu Jin
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Anmin Wu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Andrew C J Huang
- Larry Hillblom Islet Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
41
|
Choudhry SK, Kawałek A, van der Klei IJ. Peroxisomal quality control mechanisms. Curr Opin Microbiol 2014; 22:30-7. [PMID: 25305535 DOI: 10.1016/j.mib.2014.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Peroxisomes are ubiquitous organelles that harbor diverse metabolic pathways, which are essential for normal cell performance. Conserved functions of these organelles are hydrogen peroxide metabolism and β-oxidation. Cells employ multiple quality control mechanisms to ensure proper peroxisome function and to protect peroxisomes from damage. These involve the function of molecular chaperones, a peroxisomal Lon protease and autophagic removal of dysfunctional organelles. In addition, multiple mechanisms exist to combat peroxisomal oxidative stress. Here, we outline recent advances in our understanding of peroxisomal quality control, focussing on yeast and filamentous fungi.
Collapse
Affiliation(s)
- Sanjeev K Choudhry
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands
| | - Adam Kawałek
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, P.O. Box 11103, 9300CC Groningen, The Netherlands.
| |
Collapse
|
42
|
Beetham KS, Howden EJ, Small DM, Briskey DR, Rossi M, Isbel N, Coombes JS. Oxidative stress contributes to muscle atrophy in chronic kidney disease patients. Redox Rep 2014; 20:126-32. [PMID: 25391884 DOI: 10.1179/1351000214y.0000000114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Patients with chronic kidney disease have impaired muscle metabolism, resulting in muscle atrophy. Oxidative stress has previously been identified as a significant contributor to muscle atrophy in other populations, but the contribution in chronic kidney disease is unknown. The aim of this study was to investigate the association between oxidative stress, grip strength, and lean mass in patients with chronic kidney disease. METHODS This is a cross-sectional study of 152 participants with stage 3 or 4 chronic kidney disease. Outcome measures include grip strength, lean mass, plasma total F2-isoprostanes, inflammation, peak oxygen uptake, and standard clinical measures. RESULTS Thirty four (22.4%) chronic kidney disease patients had elevated oxidative stress levels (plasma F2-isoprostanes >250 pg/ml), with 82% of patients below age-predicted grip strength normative values. There was a significant negative association between plasma F2-isoprostanes and grip strength (r = -0.251) and lean mass (r = -0.243). There were no associations with inflammation markers. Multiple linear regression identified plasma F2-isoprostanes as a significant predictor of grip strength independent of other predictors: sex, diabetes status, body mass index, body fat percent, and phosphate (adjusted r(2) = 69.5, P < 0.001). DISCUSSION Plasma F2-isoprostanes were independently associated with reduced strength in chronic kidney disease patients.
Collapse
|
43
|
Palomo GM, Manfredi G. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 2014; 1607:36-46. [PMID: 25301687 DOI: 10.1016/j.brainres.2014.09.065] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
Neuronal cells are highly dependent on mitochondria, and mitochondrial dysfunction is associated with neurodegenerative diseases. As perturbed mitochondrial function renders neurons extremely sensitive to a wide variety of insults, such as oxidative stress and bioenergetic defects, mitochondrial defects can profoundly affect neuronal fate. Several studies have linked ALS with mitochondrial dysfunction, stemming from observations of mitochondrial abnormalities, both in patients and in cellular and mouse models of familial forms of ALS. Mitochondrial changes have been thoroughly investigated in mutants of superoxide dismutase 1 (SOD1), one of the most common causes of familial ALS, for which excellent cellular and animal models are available, but recently evidence is emerging also in other forms of ALS, both familial and sporadic. Mitochondrial defects in ALS involve many critical physiopathological processes, from defective bioenergetics to abnormal calcium homeostasis, altered morphology and impaired trafficking. In this review, we summarize established evidence of mitochondrial dysfunction in ALS, especially in SOD1 mutant models of familial ALS. The main focus of the review is on defective mitochondrial quality control (MQC) in ALS. MQC operates at multiple levels to clear damaged proteins through proteostasis and to eliminate irreparably damaged organelles through mitophagy. However, since ALS motor neurons progressively accumulate damaged mitochondria, it is plausible that the MQC is ineffective or overwhelmed by excessive workload imposed by the chronic and extensive mitochondrial damage. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Gloria M Palomo
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Giovanni Manfredi
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, United States.
| |
Collapse
|
44
|
Zhang X, Shan P, Homer R, Zhang Y, Petrache I, Mannam P, Lee PJ. Cathepsin E promotes pulmonary emphysema via mitochondrial fission. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2730-2741. [PMID: 25239563 PMCID: PMC4188869 DOI: 10.1016/j.ajpath.2014.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 02/08/2023]
Abstract
Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets.
Collapse
Affiliation(s)
- Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Peiying Shan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Robert Homer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yi Zhang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Center for Immunobiology, Indiana University, Indianapolis, Indiana
| | - Praveen Mannam
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
45
|
New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:210934. [PMID: 25132912 PMCID: PMC4124219 DOI: 10.1155/2014/210934] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
The heart is highly sensitive to the aging process. In the elderly, the heart tends to become hypertrophic and fibrotic. Stiffness increases with ensuing systolic and diastolic dysfunction. Aging also affects the cardiac response to stress. At the molecular level, the aging process is associated with accumulation of damaged proteins and organelles, partially due to defects in protein quality control systems. The accumulation of dysfunctional and abnormal mitochondria is an important pathophysiological feature of the aging process, which is associated with excessive production of reactive oxygen species. Mitochondrial fusion and fission and mitochondrial autophagy are crucial mechanisms for maintaining mitochondrial function and preserving energy production. In particular, mitochondrial fission allows for selective segregation of damaged mitochondria, which are afterward eliminated by autophagy. Unfortunately, recent evidence indicates that mitochondrial dynamics and autophagy are progressively impaired over time, contributing to the aging process. This suggests that restoration of these mechanisms could delay organ senescence and prevent age-associated cardiac diseases. Here, we discuss the current understanding of the close relationship between mitochondrial dynamics, mitophagy, oxidative stress, and aging, with a particular focus on the heart.
Collapse
|
46
|
Williams C. Going against the flow: A case for peroxisomal protein export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1386-92. [DOI: 10.1016/j.bbamcr.2014.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
47
|
Lv X, Pu X, Qin G, Zhu T, Lin H. The roles of autophagy in development and stress responses in Arabidopsis thaliana. Apoptosis 2014; 19:905-21. [DOI: 10.1007/s10495-014-0981-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Med Chem 2013; 5:1009-21. [PMID: 23734684 DOI: 10.4155/fmc.13.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process activated by stress conditions and nutrient deprivation, to which it reacts by promoting the degradation of damaged organelles and misfolded/aggregated proteins, as well as generating new energetic pools. Paradoxically, in cancer cells, which signal the dangerous microenvironment occurring during clinical therapies, autophagy could promote their proliferation and sustain drug resistance. Special attention is given to autophagy manipulation in order to counteract drug resistance of cancer cells. This article describes the basic properties of autophagy and focuses on the strategies of manipulating it.
Collapse
|
49
|
Killinger B, Shah M, Moszczynska A. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats. J Neurochem 2013; 128:764-75. [PMID: 24151877 DOI: 10.1111/jnc.12496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 01/31/2023]
Abstract
Psychostimulant methamphetamine (METH) is toxic to striatal dopaminergic and serotonergic nerve terminals in adult, but not in the adolescent, brain. Betulinic acid (BA) and its derivatives are promising anti-HIV agents with some toxic properties. Many METH users, particularly young men, are HIV-positive; therefore, they might be treated with BA or its derivative for HIV infection. It is not known whether BA, or any of its derivatives, are neurotoxic in combination with METH in the adolescent brain. The present study investigated the effects of BA and binge METH in the striatum of late adolescent rats. BA or METH alone did not decrease the levels of dopaminergic or serotonergic markers in the striatum whereas BA and METH together decreased these markers in a BA dose-dependent manner. BA+METH also caused decreases in the levels of mitochondrial complex I in the same manner; BA alone only slightly decreased the levels of this enzyme in striatal synaptosomes. BA or METH alone increased cytochrome c. METH alone decreased parkin, increased complex II and striatal BA levels. These results suggest that METH in combination with BA can be neurotoxic to striatal dopaminergic and serotonergic nerve terminals in the late adolescent brain via mitochondrial dysfunction and parkin deficit. We report a synergistic neurotoxicity of betulinic acid (BA) and methamphetamine (METH) to monoaminergic terminals in the striatum of male late adolescent rats. BA contribution to the neurotoxicity is decreasing mitochondrial complex I whereas METH contribution is decreasing parkin and increasing brain concentration of BA. We propose that clinical use of BA in young male METH users can be neurotoxic.
Collapse
Affiliation(s)
- Bryan Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
50
|
Zhang W, Wu H, Liu L, Zhu Y, Chen Q. Phosphorylation Events in Selective Mitophagy: Possible Biochemical Markers? CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|