1
|
Wang H, Liu R, Yu Y, Xue H, Shen R, Zhang Y, Ding J. Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns. Biomaterials 2025; 317:123013. [PMID: 39733514 DOI: 10.1016/j.biomaterials.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way. Cell elongation was modulated via microwell aspect ratios (ARs), and nuclear deformation was generated through a micropillar array in the microwell. Human non-small cell lung cancer cells (A549) were cultured on the quasi-three dimensional micropatterned surfaces, and transforming growth factor-β1 (TGF-β1) was added to induce EMT. We found that chimeric micropatterns upregulated EMT with an increase of cellular AR and nuclear indentation under given TGF-β1. The subsequent assessment of the contractility and oriented assembly of microfilaments elucidated the key role of mechanotransduction in cell elongation and EMT, as proved by myosin inhibition, while it was obstructed by micropillars in the chimeric micropattern. Hence, the micropillar array possessed a nonmonotonic influence, enhancing the EMT of cells with AR of 1, but hindering the EMT with an impact more significant on microwells with large ARs due to the impeded cytoskeleton assembly. This fundamental research has illustrated the complex of cellular and subcellular geometries on cell behaviors including phenotype transition in cancer metastasis.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongrui Xue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yanshuang Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Dutour A, Pasello M, Farrow L, Amer MH, Entz-Werlé N, Nathrath M, Scotlandi K, Mittnacht S, Gomez-Mascard A. Microenvironment matters: insights from the FOSTER consortium on microenvironment-driven approaches to osteosarcoma therapy. Cancer Metastasis Rev 2025; 44:44. [PMID: 40210800 PMCID: PMC11985652 DOI: 10.1007/s10555-025-10257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
Osteosarcoma (OS), a prevalent malignant bone tumor, has seen limited progress in treatment efficacy and patient outcomes over decades. Recent insights into the tumor microenvironment (TME) have revealed its crucial role in tumor progression and therapeutic resistance, particularly in OS. This review offers a comprehensive exploration of the OS microenvironment, meticulously dissecting its crucial components: the mesenchymal stromal TME, the immune microenvironment, hypoxia-induced adaptations, and the impact of the physical microenvironment. By demonstrating how these elements collectively drive tumor proliferation, immune evasion, and invasion, this review explores the intricate molecular and cellular dynamics at play. Furthermore, innovative approaches targeting the OS microenvironment, such as immunotherapies, are presented. This review highlights the importance of the TME in OS progression and its potential as a source of novel therapeutic strategies, offering new hope for improved patient outcomes.
Collapse
Affiliation(s)
- Aurelie Dutour
- Childhood Cancer & Cell Death Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008, Lyon, France
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luke Farrow
- University College London Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley St, London, WC1E 6DD, UK
| | - Mahetab H Amer
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Natacha Entz-Werlé
- Pediatric Onco-Hematology Unit, University Hospitals of Strasbourg, Strasbourg, France
- Translational, Transversal and Therapeutic Oncology Team, Laboratory of Bioimaging and Pathologies, Faculty of Pharmacy, CNRS UMR 7021, Illkirch, France
| | - Michaela Nathrath
- Department of Pediatric Hemato-Oncology, Psychosomatics and Systemic Diseases, Children's Hospital Kassel, Kassel, Germany
- Department of Pediatrics, Children'S Cancer Research Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sibylle Mittnacht
- University College London Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley St, London, WC1E 6DD, UK
| | - Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, 1 Avenue Irène Joliot-Curie, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
3
|
Leclech C, Cardillo G, Roellinger B, Zhang X, Frederick J, Mamchaoui K, Coirault C, Barakat AI. Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410052. [PMID: 39873289 PMCID: PMC11923911 DOI: 10.1002/advs.202410052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/29/2024] [Indexed: 01/30/2025]
Abstract
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane. Here, it is shown that endothelial cells and myoblasts cultured on microgroove substrates that mimic the anisotropic topography of the basement membrane exhibit large-scale 3D nuclear deformations, with partial to complete nuclear penetration into the microgrooves. These deformations do not lead to significant DNA damage and are dynamic with nuclei cyclically entering and exiting the microgrooves. Atomic force microscopy measurements show that these deformation cycles are accompanied by transient changes in perinuclear stiffness. Interestingly, nuclear penetration into the grooves is driven principally by cell-substrate adhesion stresses, with a limited need for cytoskeleton-associated forces. Finally, it is demonstrated that myoblasts from laminopathy patients exhibit abnormal nuclear deformations on microgrooves, raising the possibility of using microgroove substrates as a novel functional diagnostic platform for pathologies that involve abnormal nuclear mechanics.
Collapse
Affiliation(s)
- Claire Leclech
- LadHyXCNRSEcole PolytechniqueInstitut Polytechnique de ParisPalaiseau91120France
| | - Giulia Cardillo
- LadHyXCNRSEcole PolytechniqueInstitut Polytechnique de ParisPalaiseau91120France
| | - Bettina Roellinger
- LadHyXCNRSEcole PolytechniqueInstitut Polytechnique de ParisPalaiseau91120France
| | - Xingjian Zhang
- LadHyXCNRSEcole PolytechniqueInstitut Polytechnique de ParisPalaiseau91120France
| | - Joni Frederick
- LadHyXCNRSEcole PolytechniqueInstitut Polytechnique de ParisPalaiseau91120France
| | - Kamel Mamchaoui
- Sorbonne UniversitéINSERM UMRS‐974Centre for Research in Myology GH Pitié‐Salpêtrière 47 bd de l'HôpitalParis75013France
| | - Catherine Coirault
- Sorbonne UniversitéINSERM UMRS‐974Centre for Research in Myology GH Pitié‐Salpêtrière 47 bd de l'HôpitalParis75013France
| | - Abdul I. Barakat
- LadHyXCNRSEcole PolytechniqueInstitut Polytechnique de ParisPalaiseau91120France
| |
Collapse
|
4
|
Scott NR, Kang S, Parekh SH. Mechanosensitive nuclear uptake of chemotherapy. SCIENCE ADVANCES 2024; 10:eadr5947. [PMID: 39693448 DOI: 10.1126/sciadv.adr5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
The nucleus is at the nexus of mechanotransduction and the final barrier for most first line chemotherapeutics. Here, we study the intersection between nuclear-cytoskeletal coupling and chemotherapy nuclear internalization. We find that chronic and acute modulation of intracellular filaments changes nuclear influx of doxorubicin (DOX). Rapid changes in cell strain by disruption of cytoskeletal and nuclear filaments sensitize nuclei to DOX, whereas chronic reduction of cell strain desensitize nuclei to DOX. Extracted nuclei from invasive cancer cells lines from different tissues have distinct nuclear permeability to DOX. Last, we show that mechano-priming of cells by paclitaxel markedly improves DOX nuclear internalization, rationalizing the observed drug synergies. Our findings reveal that nuclear uptake is a critical, previously unquantified aspect of drug resistance. With nuclear permeability to chemotherapy being tunable via modulation of nuclear mechanotransduction, mechano-priming may be useful to help overcome drug resistance in the future.
Collapse
Affiliation(s)
- Nicholas R Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sowon Kang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Liu R, Wang H, Ding J. Epithelial-Mesenchymal Transition of Cancer Cells on Micropillar Arrays. ACS APPLIED BIO MATERIALS 2024; 7:3997-4006. [PMID: 38815185 DOI: 10.1021/acsabm.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is critical for tumor invasion and many other cell-relevant processes. While much progress has been made about EMT, no report concerns the EMT of cells on topological biomaterial interfaces with significant nuclear deformation. Herein, we prepared a poly(lactide-co-glycolide) micropillar array with an appropriate dimension to enable significant deformation of cell nuclei and examined EMT of a human lung cancer epithelial cell (A549). We show that A549 cells undergo serious nuclear deformation on the micropillar array. The cells express more E-cadherin and less vimentin on the micropillar array than on the smooth surface. After transforming growth factor-β1 (TGF-β1) treatment, the expression of E-cadherin as an indicator of the epithelial phenotype is decreased and the expression of vimentin as an indicator of the mesenchymal phenotype is increased for the cells both on smooth surfaces and on micropillar arrays, indicating that EMT occurs even when the cell nuclei are deformed and the culture on the micropillar array more enhances the expression of vimentin. Expression of myosin phosphatase targeting subunit 1 is reduced in the cells on the micropillar array, possibly affecting the turnover of myosin light chain phosphorylation and actin assembly; this makes cells on the micropillar array prefer the epithelial-like phenotype and more sensitive to TGF-β1. Overall, the micropillar array exhibits a promoting effect on the EMT.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongyu Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
7
|
Manifacier I, Carlin G, Liu D, Vassaux M, Pieuchot L, Luchnikov V, Anselme K, Milan JL. In silico analysis shows that dynamic changes in curvature guide cell migration over long distances. Biomech Model Mechanobiol 2024; 23:315-333. [PMID: 37875692 DOI: 10.1007/s10237-023-01777-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/24/2023] [Indexed: 10/26/2023]
Abstract
In vitro experiments have shown that cell scale curvatures influence cell migration; cells avoid convex hills and settle in concave valleys. However, it is not known whether dynamic changes in curvature can guide cell migration. This study extends a previous in-silico model to explore the effects over time of changing the substrate curvature on cell migration guidance. By simulating a dynamic surface curvature using traveling wave patterns, we investigate the influence of wave height and speed, and find that long-distance cell migration guidance can be achieved on specific wave patterns. We propose a mechanistic explanation of what we call dynamic curvotaxis and highlight those cellular features that may be involved. Our results open a new area of study for understanding cell mobility in dynamic environments, from single-cell in vitro experiments to multi-cellular in vivo mechanisms.
Collapse
Affiliation(s)
- Ian Manifacier
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France
| | - Gildas Carlin
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France
| | - Dongshu Liu
- Aix Marseille Univ, CNRS, ISM, Marseille, France
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France
| | - Maxime Vassaux
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France
| | - Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, 68100, France
| | - Valeriy Luchnikov
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, 68100, France
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, 68100, France
| | - Jean-Louis Milan
- Aix Marseille Univ, CNRS, ISM, Marseille, France.
- APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France.
| |
Collapse
|
8
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Song D, Husari A, Kotz-Helmer F, Tomakidi P, Rapp BE, Rühe J. Two-Photon Direct Laser Writing of 3D Scaffolds through C, H-Insertion Crosslinking in a One-Component Material System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306682. [PMID: 38059850 DOI: 10.1002/smll.202306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The popularity of two-photon direct laser writing in biological research is remarkable as this technique is capable of 3D fabrication of microstructures with unprecedented control, flexibility and precision. Nevertheless, potential impurities such as residual monomers and photoinitiators remaining unnoticed from the photopolymerization in the structures pose strong challenges for biological applications. Here, the first use of high-precision 3D microstructures fabricated from a one-component material system (without monomers and photoinitiators) as a 3D cell culture platform is demonstrated. The material system consists of prepolymers with built- in crosslinker motieties, requiring only aliphatic C, H units as reaction partners following two-photon excitation. The material is written by direct laser writing using two-photon processes in a solvent-free state, which enables the generation of structures at a rapid scan speed of up to 500 mm s-1 with feature sizes scaling down to few micrometers. The generated structures possess stiffnesses close to those of common tissue and demonstrate excellent biocompatibility and cellular adhesion without any additional modification. The demonstrated approach holds great promise for fabricating high-precision complex 3D cell culture scaffolds that are safe in biological environments.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bastian E Rapp
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| |
Collapse
|
10
|
Quan Y, Huang Z, Wang Y, Liu Y, Ding S, Zhao Q, Chen X, Li H, Tang Z, Zhou B, Zhou Y. Coupling of static ultramicromagnetic field with elastic micropillar-structured substrate for cell response. Mater Today Bio 2023; 23:100831. [PMID: 37881448 PMCID: PMC10594574 DOI: 10.1016/j.mtbio.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
Micropillars have emerged as promising tools for a wide range of biological applications, while the influence of magnetic fields on cell behavior regulation has been increasingly recognized. However, the combined effect of micropillars and magnetic fields on cell behaviors remains poorly understood. In this study, we investigated the responses of H9c2 cells to ultramicromagnetic micropillar arrays using NdFeB as the tuned magnetic particles. We conducted a comparative analysis between PDMS micropillars and NdFeB/PDMS micropillars to assess their impact on cell function. Our results revealed that H9c2 cells exhibited significantly enhanced proliferation and notable cytoskeletal rearrangements on the ultramicromagnetic micropillars, surpassing the effects observed with pure PDMS micropillars. Immunostaining further indicated that cells cultured on ultramicromagnetic micropillars displayed heightened contractility compared to those on PDMS micropillars. Remarkably, the ultramicromagnetic micropillars also demonstrated the ability to decrease reactive oxygen species (ROS) levels, thereby preventing F-actin degeneration. Consequently, this study introduces ultramicromagnetic micropillars as a novel tool for the regulation and detection of cell behaviors, thus paving the way for advanced investigations in tissue engineering, single-cell analysis, and the development of flexible sensors for cellular-level studies.
Collapse
Affiliation(s)
- Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qian Zhao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Haifeng Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau
| |
Collapse
|
11
|
Xie W, Wei X, Kang H, Jiang H, Chu Z, Lin Y, Hou Y, Wei Q. Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204594. [PMID: 36658771 PMCID: PMC10037983 DOI: 10.1002/advs.202204594] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic system that constantly offers physical, biological, and chemical signals to embraced cells. Increasing evidence suggests that mechanical signals derived from the dynamic cellular microenvironment are essential controllers of cell behaviors. Conventional cell culture biomaterials, with static mechanical properties such as chemistry, topography, and stiffness, have offered a fundamental understanding of various vital biochemical and biophysical processes, such as cell adhesion, spreading, migration, growth, and differentiation. At present, novel biomaterials that can spatiotemporally impart biophysical cues to manipulate cell fate are emerging. The dynamic properties and adaptive traits of new materials endow them with the ability to adapt to cell requirements and enhance cell functions. In this review, an introductory overview of the key players essential to mechanobiology is provided. A biophysical perspective on the state-of-the-art manipulation techniques and novel materials in designing static and dynamic ECM-mimicking biomaterials is taken. In particular, different static and dynamic mechanical cues in regulating cellular mechanosensing and functions are compared. This review to benefit the development of engineering biomechanical systems regulating cell functions is expected.
Collapse
Affiliation(s)
- Wenyan Xie
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Xi Wei
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Hong Jiang
- Department of BiotherapyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610065China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering (Joint Appointment with School of Biomedical Sciences)The University of Hong KongHong KongChina
| | - Yuan Lin
- Department of Mechanical EngineeringThe University of Hong KongHong KongChina
| | - Yong Hou
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongChina
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Qiang Wei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
12
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
13
|
Micropillar-based phenotypic screening platform uncovers involvement of HDAC2 in nuclear deformability. Biomaterials 2022; 286:121564. [DOI: 10.1016/j.biomaterials.2022.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
|
14
|
Ermis M, Antmen E, Kuren O, Demirci U, Hasirci V. A Cell Culture Chip with Transparent, Micropillar-Decorated Bottom for Live Cell Imaging and Screening of Breast Cancer Cells. MICROMACHINES 2022; 13:mi13010093. [PMID: 35056257 PMCID: PMC8779566 DOI: 10.3390/mi13010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
In the recent years, microfabrication technologies have been widely used in cell biology, tissue engineering, and regenerative medicine studies. Today, the implementation of microfabricated devices in cancer research is frequent and advantageous because it enables the study of cancer cells in controlled microenvironments provided by the microchips. Breast cancer is one of the most common cancers in women, and the way breast cancer cells interact with their physical microenvironment is still under investigation. In this study, we developed a transparent cell culture chip (Ch-Pattern) with a micropillar-decorated bottom that makes live imaging and monitoring of the metabolic, proliferative, apoptotic, and morphological behavior of breast cancer cells possible. The reason for the use of micropatterned surfaces is because cancer cells deform and lose their shape and acto-myosin integrity on micropatterned substrates, and this allows the quantification of the changes in morphology and through that identification of the cancerous cells. In the last decade, cancer cells were studied on micropatterned substrates of varying sizes and with a variety of biomaterials. These studies were conducted using conventional cell culture plates carrying patterned films. In the present study, cell culture protocols were conducted in the clear-bottom micropatterned chip. This approach adds significantly to the current knowledge and applications by enabling low-volume and high-throughput processing of the cell behavior, especially the cell–micropattern interactions. In this study, two different breast cancer cell lines, MDA-MB-231 and MCF-7, were used. MDA-MB-231 cells are invasive and metastatic, while MCF-7 cells are not metastatic. The nuclei of these two cell types deformed to distinctly different levels on the micropatterns, had different metabolic and proliferation rates, and their cell cycles were affected. The Ch-Pattern chips developed in this study proved to have significant advantages when used in the biological analysis of live cells and highly beneficial in the study of screening breast cancer cell–substrate interactions in vitro.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Ezgi Antmen
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Ozgur Kuren
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Utkan Demirci
- Canary Center for Cancer Early Detection, Department of Radiology, Electrical Engineering Department, Stanford University, Palo Alto, CA 94305, USA;
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- ACU Biomaterials Center, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- Correspondence:
| |
Collapse
|
15
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Claus C, Fritz R, Schilling E, Reibetanz U. The Metabolic Response of Various Cell Lines to Microtubule-Driven Uptake of Lipid- and Polymer-Coated Layer-by-Layer Microcarriers. Pharmaceutics 2021; 13:1441. [PMID: 34575517 PMCID: PMC8465159 DOI: 10.3390/pharmaceutics13091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid structures, such as liposomes or micelles, are of high interest as an approach to support the transport and delivery of active agents as a drug delivery system. However, there are many open questions regarding their uptake and impact on cellular metabolism. In this study, lipid structures were assembled as a supported lipid bilayer on top of biopolymer-coated microcarriers based on the Layer-by-Layer assembly strategy. The functionalized microcarriers were then applied to various human and animal cell lines in addition to primary human macrophages (MΦ). Here, their influence on cellular metabolism and their intracellular localization were detected by extracellular flux analysis and immunofluorescence analysis, respectively. The impact of microcarriers on metabolic parameters was in most cell types rather low. However, lipid bilayer-supported microcarriers induced a decrease in oxygen consumption rate (OCR, indicative for mitochondrial respiration) and extracellular acidification rate (ECAR, indicative for glycolysis) in Vero cells. Additionally, in Vero cells lipid bilayer microcarriers showed a more pronounced association with microtubule filaments than polymer-coated microcarrier. Furthermore, they localized to a perinuclear region and induced nuclei with some deformations at a higher rate than unfunctionalized carriers. This association was reduced through the application of the microtubule polymerization inhibitor nocodazole. Thus, the effect of respective lipid structures as a drug delivery system on cells has to be considered in the context of the respective target cell, but in general can be regarded as rather low.
Collapse
Affiliation(s)
- Claudia Claus
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Robert Fritz
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Erik Schilling
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany;
| | - Uta Reibetanz
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| |
Collapse
|
17
|
Qiu R, Sun D, Bai Y, Li J, Wang L. Application of tumor-targeting peptide-decorated polypeptide nanoparticles with doxorubicin to treat osteosarcoma. Drug Deliv 2021; 27:1704-1717. [PMID: 33305647 PMCID: PMC7733905 DOI: 10.1080/10717544.2020.1856221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in childhood and adolescence. Currently, surgery combined with chemotherapy is the main treatment for osteosarcoma. However, the long-term survival of patients with metastatic osteosarcoma is unsatisfactory. Therefore, new treatment methods to improve the prognosis of patients with osteosarcoma are required. The present study aimed to develop nanocarriers with both tumor targeting and reduction responsiveness abilities, and to improve the therapeutic effect and reduce toxicity by loading traditional small molecule antitumor drugs. The tumor targeting peptide-decorated, doxorubicin (DOX)-loaded mPEG-P(Phe-co-Cys) nanoparticles were developed successfully through the ring-opening polymerization of amino acids. The peptide VATANST (STP) can specifically bind with vimentin, which is highly expressed on the osteosarcoma cell surface, resulting in tumor targeting effects. The nanoparticle is core–shell structured to protect the loaded DOX during blood flow. The disulfide bonds within the nanoparticles are sensitive to the osteosarcoma microenvironment, which has high glutathione (GSH) levels. Under the enhanced permeability and retention and active tumor targeting effects, the STP-decorated DOX-loaded nanoparticles accumulated in tumor tissues. High GSH levels can rupture disulfide bonds, resulting in the controlled release of DOX, which will cause necrosis of tumor cells. The characteristics of the synthesized nanoparticles, DOX release profiles in vitro and in vivo, cytotoxicity analysis, animal study, and safety evaluation were performed. The nanoparticles could increase the tumor inhibition efficiency against osteosarcoma and reduce the side effects of DOX to major organs. The STP-decorated mPEG-P(Phe-co-Cys) nanoparticles might be a suitable drug delivery system for DOX to treat osteosarcoma.
Collapse
Affiliation(s)
- Renna Qiu
- Department of Physical Examination Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Denghua Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuzhuo Bai
- Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Carthew J, Abdelmaksoud HH, Hodgson‐Garms M, Aslanoglou S, Ghavamian S, Elnathan R, Spatz JP, Brugger J, Thissen H, Voelcker NH, Cadarso VJ, Frith JE. Precision Surface Microtopography Regulates Cell Fate via Changes to Actomyosin Contractility and Nuclear Architecture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003186. [PMID: 33747730 PMCID: PMC7967085 DOI: 10.1002/advs.202003186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Indexed: 05/06/2023]
Abstract
Cells are able to perceive complex mechanical cues from their microenvironment, which in turn influences their development. Although the understanding of these intricate mechanotransductive signals is evolving, the precise roles of substrate microtopography in directing cell fate is still poorly understood. Here, UV nanoimprint lithography is used to generate micropillar arrays ranging from 1 to 10 µm in height, width, and spacing to investigate the impact of microtopography on mechanotransduction. Using mesenchymal stem cells (MSCs) as a model, stark pattern-specific changes in nuclear architecture, lamin A/C accumulation, chromatin positioning, and DNA methyltransferase expression, are demonstrated. MSC osteogenesis is also enhanced specifically on micropillars with 5 µm width/spacing and 5 µm height. Intriguingly, the highest degree of osteogenesis correlates with patterns that stimulated maximal nuclear deformation which is shown to be dependent on myosin-II-generated tension. The outcomes determine new insights into nuclear mechanotransduction by demonstrating that force transmission across the nuclear envelope can be modulated by substrate topography, and that this can alter chromatin organisation and impact upon cell fate. These findings have potential to inform the development of microstructured cell culture substrates that can direct cell mechanotransduction and fate for therapeutic applications in both research and clinical sectors.
Collapse
Affiliation(s)
- James Carthew
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Centre to Impact Antimicrobial Resistance – Sustainable SolutionsMonash UniversityClaytonVictoria3800Australia
| | - Hazem H. Abdelmaksoud
- Department of Mechanical and Aerospace EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
| | - Margeaux Hodgson‐Garms
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Stella Aslanoglou
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Sara Ghavamian
- Centre to Impact Antimicrobial Resistance – Sustainable SolutionsMonash UniversityClaytonVictoria3800Australia
- Department of Mechanical and Aerospace EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Roey Elnathan
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVictoria3052Australia
| | - Joachim P. Spatz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraßeHeidelbergD‐69120Germany
- Heidelberg UniversityInstitute for Molecular Systems Engineering (IMSE)HeidelbergD‐69120Germany
- Max Planck School Matter to LifeGermany
| | - Juergen Brugger
- Microsystems LaboratoryÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Nicolas H. Voelcker
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVictoria3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoria3168Australia
| | - Victor J. Cadarso
- Centre to Impact Antimicrobial Resistance – Sustainable SolutionsMonash UniversityClaytonVictoria3800Australia
- Department of Mechanical and Aerospace EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoria3168Australia
| | - Jessica E. Frith
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| |
Collapse
|
19
|
Julien E, Biasch K, El Omar R, Freund JN, Gachet C, Lanza F, Tavian M. Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells 2021; 39:636-649. [PMID: 33480126 DOI: 10.1002/stem.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.
Collapse
Affiliation(s)
- Emmanuelle Julien
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Katia Biasch
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,IMoPA, UMR7365 CNRS-University of Lorraine, Vandœuvre Les Nancy, France
| | - Jean-Noël Freund
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| |
Collapse
|
20
|
Antmen E, Demirci U, Hasirci V. Micropatterned Surfaces Expose the Coupling between Actin Cytoskeleton-Lamin/Nesprin and Nuclear Deformability of Breast Cancer Cells with Different Malignancies. Adv Biol (Weinh) 2021; 5:e2000048. [PMID: 33724728 PMCID: PMC9049775 DOI: 10.1002/adbi.202000048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mechanotransduction proteins transfer mechanical stimuli through nucleo-cytoskeletal coupling and affect the nuclear morphology of cancer cells. However, the contribution of actin filament integrity has never been studied directly. It is hypothesized that differences in nuclear deformability of cancer cells are influenced by the integrity of actin filaments. In this study, transparent micropatterned surfaces as simple tools to screen cytoskeletal and nuclear distortions are presented. Surfaces decorated with micropillars are used to culture and image breast cancer cells and quantify their deformation using shape descriptors (circularity, area, perimeter). Using two drugs (cytochalasin D and jasplakinolide), actin filaments are disrupted. Deformation of cells on micropillars is decreased upon drug treatment as shown by increased circularity. However, the effect is much smaller on benign MCF10A than on malignant MCF7 and MDAMB231 cells. On micropatterned surfaces, molecular analysis shows that Lamin A/C and Nesprin-2 expressions decreased but, after drug treatment, increased in malignant cells but not in benign cells. These findings suggest that Lamin A/C, Nesprin-2 and actin filaments are critical in mechanotransduction of cancer cells. Consequently, transparent micropatterned surfaces can be used as image analysis platforms to provide robust, high throughput measurements of nuclear deformability of cancer cells, including the effect of cytoskeletal elements.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Utkan Demirci
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Engineering, Atasehir, Istanbul, Turkey
| |
Collapse
|
21
|
Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. The vimentin cytoskeleton: when polymer physics meets cell biology. Phys Biol 2020; 18:011001. [PMID: 32992303 PMCID: PMC8240483 DOI: 10.1088/1478-3975/abbcc2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Patteson AE, Vahabikashi A, Goldman RD, Janmey PA. Mechanical and Non-Mechanical Functions of Filamentous and Non-Filamentous Vimentin. Bioessays 2020; 42:e2000078. [PMID: 32893352 PMCID: PMC8349470 DOI: 10.1002/bies.202000078] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Paul A. Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
23
|
Liao L, Zhang L, Yang M, Wang X, Huang W, Wu X, Pan H, Yuan L, Huang W, Wu Y, Guan J. Expression profile of SYNE3 and bioinformatic analysis of its prognostic value and functions in tumors. J Transl Med 2020; 18:355. [PMID: 32948197 PMCID: PMC7501639 DOI: 10.1186/s12967-020-02521-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Spectrin repeat containing nuclear envelope family member 3 (SYNE3) encodes an essential component of the linker of the cytoskeleton and nucleoskeleton (LINC) complex, namely nesprin-3. In a tumor, invasiveness and metastasis rely on the integrity of the LINC complex, while the role of SYNE3/nesprin-3 in cancer is rarely studied. Methods Here, we explored the expression pattern, prognostic value, and related mechanisms of SYNE3 through both experimental and bioinformatic methods. We first detected SYNE3 in BALB/c mice, normal human tissues, and the paired tumor tissues, then used bioinformatics databases to verify our results. We further analyzed the prognostic value of SYNE3. Next, we predicted miRNA targeting SYNE3 and built a competing endogenous RNA (ceRNA) network and a transcriptional network by analyzing data from the cancer genome atlas (TCGA) database. Interacting genes of SYNE3 were predicted, and we further performed GO and KEGG enrichment analysis on these genes. Besides, the relationship between SYNE3 and immune infiltration was also investigated. Results SYNE3 exhibited various expressions in different tissues, mainly located on nuclear and in cytoplasm sometimes. SYNE3 expression level had prognostic value in tumors, possibly by stabilizing nucleus, promoting tumor cells apoptosis, and altering tumor microenvironment. Additionally, we constructed a RP11-2B6.2-miR-149-5p-/RP11-67L2.2-miR-330-3p-SYNE3 ceRNA network and a SATB1-miR-149-5p-SYNE3 transcriptional network in lung adenocarcinoma to support the tumor-suppressing role of SYNE3. Conclusions Our study explored novel anti-tumor functions and mechanisms of SYNE3, which might be useful for future cancer therapy.
Collapse
Affiliation(s)
- Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yuan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqi Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc Natl Acad Sci U S A 2020; 117:21258-21266. [PMID: 32817542 PMCID: PMC7474590 DOI: 10.1073/pnas.2006765117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cells sense mechanical cues from the extracellular matrix to regulate cellular behavior and maintain tissue homeostasis. The nucleus has been implicated as a key mechanosensor and can directly influence chromatin organization, epigenetic modifications, and gene expression. Dysregulation of nuclear mechanosensing has been implicated in several diseases, including bone degeneration. Here, we exploit photostiffening hydrogels to manipulate nuclear mechanosensing in human mesenchymal stem cells (hMSCs) in vitro. Results show that hMSCs respond to matrix stiffening by increasing nuclear tension and causing an increase in histone acetylation via deactivation of histone deacetylases (HDACs). This ultimately induces osteogenic fate commitment. Disrupting nuclear mechanosensing by disconnecting the nucleus from the cytoskeleton up-regulates HDACs and prevents osteogenesis. Resetting HDAC activity back to healthy levels rescues the epigenetic and osteogenic response in hMSCs with pathological nuclear mechanosensing. Notably, bone from patients with osteoarthritis displays similar defective nuclear mechanosensing. Collectively, our results reveal that nuclear mechanosensing controls hMSC osteogenic potential mediated by HDAC epigenetic remodeling and that this cellular mechanism is likely relevant to bone-related diseases.
Collapse
|
25
|
Liu R, Ding J. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35799-35812. [PMID: 32667177 DOI: 10.1021/acsami.0c05883] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While various cell responses on material surfaces have been examined, relatively few reports are focused on significant self-deformation of cell nuclei and corresponding chromosomal repositioning. Herein, we prepared a micropillar array of poly(lactide-co-glycolide) (PLGA) and observed significant nuclear deformation of HeLa cells on the polymeric micropillars. In particular, we detected the territory positioning of chromosomes 18 and 19 and gene expression profiles of HeLa cells on the micropillar array using fluorescence in situ hybridization and a DNA microarray. Chromosome 18 was found to be translocated closer to the nuclear periphery than chromosome 19 on the micropillar array. With the repositioning of chromosomal territories, HeLa cells changed their gene expressions on the micropillar array with 180 genes upregulated and 255 genes downregulated for all of the 23 pairs of chromosomes under the experimental conditions and the employed Bioinformatics criteria. Hence, this work deepens the understanding on cell-material interactions by revealing that material surface topography can probably influence chromosomal repositioning in the nuclei and gene expressions of cells.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
26
|
Mechanical Adaptations of Epithelial Cells on Various Protruded Convex Geometries. Cells 2020; 9:cells9061434. [PMID: 32527037 PMCID: PMC7349491 DOI: 10.3390/cells9061434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
The shape of epithelial tissue supports physiological functions of organs such as intestinal villi and corneal epithelium. Despite the mounting evidence showing the importance of geometry in tissue microenvironments, the current understanding on how it affects biophysical behaviors of cells is still elusive. Here, we cultured cells on various protruded convex structure such as triangle, square, and circle shape fabricated using two-photon laser lithography and quantitatively analyzed individual cells. Morphological data indicates that epithelial cells can sense the sharpness of the corner by showing the characteristic cell alignments, which was caused by actin contractility. Cell area was mainly influenced by surface convexity, and Rho-activation increased cell area on circle shape. Moreover, we found that intermediate filaments, vimentin, and cytokeratin 8/18, play important roles in growth and adaptation of epithelial cells by enhancing expression level on convex structure depending on the shape. In addition, microtubule building blocks, α-tubulin, was also responded on geometric structure, which indicates that intermediate filaments and microtubule can cooperatively secure mechanical stability of epithelial cells on convex surface. Altogether, the current study will expand our understanding of mechanical adaptations of cells on out-of-plane geometry.
Collapse
|
27
|
Li YH, Hu YQ, Wang SC, Li Y, Chen DM. LncRNA SNHG5: A new budding star in human cancers. Gene 2020; 749:144724. [PMID: 32360843 DOI: 10.1016/j.gene.2020.144724] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNA (LncRNA) belongs to non-coding RNAs longer than 200 nucleic acids. More and more studies have revealed that lncRNA can participate in the occurrence and pathophysiology of diseases, especially in cancers. Although research on lncRNAs has doubled year by year, little is known about the specific regulatory mechanisms of lncRNAs in diseases. The main purpose of this review is to explore the molecular mechanism and clinical significance of SNHG5 in cancers. We systematically search Pubmed to obtain relevant literature on SNHG5. In this review, the functional role, molecular mechanism, and clinical significance of SNHG5 in human cancers are described in detail. Small nucleolar RNA host gene 5 (SNHG5) has been shown to be involved in the development and tumorigenesis of a variety of cancers (colorectal, bladder, gastric, endometrial, acute lymphocytic leukemia, osteosarcoma, etc.). Its disorder is closely related to metastasis, pathological staging, and prognosis. LncRNA SNHG5 might be a potential and novel diagnostic marker for cancer patients, a target for molecular targeted therapy, and a prognostic diagnostic marker.
Collapse
Affiliation(s)
- Yu-Han Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Qian Hu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng-Chan Wang
- Department of Geriatrics, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Dong-Ming Chen
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|