1
|
Roalf D, Atkins A, Czernuszenko A, Pecsok MK, McDonald-McGinn DM, Schmitt JE, Roeske MJ, Hopkins S, Freedman P, Alexander-Bloch A, Schabdach J, Jung B, Crowley TB, Gallagher RS, McGinn DE, Moberg PJ, Ruparel K, Shinohara RT, Turetsky BI, White L, Zackai EH, Gur RC, Gur RE. Presence, severity, and functional associations of incomplete hippocampal inversion in 22q11.2 deletion syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00137-5. [PMID: 40288750 DOI: 10.1016/j.bpsc.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The hippocampus is smaller and functionally disrupted in individuals with 22q11.2 deletion syndrome (22q11DS), though the cause remains unclear. During gestational weeks 20-30 an inversion in the dentate gyrus and cornu ammonis occurs. This process can go awry resulting in incomplete hippocampal inversion (IHI). In the general population, IHI is more common in the left hemisphere than the right; yet its prevalence, severity, and functional impact in 22q11DS remain unexplored. Investigating IHI in 22q11DS could uncover morphological hippocampal abnormalities linked to neuropsychiatric and neurocognitive symptoms. METHODS Using 3T structural MRI data, the presence and severity of IHI were assessed in 22q11DS (n=108) and healthy comparison (HC; n=633) individuals. Total and subregional hippocampal volume, psychopathology, and hippocampal-based memory were evaluated. RESULTS IHI prevalence was significantly higher in 22q11DS compared to HC in both the left (63% vs. 30%, p<0.001) and right hemispheres (29% vs. 8%, p<0.001). IHI severity was also greater in 22q11DS (p<0.001) bilaterally. IHI influenced hippocampal volume differences, with left IHI primarily affecting the head (p<0.01) and tail (p<0.001) and right IHI affecting only the tail (p<0.001). In exploratory analyses within 22q11DS, left IHI presence was linked to poorer face memory (p<0.05) but not psychopathology. CONCLUSIONS These findings highlight a high prevalence of hippocampal morphological alterations in 22q11DS, which are associated with memory performance. Earlier developmental and longitudinal studies are needed to clarify the role of IHI in 22q11DS sequelae.
Collapse
Affiliation(s)
- David Roalf
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP.
| | - Ally Atkins
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Czernuszenko
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret K Pecsok
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Donna M McDonald-McGinn
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Division of Human Biology and Medical Genetics, Sapienza, University, Rome, Italy
| | - J Eric Schmitt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Hopkins
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Phoebe Freedman
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | | | | | - T Blaine Crowley
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - R Sean Gallagher
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Daniel E McGinn
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Moberg
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Kosha Ruparel
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce I Turetsky
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren White
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Elaine H Zackai
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| |
Collapse
|
2
|
Cerulli Irelli E, Fanella M, Chaumette B, Putotto C, Mignot C, Mazzeo A, Lemke JR, Riva A, Accinni T, Louveau C, Giovannetti A, Pugnaloni F, Gavaret M, Di Fabio F, Fortunato F, Dorn T, Ferlazzo E, Gambardella A, Ramantani G, Orlando B, Iftimovici A, Operto FF, Pulvirenti F, Kluger G, Caputo V, Striano P, Di Bonaventura C. Phenotypic traits and family history in patients with 22q11.2 deletion syndrome and generalized epilepsy: A multicenter case-control study. Epilepsia 2025; 66:859-869. [PMID: 39718534 DOI: 10.1111/epi.18220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE This study was undertaken to characterize the clinical and genetic features of patients with 22q11.2 deletion syndrome (22q11.2DS) and generalized epilepsy compared with 22q11.2DS individuals without epilepsy. METHODS This multicenter case-control study included 28 patients with 22q11.2DS-related generalized epilepsy and compared their data with 56 age-matched 22q11.2DS controls without epilepsy. Clinical and electroencephalographic features, neuropsychiatric and systemic comorbidities, family history of epilepsy, and genetic findings were collected. RESULTS Generalized tonic-clonic seizures and myoclonic seizures were the most common electroclinical presentations, with a broader range of seizure type combinations also documented. Most patients achieved seizure remission with antiseizure medications, with only 4% exhibiting drug resistance. A higher prevalence of family history of epilepsy was observed among patients with 22q11.2DS-related generalized epilepsy compared to nonepilepsy controls, even when limiting the analysis to patients with known de novo deletions. No differences in deletion size or location were observed between the groups. Multivariable logistic regression analysis identified family history of epilepsy, intellectual disability, and lack of skeletal abnormalities as independent factors associated with generalized epilepsy, whereas a history of psychosis was significant only in univariable analysis. SIGNIFICANCE This study provides a detailed characterization of generalized epilepsy in individuals with 22q11.2DS and highlights specific associated comorbidities. The higher prevalence of family history of epilepsy among cases suggests that genetic factors beyond the 22q11.2 deletion influence the development of the epilepsy phenotype, providing new insights into the genetic underpinnings of phenotypic variability in this syndrome.
Collapse
Affiliation(s)
| | | | - Boris Chaumette
- Groupe Hospitalier Universitaire-Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique, Paris, France
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, Paris, France
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Carolina Putotto
- Department of Maternal, Infantile, and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Cyril Mignot
- Department of Genetics, Center for Rare Causes of Intellectual Disabilities and UPMC Research Group "Intellectual Disabilities and Autism", Paris, France
| | | | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Tommaso Accinni
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Cecile Louveau
- Groupe Hospitalier Universitaire-Paris Psychiatrie et Neurosciences, Pôle Hospitalo-Universitaire d'évaluation, Prévention, et Innovation Thérapeutique, Paris, France
| | - Agnese Giovannetti
- Clinical Genomics Laboratory, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Flaminia Pugnaloni
- Research Area of Fetal, Neonatal, and Cardiological Sciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Martine Gavaret
- Service de Neurophysiologie Clinique, Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Paris, France
| | - Fabio Di Fabio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Thomas Dorn
- Rehaklinik Sonnmatt Luzern, Zurzach Care, Lucerne, Switzerland
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, Catanzaro, Italy
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Biagio Orlando
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Anton Iftimovici
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Cité, Paris, France
| | - Francesca F Operto
- Department of Science of Health, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Federica Pulvirenti
- Regional Reference Center for Primary Immune Deficiencies, University Hospital Policlinico Umberto I, Rome, Italy
| | - Gerhard Kluger
- Research Institute Rehabilitation, Transition, and Palliation, Paracelsus Medical University Salzburg, Salzburg, Austria
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | | |
Collapse
|
3
|
Giardino M, Peluso F, Daolio O, Bellini M, Ambrosini E, Zito M, Squarcia A. An uncommon neuroradiological finding of hippocampal malrotation in childhood onset schizophrenia and 22q11.2 Deletion Syndrome: a case report and a brief review of the literature. Eur Child Adolesc Psychiatry 2025; 34:363-368. [PMID: 39164503 DOI: 10.1007/s00787-024-02569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Childhood Onset Schizophrenia is a rare neuropsychiatric disorder significantly associated with 22q11.2 Deletion Syndrome. We describe a male patient, followed from childhood to adolescence, who exhibited premorbid impairments in language, learning and social abilities, along with comorbid anxiety disorders. Over time, he gradually developed Childhood Onset Schizophrenia, with neuroradiological findings of white matter hyperintensities, a dysmorphic corpus callosum and Hippocampal Malrotation. These findings were observed in the context of a genetic diagnosis of 22q11.2 Deletion Syndrome, despite the absence of the most common congenital malformations and clinical conditions typically associated with this syndrome. A remarkable aspect of this case report is the emphasis on the importance of suspecting 22q11.2 Deletion Syndrome even in cases where only the neuropsychiatric phenotype of Childhood-Onset Schizophrenia and structural brain alterations, is present. While abnormalities of white matter and corpus callosum are associated with schizophrenia in patients with 22q11.2 Deletion Syndrome, Hippocampal Malrotation is more frequently described in patients with epilepsy and prolonged febrile seizures. Recently, only 10 adult patients with 22q11.2 Deletion Syndrome have been reported to have Hippocampal Malrotation, six of whom were affected by schizophrenia, with or without epilepsy. Our case report aims to extend the neuroradiological findings associated with 22q11.2 Deletion Syndrome and Schizophrenia, including Hippocampal Malrotation. This is the first case report in which Hippocampal Malrotation has been described in Childhood Onset Schizophrenia and 22q11.2 Deletion Syndrome. We suggest that patients with Hippocampal Malrotation and Childhood Onset Schizophrenia, should have a chromosomal microarray performed to screen for 22q11.2 Deletion Syndrome.
Collapse
Affiliation(s)
- Maria Giardino
- Child Neuropsychiatry Unit, Azienda USL di Parma, Parma, Italy.
| | - Francesca Peluso
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Omar Daolio
- Department of Mental Health and Pathological Addiction, Child and Adolescent Neuropsychiatry Service, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Melissa Bellini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
- Department of Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Zito
- Child Neuropsychiatry Unit, Azienda USL di Parma, Parma, Italy
| | | |
Collapse
|
4
|
Supekar K, de Los Angeles C, Ryali S, Kushan L, Schleifer C, Repetto G, Crossley NA, Simon T, Bearden CE, Menon V. Robust and replicable functional brain signatures of 22q11.2 deletion syndrome and associated psychosis: a deep neural network-based multi-cohort study. Mol Psychiatry 2024; 29:2951-2966. [PMID: 38605171 DOI: 10.1038/s41380-024-02495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
A major genetic risk factor for psychosis is 22q11.2 deletion (22q11.2DS). However, robust and replicable functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis remain elusive due to small sample sizes and a focus on small single-site cohorts. Here, we identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, and their links with idiopathic early psychosis, using one of the largest multi-cohort data to date. We obtained multi-cohort clinical phenotypic and task-free fMRI data from 856 participants (101 22q11.2DS, 120 idiopathic early psychosis, 101 idiopathic autism, 123 idiopathic ADHD, and 411 healthy controls) in a case-control design. A novel spatiotemporal deep neural network (stDNN)-based analysis was applied to the multi-cohort data to identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis. Next, stDNN was used to test the hypothesis that the functional brain signatures of 22q11.2DS-associated psychosis overlap with idiopathic early psychosis but not with autism and ADHD. stDNN-derived brain signatures distinguished 22q11.2DS from controls, and 22q11.2DS-associated psychosis with very high accuracies (86-94%) in the primary cohort and two fully independent cohorts without additional training. Robust distinguishing features of 22q11.2DS-associated psychosis emerged in the anterior insula node of the salience network and the striatum node of the dopaminergic reward pathway. These features also distinguished individuals with idiopathic early psychosis from controls, but not idiopathic autism or ADHD. Our results reveal that individuals with 22q11.2DS exhibit a highly distinct functional brain organization compared to controls. Additionally, the brain signatures of 22q11.2DS-associated psychosis overlap with those of idiopathic early psychosis in the salience network and dopaminergic reward pathway, providing substantial empirical support for the theoretical aberrant salience-based model of psychosis. Collectively, our findings, replicated across multiple independent cohorts, advance the understanding of 22q11.2DS and associated psychosis, underscoring the value of 22q11.2DS as a genetic model for probing the neurobiological underpinnings of psychosis and its progression.
Collapse
Affiliation(s)
- Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Carlo de Los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charlie Schleifer
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriela Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nicolas A Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Tony Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
- MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
de León Reyes NS, Bortolozzo-Gleich MH, Nomura Y, Fregola CG, Nieto M, Gogos JA, Leroy F. Interhemispheric CA1 projections support spatial cognition and are affected in a mouse model of the 22q11.2 deletion syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611389. [PMID: 39282348 PMCID: PMC11398471 DOI: 10.1101/2024.09.05.611389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Untangling the hippocampus connectivity is critical for understanding the mechanisms supporting learning and memory. However, the function of interhemispheric connections between hippocampal formations is still poorly understood. So far, two major hippocampal commissural projections have been characterized in rodents. Mossy cells from the hilus of the dentate gyrus project to the inner molecular layer of the contralateral dentate gyrus and CA3 and CA2 pyramidal neuron axonal collaterals to contralateral CA3, CA2 and CA1. In contrary, little is known about commissural projection from the CA1 region. Here, we show that CA1 pyramidal neurons from the dorsal hippocampus project to contralateral dorsal CA1 as well as dorsal subiculum. We further demonstrate that the interhemispheric projection from CA1 to dorsal subiculum supports spatial memory and spatial working memory in WT mice, two cognitive functions impaired in male mice from the Df16(A) +/- model of 22q11.2 deletion syndrome (22q11.2DS) associated with schizophrenia. Investigation of the CA1 interhemispheric projections in Df16(A) +/- mice revealed that these projections are disrupted with male mutants showing stronger anatomical defects compared to females. Overall, our results characterize a novel interhemispheric projection from dCA1 to dorsal subiculum and suggest that dysregulation of this projection may contribute to the cognitive deficits associated with the 22q11.2DS.
Collapse
Affiliation(s)
- Noelia S. de León Reyes
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | | | - Yuki Nomura
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Cristina García Fregola
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Joseph A. Gogos
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Physiology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Stavros Niarchos Foundation Center for Precision Psychiatry and Mental Health, Columbia University, New York, NY, United States
| | - Félix Leroy
- Instituto de Neurociencias CSIC-UMH, Avenida Santiago Ramon y Cajal San Juan de Alicante, Spain
| |
Collapse
|
6
|
Berardelli I, Cifrodelli M, Sarubbi S, Giuliani C, Antonelli G, Schirripa F, Putotto C, Pulvirenti F, Innamorati M, Pompili M. Investigating psychiatric morbidity, hopelessness and suicide risk in patients with 22q11.2 deletion syndrome: a case-control study. Int J Psychiatry Clin Pract 2024; 28:198-203. [PMID: 39556145 DOI: 10.1080/13651501.2024.2427624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The psychiatric phenotype of the 22q11.2 deletion syndrome (22q11DS) has been largely described. OBJECTIVES With a case-control study design, we now compared a sample of 22q11DS patients with a psychiatric diagnosis with a sample of psychiatric patients without 22q11DS to investigate possible differences between groups for depression severity, hopelessness, and suicide. Patients with 22q11DS were divided into two groups according to the levels of hopelessness to evaluate the relationship between hopelessness and the severity of the 22q11DS, the level of disability, functional impairment, physical frailty, and autonomy level. RESULTS Results showed that suicide risk evaluated with the C-SSRS was similar in the two groups of patients and that a diagnosis of 22q11DS does not appear to be a risk factor for suicide; however, 22q11DS patients had more severe hopelessness. Patients with a more severe clinical presentation and worse overall functioning have higher levels of depressive symptoms and hopelessness. CONCLUSIONS The results suggest the need to assess and monitor psychiatric symptoms in patients with 22q11DS.
Collapse
Affiliation(s)
- Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Suicide Prevention Centre, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Mariarosaria Cifrodelli
- Psychiatry Residency Training Program, Psychiatry Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Salvatore Sarubbi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlotta Giuliani
- Psychiatry Residency Training Program, Psychiatry Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giulia Antonelli
- Psychiatry Residency Training Program, Psychiatry Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Fabrizio Schirripa
- Psychiatry Residency Training Program, Psychiatry Unit, Faculty of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Carolina Putotto
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Pulvirenti
- Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Marco Innamorati
- Department of Human Sciences, European University of Rome, Rome, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Suicide Prevention Centre, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Barrera-Conde M, Ramon-Duaso C, González-Parra JA, Veza-Estevez E, Chevaleyre V, Piskorowski RA, de la Torre R, Busquets-García A, Robledo P. Adolescent cannabinoid exposure rescues phencyclidine-induced social deficits through modulation of CA2 transmission. Prog Neurobiol 2024; 240:102652. [PMID: 38955325 DOI: 10.1016/j.pneurobio.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212-2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.
Collapse
Affiliation(s)
- Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose Antonio González-Parra
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Emma Veza-Estevez
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Rebecca A Piskorowski
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatry and Neuroscience, Paris, France
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red - Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arnau Busquets-García
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
8
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Parker DA, Imes S, Ruban G, Ousley OY, Henshey B, Massa NM, Walker E, Cubells JF, Duncan E. Reduced amplitude and slowed latency of the acoustic startle response in adolescents and adults with 22q11.2 deletion syndrome. Schizophr Res 2024; 269:9-17. [PMID: 38703519 PMCID: PMC11180576 DOI: 10.1016/j.schres.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is one of the most robust genetic predictors of psychosis and other psychiatric illnesses. In this study, we examined 22q11DS subjects' acoustic startle responses (ASRs), which putatively index psychosis risk. Latency of the ASR is a presumptive marker of neural processing speed and is prolonged (slower) in schizophrenia. ASR measures correlate with increased psychosis risk, depend on glutamate and dopamine receptor signaling, and could serve as translational biomarkers in interventions for groups at high psychosis risk. METHODS Startle magnitude, latency, and prepulse inhibition were assessed with a standard acoustic startle paradigm in 31 individuals with 22q11.2DS and 32 healthy comparison (HC) subjects. Surface electrodes placed on participants' orbicularis oculi recorded the electromyographic signal in ASR eyeblinks. Individuals without measurable startle blinks in the initial habituation block were classified as non-startlers. RESULTS Across the startle session, the ASR magnitude was significantly lower in 22q11DS subjects than HCs because a significantly higher proportion of 22q11DS subjects were non-startlers. Latency of the ASR to pulse-alone stimuli was significantly slower in 22q11DS than HC subjects. Due to the overall lower 22q11DS startle response frequency and magnitudes prepulse inhibition could not be analyzed. CONCLUSIONS Reduced magnitude and slow latency of 22q11DS subjects' responses suggest reduced central nervous system and neuronal responsiveness. These findings are consistent with significant cognitive impairments observed in 22q11DS subjects. Further research is needed to untangle the connections among basic neurotransmission dysfunction, psychophysiological responsiveness, and cognitive impairment.
Collapse
Affiliation(s)
- David Alan Parker
- Department of Human Genetics, Emory University School of Medicine, United States of America.
| | - Sid Imes
- Department of Human Genetics, Emory University School of Medicine, United States of America
| | - Gabrielle Ruban
- Department of Human Genetics, Emory University School of Medicine, United States of America
| | - Opal Yates Ousley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America
| | | | - Nicholas M Massa
- Atlanta Veterans Administration Health Care System, United States of America
| | - Elaine Walker
- Department of Psychology, Emory University, United States of America
| | - Joseph F Cubells
- Department of Human Genetics, Emory Autism Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America
| | - Erica Duncan
- Atlanta Veterans Administration Health Care System and Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, United States of America
| |
Collapse
|
10
|
Nunes N, Carvalho Nunes B, Zamariolli M, Cordeiro de Queiroz Soares D, Caires dos Santos L, Gollo Dantas A, Ayres Meloni V, Iole Belangero S, Gil-Da-Silva-Lopes VL, Ae Kim C, Melaragno MI. Variants in Candidate Genes for Phenotype Heterogeneity in Patients with the 22q11.2 Deletion Syndrome. Genet Res (Camb) 2024; 2024:5549592. [PMID: 38586596 PMCID: PMC10998724 DOI: 10.1155/2024/5549592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with a broad and heterogeneous phenotype, even though most of the deletions present similar sizes, involving ∼3 Mb of DNA. In a relatively large population of a Brazilian 22q11.2DS cohort (60 patients), we investigated genetic variants that could act as genetic modifiers and contribute to the phenotypic heterogeneity, using a targeted NGS (Next Generation Sequencing) with a specific Ion AmpliSeq panel to sequence nine candidate genes (CRKL, MAPK1, HIRA, TANGO2, PI4KA, HDAC1, ZDHHC8, ZFPM2, and JAM3), mapped in and outside the 22q11.2 hemizygous deleted region. In silico prediction was performed, and the whole-genome sequencing annotation analysis package (WGSA) was used to predict the possible pathogenic effect of single nucleotide variants (SNVs). For the in silico prediction of the indels, we used the genomic variants filtered by a deep learning model in NGS (GARFIELD-NGS). We identified six variants, 4 SNVs and 2 indels, in MAPK1, JAM3, and ZFPM2 genes with possibly synergistic deleterious effects in the context of the 22q11.2 deletion. Our results provide the opportunity for the discovery of the co-occurrence of genetic variants with 22q11.2 deletions, which may influence the patients´ phenotype.
Collapse
Affiliation(s)
- Natalia Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz Carvalho Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Leonardo Caires dos Santos
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Gil-Da-Silva-Lopes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Kopal J, Kumar K, Shafighi K, Saltoun K, Modenato C, Moreau CA, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Douard E, Jizi K, Beauchamp-Chatel A, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Zatorre R, Jacquemont S, Bzdok D. Using rare genetic mutations to revisit structural brain asymmetry. Nat Commun 2024; 15:2639. [PMID: 38531844 PMCID: PMC10966068 DOI: 10.1038/s41467-024-46784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.
Collapse
Affiliation(s)
- Jakub Kopal
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Kimia Shafighi
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Karin Saltoun
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | | | | | - Zohra Saci
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Nadine Younis
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Khadije Jizi
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Alexis Beauchamp-Chatel
- Institut universitaire en santé mentale de Montréal, University of Montréal, Montréal, Canada
- Department of Psychiatry, University of Montreal, Montréal, Canada
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Robert Zatorre
- International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
- Department of Pediatrics, University of Montréal, Montréal, Quebec, Canada
| | - Danilo Bzdok
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada.
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada.
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
13
|
Zafarullah M, Angkustsiri K, Quach A, Yeo S, Durbin-Johnson BP, Bowling H, Tassone F. Untargeted metabolomic, and proteomic analysis identifies metabolic biomarkers and pathway alterations in individuals with 22q11.2 deletion syndrome. Metabolomics 2024; 20:31. [PMID: 38418685 PMCID: PMC10901937 DOI: 10.1007/s11306-024-02088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The chromosome 22q11.2 deletion syndrome (22q11.2DS) is characterized by a well-defined microdeletion and is associated with a wide range of brain-related phenotypes including schizophrenia spectrum disorders (SCZ), autism spectrum disorders (ASD), anxiety disorders and attention deficit disorders (ADHD). The typically deleted region in 22q11.2DS contains multiple genes which haploinsufficiency has the potential of altering the protein and the metabolic profiles. OBJECTIVES Alteration in metabolic processes and downstream protein pathways during the early brain development may help to explain the increased prevalence of the observed neurodevelopmental phenotypes in 22q11.2DS. However, relatively little is known about the correlation of dysregulated protein/metabolite expression and neurobehavioral impairments in individuals who developed them over time. METHODS In this study, we performed untargeted metabolic and proteomic analysis in plasma samples derived from 30 subjects including 16 participants with 22q11.2DS and 14 healthy controls (TD) enrolled in a longitudinal study, aiming to identify a metabolic and protein signature informing about the underlying mechanisms involved in disease development and progression. The metabolic and proteomic profiles were also compared between the participants with 22q11.2DS with and without various comorbidities, such as medical involvement, psychiatric conditions, and autism spectrum disorder (ASD) to detect potential changes among multiple specimens, collected overtime, with the aim to understand the basic underlying mechanisms involved in disease development and progression. RESULTS We observed a large number of statistically significant differences in metabolites between the two groups. Among them, the levels of taurine and arachidonic acid were significantly lower in 22q11.2DS compared to the TD group. In addition, we identified 16 proteins that showed significant changes in expression levels (adjusted P < 0.05) in 22q11.2DS as compared to TD, including those involved in 70 pathways such as gene expression, the PI3K-Akt signaling pathway and the complement system. Within participants with 22q11.2DS, no significant changes in those with and without medical or psychiatric conditions were observed. CONCLUSION To our knowledge, this is the first report on plasma metabolic and proteomic profiling and on the identification of unique biomarkers in 22q11.2DS. These findings may suggest the potential role of the identified metabolites and proteins as biomarkers for the onset of comorbid conditions in 22q11.2DS. Ultimately, the altered protein pathways in 22q11.2DS may provide insights of the biological mechanisms underlying the neurodevelopmental phenotype and may provide missing molecular outcome measures in future clinical trials to assess early-diagnosis treatment and the efficacy of response to targeted treatment.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kathleen Angkustsiri
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | | | | | | | | | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
14
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
15
|
Barakat GM, Assi G, El Khoury NB. Mental Health: Pandemics, Epidemics and Tau Protein. Clin Pract Epidemiol Ment Health 2023; 19:e174501792305020. [PMID: 37916210 PMCID: PMC10351338 DOI: 10.2174/17450179-v19-e230510-2022-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 11/03/2023]
Abstract
Background It is well established that a wide range of psychological disorders are influenced by the way people live, with lifestyle-related factors playing a substantial role. During the past decade, the effects of major disasters on mental health have drawn a lot of attention. Aim In this review, we compare clinical studies reporting a link between COVID-19 and other pandemics and mental health. Importantly, we also shed light on Tau protein and neurotransmitters as neurobiological factors that might explain this link. Methods A thorough PubMed search was done to gather and summarize published data on the COVID-19 pandemic's effect on mental health. Additionally, these studies were compared to previous research published on PubMed, triggering other pandemic and epidemic impacts on mental health. Results The COVID-19 epidemic has had the biggest impact on raising awareness about mental health. Moreover, the past century has seen an increase in the frequency of disease outbreaks like MERS-CoV, Ebola, and Influenza, which all had an impact on mental health. However, the exact role of these epidemics on mental health and brain functions is poorly understood. Conclusion Future research on the underlying pathways may yield essential information for the treatment and prevention of prospective mental diseases in light of the ongoing decline in mental health during the past 10 years.
Collapse
Affiliation(s)
- Ghinwa M. Barakat
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Ghaith Assi
- Department of Neuroscience, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Noura B. El Khoury
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| |
Collapse
|
16
|
Berardelli I, Cifrodelli M, Giuliani C, Antonelli G, Putotto C, Pulvirenti F, Pompili M. Is Aripiprazole Useful for Treatment of Psychotic Symptoms in a Patient With 22q11.2 Deletion Syndrome?: A Case Series. J Clin Psychopharmacol 2023; Publish Ahead of Print:00004714-990000000-00145. [PMID: 37335196 DOI: 10.1097/jcp.0000000000001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
17
|
Parker DA, Cubells JF, Imes SL, Ruban GA, Henshey BT, Massa NM, Walker EF, Duncan EJ, Ousley OY. Deep psychophysiological phenotyping of adolescents and adults with 22q11.2 deletion syndrome: a multilevel approach to defining core disease processes. BMC Psychiatry 2023; 23:425. [PMID: 37312091 PMCID: PMC10262114 DOI: 10.1186/s12888-023-04888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal interstitial-deletion disorder, occurring in approximately 1 in 2000 to 6000 live births. Affected individuals exhibit variable clinical phenotypes that can include velopharyngeal anomalies, heart defects, T-cell-related immune deficits, dysmorphic facial features, neurodevelopmental disorders, including autism, early cognitive decline, schizophrenia, and other psychiatric disorders. Developing comprehensive treatments for 22q11.2DS requires an understanding of both the psychophysiological and neural mechanisms driving clinical outcomes. Our project probes the core psychophysiological abnormalities of 22q11.2DS in parallel with molecular studies of stem cell-derived neurons to unravel the basic mechanisms and pathophysiology of 22q11.2-related psychiatric disorders, with a primary focus on psychotic disorders. Our study is guided by the central hypothesis that abnormal neural processing associates with psychophysiological processing and underlies clinical diagnosis and symptomatology. Here, we present the scientific background and justification for our study, sharing details of our study design and human data collection protocol. METHODS Our study is recruiting individuals with 22q11.2DS and healthy comparison subjects between the ages of 16 and 60 years. We are employing an extensive psychophysiological assessment battery (e.g., EEG, evoked potential measures, and acoustic startle) to assess fundamental sensory detection, attention, and reactivity. To complement these unbiased measures of cognitive processing, we will develop stem-cell derived neurons and examine neuronal phenotypes relevant to neurotransmission. Clinical characterization of our 22q11.2DS and control participants relies on diagnostic and research domain criteria assessments, including standard Axis-I diagnostic and neurocognitive measures, following from the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) and the North American Prodrome Longitudinal Study (NAPLS) batteries. We are also collecting measures of autism spectrum (ASD) and attention deficit/hyperactivity disorder (ADHD)-related symptoms. DISCUSSION Studying 22q11.2DS in adolescence and adulthood via deep phenotyping across multiple clinical and biological domains may significantly increase our knowledge of its core disease processes. Our manuscript describes our ongoing study's protocol in detail. These paradigms could be adapted by clinical researchers studying 22q11.2DS, other CNV/single gene disorders, or idiopathic psychiatric syndromes, as well as by basic researchers who plan to incorporate biobehavioral outcome measures into their studies of 22q11.2DS.
Collapse
Affiliation(s)
- David A Parker
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA.
| | - Joseph F Cubells
- Department of Human Genetics; Emory Autism Center; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1551 Shoup Court, Decatur, GA, 30033, USA
| | - Sid L Imes
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Gabrielle A Ruban
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Brett T Henshey
- Emory University, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Nicholas M Massa
- Atlanta Veterans Administration Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Psychology and Interdisciplinary Sciences Building Suite 487, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Erica J Duncan
- Atlanta Veterans Administration Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Brain Health Center, 12 Executive Park Dr, Atlanta, GA, 30329, USA
| | - Opal Y Ousley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1551 Shoup Court, Decatur, GA, USA
| |
Collapse
|
18
|
Chawner SJRA, Paine AL, Dunn MJ, Walsh A, Sloane P, Thomas M, Evans A, Hopkins‐Jones L, Struik S, Hall J, Erichsen JT, Leekam SR, Owen MJ, Hay D, van den Bree MBM. Neurodevelopmental dimensional assessment of young children at high genomic risk of neuropsychiatric conditions. JCPP ADVANCES 2023; 3:e12162. [PMID: 37753151 PMCID: PMC10519742 DOI: 10.1002/jcv2.12162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 09/28/2023] Open
Abstract
Background Individuals with 22q11.2 deletion are at considerably increased risk of neurodevelopmental and psychiatric conditions. There have been very few studies investigating how this risk manifests in early childhood and what factors may underlie developmental variability. Insights into this can elucidate transdiagnostic markers of risk that may underlie later development of neuropsychiatric outcomes. Methods Thirty two children with 22q11.2 Deletion Syndrome (22q11.2DS) (mean age = 4.1 [SD = 1.2] years) and 12 sibling controls (mean age = 4.1 [SD = 1.5] years) underwent in-depth dimensional phenotyping across several developmental domains selected as being potential early indicators of neurodevelopmental and psychiatric liability. Comparisons were conducted of the dimensional developmental phenotype of 22q11.2DS and sibling controls. For autistic traits, both parents and children were phenotyped using the Social Responsiveness Scale. Results Young children with 22q11.2DS exhibited large impairments (Hedge's g ≥ 0.8) across a range of developmental domains relative to sibling controls, as well as high rates of transdiagnostic neurodevelopmental and psychiatric traits. Cluster analysis revealed a subgroup of children with 22q11.2DS (n = 16; 53%) in whom neurodevelopmental and psychiatric liability was particularly increased and who differed from other children with 22q11.2DS and non-carrier siblings. Exploratory analyses revealed that early motor and sleep impairments indexed liability for neurodevelopmental and psychiatric outcomes. Maternal autism trait scores were predictive of autism traits in children with 22q11.2DS (intraclass correlation coefficients = 0.47, p = 0.046, n = 31). Conclusions Although psychiatric conditions typically emerge later in adolescence and adulthood in 22q11.2DS, our exploratory study was able to identify a range of early risk indicators. Furthermore, findings indicate the presence of a subgroup who appeared to have increased neurodevelopmental and psychiatric liability. Our findings highlight the scope for future studies of early risk mechanisms and early intervention within this high genetic risk patient group.
Collapse
Affiliation(s)
- Samuel J. R. A. Chawner
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
- Cardiff University Centre for Human Developmental ScienceSchool of PsychologyCardiff UniversityCardiffUK
| | - Amy L. Paine
- Cardiff University Centre for Human Developmental ScienceSchool of PsychologyCardiff UniversityCardiffUK
| | - Matt J. Dunn
- School of Optometry and Vision SciencesCardiff UniversityCardiffUK
| | - Alice Walsh
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Poppy Sloane
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Megan Thomas
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Alexandra Evans
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Lucinda Hopkins‐Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Siske Struik
- Immunodeficiency Centre for WalesUniversity Hospital of WalesCardiffUK
| | - Jeremy Hall
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | | | - Susan R. Leekam
- Cardiff University Centre for Human Developmental ScienceSchool of PsychologyCardiff UniversityCardiffUK
| | - Michael J. Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Dale Hay
- Cardiff University Centre for Human Developmental ScienceSchool of PsychologyCardiff UniversityCardiffUK
| | - Marianne B. M. van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| |
Collapse
|
19
|
Delavari F, Rafi H, Sandini C, Murray RJ, Latrèche C, Van De Ville D, Eliez S. Amygdala subdivisions exhibit aberrant whole-brain functional connectivity in relation to stress intolerance and psychotic symptoms in 22q11.2DS. Transl Psychiatry 2023; 13:145. [PMID: 37142582 PMCID: PMC10160125 DOI: 10.1038/s41398-023-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
The amygdala is a key region in emotional regulation, which is often impaired in psychosis. However, it is unclear if amygdala dysfunction directly contributes to psychosis, or whether it contributes to psychosis through symptoms of emotional dysregulation. We studied the functional connectivity of amygdala subdivisions in patients with 22q11.2DS, a known genetic model for psychosis susceptibility. We investigated how dysmaturation of each subdivision's connectivity contributes to positive psychotic symptoms and impaired tolerance to stress in deletion carriers. Longitudinally-repeated MRI scans from 105 patients with 22q11.2DS (64 at high-risk for psychosis and 37 with impaired tolerance to stress) and 120 healthy controls between the ages of 5 to 30 years were included. We calculated seed-based whole-brain functional connectivity for amygdalar subdivisions and employed a longitudinal multivariate approach to evaluate the developmental trajectory of functional connectivity across groups. Patients with 22q11.2DS presented a multivariate pattern of decreased basolateral amygdala (BLA)-frontal connectivity alongside increased BLA-hippocampal connectivity. Moreover, associations between developmental drops in centro-medial amygdala (CMA)-frontal connectivity to both impaired tolerance to stress and positive psychotic symptoms in deletion carriers were detected. Superficial amygdala hyperconnectivity to the striatum was revealed as a specific pattern arising in patients who develop mild to moderate positive psychotic symptoms. Overall, CMA-frontal dysconnectivity was found as a mutual neurobiological substrate in both impaired tolerance to stress and psychosis, suggesting a role in prodromal dysregulation of emotions in psychosis. While BLA dysconnectivity was found to be an early finding in patients with 22q11.2DS, which contributes to impaired tolerance to stress.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Ryan J Murray
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
20
|
Leader G, Curtin A, Shprintzen RJ, Whelan S, Coyne R, Mannion A. Adaptive living skills, sleep problems, and mental health disorders in adults with 22q11.21 deletion syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 136:104491. [PMID: 36965410 DOI: 10.1016/j.ridd.2023.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND 22q11.21 deletion syndrome (22q11DS) is a neurodevelopmental syndrome caused by a microdeletion of genes at the 22q11.21 locus. It has a prevalence of 1:2000. This study investigated the prevalence of adaptive living skills, sleep problems, and mental health disorders in adults with 22q11DS and examined the relationship between these factors. METHODS Parents with an adult son or daughter with 22q11DS completed the following: A bespoke Demographic Information Questionnaire, Sleep Questionnaire (SQ-SP), Psychopathology in Autism Checklist (PAC), and Activities of Daily Living (ADL) scale. Descriptive statistics, correlations, and one-way between groups analysis of variance (ANOVA) were conducted. RESULTS Mental health difficulties, sleep problems, and low levels of adaptive living skills are prevalent in adults with 22q11DS. Strong positive correlations were identified between sleep problems, depression, and anxiety subscale scores and moderate negative correlations between depression, psychosis, and activities of daily living skills. CONCLUSION Adults with 22q11DS need screening and treatment for mental health and sleep problems.
Collapse
Affiliation(s)
- Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National, University of Ireland, Galway, Ireland.
| | - Andrea Curtin
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National, University of Ireland, Galway, Ireland
| | | | - Sally Whelan
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National, University of Ireland, Galway, Ireland
| | - Rory Coyne
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National, University of Ireland, Galway, Ireland
| | - Arlene Mannion
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National, University of Ireland, Galway, Ireland
| |
Collapse
|
21
|
Kato H, Kimura H, Kushima I, Takahashi N, Aleksic B, Ozaki N. The genetic architecture of schizophrenia: review of large-scale genetic studies. J Hum Genet 2023; 68:175-182. [PMID: 35821406 DOI: 10.1038/s10038-022-01059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex and often chronic psychiatric disorder with high heritability. Diagnosis of schizophrenia is still made clinically based on psychiatric symptoms; no diagnostic tests or biomarkers are available. Pathophysiology-based diagnostic scheme and treatments are also not available. Elucidation of the pathogenesis is needed for development of pathology-based diagnostics and treatments. In the past few decades, genetic research has made substantial advances in our understanding of the genetic architecture of schizophrenia. Rare copy number variations (CNVs) and rare single-nucleotide variants (SNVs) detected by whole-genome CNV analysis and whole-genome/-exome sequencing analysis have provided the great advances. Common single-nucleotide polymorphisms (SNPs) detected by large-scale genome-wide association studies have also provided important information. Large-scale genetic studies have been revealed that both rare and common genetic variants play crucial roles in this disorder. In this review, we focused on CNVs, SNVs, and SNPs, and discuss the latest research findings on the pathogenesis of schizophrenia based on these genetic variants. Rare variants with large effect sizes can provide mechanistic hypotheses. CRISPR-based genetics approaches and induced pluripotent stem cell technology can facilitate the functional analysis of these variants detected in patients with schizophrenia. Recent advances in long-read sequence technology are expected to detect variants that cannot be detected by short-read sequence technology. Various studies that bring together data from common variant and transcriptomic datasets provide biological insight. These new approaches will provide additional insight into the pathophysiology of schizophrenia and facilitate the development of pathology-based therapeutics.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Neuroinflammation and Oxidative Stress in Individuals Affected by DiGeorge Syndrome. Int J Mol Sci 2023; 24:ijms24044242. [PMID: 36835652 PMCID: PMC9965448 DOI: 10.3390/ijms24044242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
DiGeorge syndrome (DGS) is a rare genetic disease caused by microdeletions of the 22q11.2 region (DGS1). A haploinsufficiency at 10p level has been proposed also as a DGS cause (DGS2). Clinical manifestations are variable. The most frequent features are thymic hypoplasia or aplasia with consequent immune deficiency, cardiac malformations, hypoparathyroidism, facial and palatine abnormalities, variable degrees of cognitive impairment and psychiatric disorders. The specific aim of this descriptive report is to discuss the correlation between oxidative stress and neuroinflammation in DGS patients with microdeletions of the 22q11.2 region. The deleted chromosomic region maps various genes involved in mitochondrial metabolisms, such as DGCR8 and TXNRD2, that could lead to reactive oxygen species (ROS) increased production and antioxidant depletion. Furthermore, increased levels of ROS in mitochondria would lead to the destruction of the projection neurons in the cerebral cortex with consequent neurocognitive impairment. Finally, the increase in modified protein belonging to the family of sulfoxide compounds and hexoses, acting as inhibitors of the IV and V mitochondria complex, could result in direct ROS overproduction. Neuroinflammation in DGS individuals could be directly related to the development of the syndrome's characteristic psychiatric and cognitive disorders. In patients with psychotic disorders, the most frequent psychiatric manifestation in DGS, Th-17, Th-1 and Th-2 cells are increased with consequent elevation of proinflammatory cytokine IL-6 and IL1β. In patients with anxiety disorders, both CD3 and CD4 are increased. Some patients with autism spectrum disorders (ASDs) have an augmented level of proinflammatory cytokines IL-12, IL-6 and IL-1β, while IFNγ and the anti-inflammatory cytokine IL-10 seem to be reduced. Other data proposed that altered synaptic plasticity could be directly involved in DGS cognitive disorders. In conclusion, the use of antioxidants for restoring mitochondrial functionality in DGS could be a useful tool to protect cortical connectivity and cognitive behavior.
Collapse
|
23
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
24
|
Fiksinski AM, Hoftman GD, Vorstman JAS, Bearden CE. A genetics-first approach to understanding autism and schizophrenia spectrum disorders: the 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:341-353. [PMID: 36192458 PMCID: PMC9812786 DOI: 10.1038/s41380-022-01783-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Ania M Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, and Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Iftimovici A, Krebs MO, Chaumette B. Clinical management of psychosis in 22q11.2 deletion syndrome. J Psychiatry Neurosci 2022; 47:E391-E392. [PMID: 36347546 PMCID: PMC9648635 DOI: 10.1503/jpn.220091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anton Iftimovici
- From the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Iftimovici, Krebs, Chaumette); the Centre de Référence pour les Maladies Rares à expression psychiatrique, GHU-Paris Psychiatrie et Neurosciences, Paris, France (Iftimovici, Krebs, Chaumette); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette)
| | - Marie-Odile Krebs
- From the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Iftimovici, Krebs, Chaumette); the Centre de Référence pour les Maladies Rares à expression psychiatrique, GHU-Paris Psychiatrie et Neurosciences, Paris, France (Iftimovici, Krebs, Chaumette); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette)
| | - Boris Chaumette
- From the Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France (Iftimovici, Krebs, Chaumette); the Centre de Référence pour les Maladies Rares à expression psychiatrique, GHU-Paris Psychiatrie et Neurosciences, Paris, France (Iftimovici, Krebs, Chaumette); the Department of Psychiatry, McGill University, Montréal, Que. (Chaumette)
| |
Collapse
|
26
|
Snihirova Y, Linden DEJ, van Amelsvoort T, van der Meer D. Environmental Influences on the Relation between the 22q11.2 Deletion Syndrome and Mental Health: A Literature Review. Genes (Basel) 2022; 13:2003. [PMID: 36360240 PMCID: PMC9690390 DOI: 10.3390/genes13112003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
22q11.2 deletion syndrome (22q11DS) is a clinically heterogeneous genetic syndrome, associated with a wide array of neuropsychiatric symptoms. The clinical presentation is likely to be influenced by environmental factors, yet little is known about this. Here, we review the available research literature on the role of the environment in 22q11DS. We find that within-patient design studies have mainly investigated the role of parental factors, stress, and substance use, reporting significant effects of these factors on the clinical profile. Case-control studies have been less successful, with almost no reports of significant moderating effects of the environment. We go on to hypothesize which specific environmental measures are most likely to interact with the 22q11 deletion, based on the genes in this region and their involvement in molecular pathways. We end by discussing potential reasons for the limited findings so far, including modest sample sizes and limited availability of environmental measures, and make recommendations how to move forward.
Collapse
Affiliation(s)
- Yelyzaveta Snihirova
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - David E. J. Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Therese van Amelsvoort
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Dennis van der Meer
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
27
|
van Hooijdonk CFM, Tse DHY, Roosenschoon J, Ceccarini J, Booij J, van Amelsvoort TAMJ, Vingerhoets C. The Relationships between Dopaminergic, Glutamatergic, and Cognitive Functioning in 22q11.2 Deletion Syndrome: A Cross-Sectional, Multimodal 1H-MRS and 18F-Fallypride PET Study. Genes (Basel) 2022; 13:1672. [PMID: 36140839 PMCID: PMC9498700 DOI: 10.3390/genes13091672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Individuals with 22q11.2 deletion syndrome (22q11DS) are at increased risk of developing psychosis and cognitive impairments, which may be related to dopaminergic and glutamatergic abnormalities. Therefore, in this exploratory study, we examined the association between dopaminergic and glutamatergic functioning in 22q11DS. Additionally, the associations between glutamatergic functioning and brain volumes in 22q11DS and healthy controls (HC), as well as those between dopaminergic and cognitive functioning in 22q11DS, were also examined. METHODS In this cross-sectional, multimodal imaging study, glutamate, glutamine, and their combined concentration (Glx) were assessed in the anterior cingulate cortex (ACC) and striatum in 17 22q11DS patients and 20 HC using 7T proton magnetic resonance spectroscopy. Ten 22q11DS patients also underwent 18F-fallypride positron emission tomography to measure dopamine D2/3 receptor (D2/3R) availability in the ACC and striatum. Cognitive performance was assessed with the Cambridge Neuropsychological Test Automated Battery. RESULTS No significant associations were found between ACC or striatal (1) glutamate, glutamine, or Glx concentrations and (2) D2/3R availability. In HC but not in 22q11DS patients, we found a significant relationship between ACC volume and ACC glutamate, glutamine, and Glx concentration. In addition, some aspects of cognitive functioning were significantly associated with D2/3R availability in 22q11DS. However, none of the associations remained significant after Bonferroni correction. CONCLUSIONS Although our results did not reach statistical significance, our findings suggest an association between glutamatergic functioning and brain volume in HC but not in 22q11DS. Additionally, D2/3R availability seems to be related to cognitive functioning in 22q11DS. Studies in larger samples are needed to further elucidate our findings.
Collapse
Affiliation(s)
- Carmen F. M. van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
- Rivierduinen, Institute for Mental Health Care, 2333 ZZ Leiden, The Netherlands
| | - Desmond H. Y. Tse
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Julia Roosenschoon
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| | - Jenny Ceccarini
- Department of Nuclear Medicine and Molecular Imaging, Division of Imaging and Pathology, KU Leuven, B-3000 Leuven, Belgium
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Therese A. M. J. van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), University of Maastricht, 6226 NB Maastricht, The Netherlands
| |
Collapse
|
28
|
Patel H, Vadukapuram R, Mansuri Z, Trivedi C, Brar KS, Beg U, Patel J, Ibrahim A, Zafar MK. Psychiatric Comorbidities in Adults with DiGeorge Syndrome. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:498-503. [PMID: 35879034 PMCID: PMC9329110 DOI: 10.9758/cpn.2022.20.3.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022]
Abstract
Objective DiGeorge Syndrome (DGS) is a common multisystem disorder associated with deletions on chromosome 22q11.2. Our objective is to evaluate the psychiatric comorbidities and demographics of patients suffering from DGS in a nationally representative dataset on inpatient hospitalizations. Methods The Nationwide Inpatient Sample for the year 2005−2017 was used for this study. Data on patients with DiGeorge syndrome were collected by using the International Classification of Diseases code. Univariate and multivariate logistic regression analysis was performed. Results In our study, the average age was 30.4 years (n = 6,563), with 59.9% male, and 61.8% of patients were white. There was a high prevalence of mood disorders (24.7%) and anxiety disorders (16.4%), followed by schizophrenia and other psychotic condition (14.0%). In patients with mood disorders, 8% had Major Depressive Disorder, and 7% had bipolar depression. Overall composite of psychiatric comorbidities was present in 2,959 (45.1%) of patients. The mean length of stay was 6.58 days, and 77% of patients had routine discharge to home. In the adjusted analysis, the average length of stay was 8.6 days vs. 6.7 days (p < 0.001) in patients with and without psychiatry comorbidities. In comparison to routine discharge, patients with psychiatry comorbidities were more likely to be discharged to other healthcare facilities (odds ratio [OR] 1.28, p < 0.001) and discharged against medical advice (OR 3.45, p < 0.001). Conclusion Patients with DGS have worse outcomes with a higher rate of discharge to other healthcare facilities and a higher rate of being discharged against medical advice. Further large scale randomize studies are indicated.
Collapse
Affiliation(s)
- Hiren Patel
- Department of Psychiatry, Penn State Health Milton S. Hersey Medical Center, Hershey, PA, USA
| | | | - Zeeshan Mansuri
- Department of Psychiatry, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Kanwarjeet Singh Brar
- Department of Child and Adolescent Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Uzma Beg
- Central State Hospital, Milledgeville, GA, USA
| | - Jigar Patel
- University of Texas, San Antonio, TX, 8Vituity, Boston, MA, USA
| | | | | |
Collapse
|
29
|
Al-Absi AR, Thambiappa SK, Khan AR, Glerup S, Sanchez C, Landau AM, Nyengaard JR. Df(h22q11)/+ mouse model exhibits reduced binding levels of GABA A receptors and structural and functional dysregulation in the inhibitory and excitatory networks of hippocampus. Mol Cell Neurosci 2022; 122:103769. [PMID: 35988854 DOI: 10.1016/j.mcn.2022.103769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The 22q11.2 hemizygous deletion confers high risk for multiple neurodevelopmental disorders. Inhibitory signaling, largely regulated through GABAA receptors, is suggested to serve a multitude of brain functions that are disrupted in the 22q11.2 deletion syndrome. We investigated the putative deficit of GABAA receptors and the potential substrates contributing to the inhibitory and excitatory dysregulations in hippocampal networks of the Df(h22q11)/+ mouse model of the 22q11.2 hemizygous deletion. The Df(h22q11)/+ mice exhibited impairments in several hippocampus-related functional domains, represented by impaired spatial memory and sensory gating functions. Autoradiography using the [3H]muscimol tracer revealed a significant reduction in GABAA receptor binding in the CA1 and CA3 subregions, together with a loss of GAD67+ interneurons in CA1 of Df(h22q11)/+ mice. Furthermore, electrophysiology recordings exhibited significantly higher neuronal activity in CA3, in response to the GABAA receptor antagonist, bicuculline, as compared with wild type mice. Density and volume of dendritic spines in pyramidal neurons were reduced and Sholl analysis also showed a reduction in the complexity of basal dendritic tree in CA1 and CA3 subregions of Df(h22q11)/+ mice. Overall, our findings demonstrate that hemizygous deletion in the 22q11.2 locus leads to dysregulations in the inhibitory circuits, involving reduced binding levels of GABAA receptors, in addition to functional and structural modulations of the excitatory networks of hippocampus.
Collapse
Affiliation(s)
- Abdel-Rahman Al-Absi
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| | - Sakeerthi Kethees Thambiappa
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| | - Ahmad Raza Khan
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India.
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Denmark.
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Denmark.
| | - Jens R Nyengaard
- Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Denmark.
| |
Collapse
|
30
|
Alhazmi S, Alzahrani M, Farsi R, Alharbi M, Algothmi K, Alburae N, Ganash M, Azhari S, Basingab F, Almuhammadi A, Alqosaibi A, Alkhatabi H, Elaimi A, Jan M, Aldhalaan HM, Alrafiah A, Alrofaidi A. Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated with Autism Spectrum Disorder. Pharmgenomics Pers Med 2022; 15:705-720. [PMID: 35898556 PMCID: PMC9309317 DOI: 10.2147/pgpm.s366826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a developmental disorder that can cause substantial social, communication, and behavioral challenges. Genetic factors play a significant role in ASD, where the risk of ASD has been increased for unclear reasons. Twin studies have shown important evidence of both genetic and environmental contributions in ASD, where the level of contribution of these factors has not been proven yet. It has been suggested that copy number variation (CNV) duplication and the deletion of many genes in chromosome 22 (Ch22) may have a strong association with ASD. This study screened the CNVs in Ch22 in autistic Saudi children and assessed the candidate gene in the CNVs region of Ch22 that is most associated with ASD. Methods This study included 15 autistic Saudi children as well as 4 healthy children as controls; DNA was extracted from samples and analyzed using array comparative genomic hybridization (aCGH) and DNA sequencing. Results The aCGH detected (in only 6 autistic samples) deletion and duplication in many regions of Ch22, including some critical genes. Moreover, DNA sequencing determined a genetic mutation in the TBX1 gene sequence in autistic samples. This study, carried out using aCGH, found that six autistic patients had CNVs in Ch22, and DNA sequencing revealed mutations in the TBX1 gene in autistic samples but none in the control. Conclusion CNV deletion and the duplication of the TBX1 gene could be related to ASD; therefore, this gene needs more analysis in terms of expression levels.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany Alqosaibi
- Department of Biology, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Heba Alkhatabi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Jan
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hesham M Aldhalaan
- Center for Autism Research at King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Aziza Alrafiah
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Correspondence: Aziza Alrafiah, Department of Medical Laboratory Science, King Abdulaziz University, P.O Box 80200, Jeddah, 21589, Saudi Arabia, Tel +966 126401000 Ext. 23495, Fax +966 126401000 Ext. 21686, Email
| | - Aisha Alrofaidi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Pylypjuk CL, Memon SF, Chodirker BN. Utility of Measuring Fetal Cavum Septum Pellucidum (CSP) Width During Routine Obstetrical Ultrasound for Improving Diagnosis of 22q11.2 Deletion Syndrome: A Case-Control Study. Appl Clin Genet 2022; 15:87-95. [PMID: 35923603 PMCID: PMC9341354 DOI: 10.2147/tacg.s364543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To evaluate the utility of measuring fetal cavum septum pellucidum (CSP) width during routine, mid-pregnancy ultrasound for improving diagnosis of 22q11.2 deletion syndrome amongst fetuses with and without conotruncal anomalies. Patients and Methods This was a retrospective case-control study (2005–2016). Fetuses and newborns with 22q11.2 deletion and/or conotruncal cardiac anomalies were identified using a regional, clinical database. A control group was assembled in a 2:1 ratio to create three groups for comparison: i) 22q11.2 deletion syndrome; ii) isolated conotruncal anomalies; and iii) controls. Eligibility was restricted to those with stored ultrasound images between 18–22 weeks’ gestation and a minimum biparietal diameter of 40 mm. Post-processing measurement of CSP width was performed in a standardized fashion by two blinded and independent study personnel. Descriptive and inferential statistics, regression modeling, and receiver operator curves (ROC) were used to compare outcomes between groups and evaluate sensitivity/specificity of CSP width as a marker of 22q11.2 deletion syndrome. Results Twenty-nine cases of 22q11.2 deletion and 64 cases of isolated conotruncal anomalies were matched to 186 healthy controls. Cases with 22q11.2 deletion syndrome had significantly larger CSP widths (5.36 mm; SD=1.2) compared to those with isolated conotruncal anomalies (3.75 mm; SD=1.11) and healthy controls (2.93 mm; SD=0.57; p<0.0001). There was no difference in CSP width amongst those with 22q11.2 deletion irrespective of the presence/absence of a conotruncal anomaly (p=0.362), or by type of conotruncal anomaly (p=0.211). Using a CSP width cutoff >4.3 mm, fetuses with 22q11.2 deletion can be accurately identified with good sensitivity (89.7%) and specificity (84%). Conclusion Fetuses with 22q11.2 deletion syndrome have dilated CSPs when compared to those with isolated conotruncal anomalies or controls. Because CSP dilation can be evaluated during routine mid-pregnancy ultrasound using standard images of the fetal head, measurement could easily be incorporated to enhance prenatal diagnosis of this phenotypically diverse condition.
Collapse
Affiliation(s)
- Christy L Pylypjuk
- Department of Obstetrics, Gynecology and Reproductive Sciences (Section of Maternal-Fetal Medicine), Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
- Correspondence: Christy L Pylypjuk, WN5002, HSC Women’s Hospital, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada, Tel +1 204 787-4821, Fax +1 204 787-2920, Email
| | - Shiza F Memon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Bernard N Chodirker
- Departments of Pediatrics and Child Health (Section of Genetics and Metabolism) & Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
32
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
33
|
Contribution of schizophrenia polygenic burden to longitudinal phenotypic variance in 22q11.2 deletion syndrome. Mol Psychiatry 2022; 27:4191-4200. [PMID: 35768638 PMCID: PMC9718680 DOI: 10.1038/s41380-022-01674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
While the recurrent 22q11.2 deletion is one of the strongest genetic risk factors for schizophrenia (SCZ), variability of its associated neuropsychiatric endophenotypes reflects its incomplete penetrance for psychosis development. To assess whether this phenotypic variability is linked to common variants associated with SCZ, we studied the association between SCZ polygenic risk score (PRS) and longitudinally acquired phenotypic information of the Swiss 22q11.2DS cohort (n = 97, 50% females, mean age 17.7 yr, mean visit interval 3.8 yr). The SCZ PRS with the best predictive performance was ascertained in the Estonian Biobank (n = 201,146) with LDpred. The infinitesimal SCZ PRS model showed the strongest capacity in discriminating SCZ cases from controls with one SD difference in SCZ PRS corresponding to an odds ratio (OR) of 1.73 (95% CI 1.57-1.90, P = 1.47 × 10-29). In 22q11.2 patients, random-effects ordinal regression modelling using longitudinal data showed SCZ PRS to have the strongest effect on social anhedonia (OR = 2.09, P = 0.0002), and occupational functioning (OR = 1.82, P = 0.0003) within the negative symptoms course, and dysphoric mood (OR = 2.00, P = 0.002) and stress intolerance (OR = 1.76, P = 0.0002) within the general symptoms course. Genetic liability for SCZ was additionally associated with full scale cognitive decline (β = -0.25, P = 0.02) and with longitudinal volumetric reduction of the right and left hippocampi (β = -0.28, P = 0.005; β = -0.23, P = 0.02, respectively). Our results indicate that the polygenic contribution to SCZ acts upon the threshold-lowering first hit (i.e., the deletion). It modifies the endophenotypes of 22q11.2DS and augments the derailment of developmental trajectories of negative and general symptoms, cognition, and hippocampal volume.
Collapse
|
34
|
Cornblath EJ, Mahadevan A, He X, Ruparel K, Lydon-Staley DM, Moore TM, Gur RC, Zackai EH, Emanuel B, McDonald-McGinn DM, Wolf DH, Satterthwaite TD, Roalf DR, Gur RE, Bassett DS. Altered functional brain dynamics in chromosome 22q11.2 deletion syndrome during facial affect processing. Mol Psychiatry 2022; 27:1158-1166. [PMID: 34686764 PMCID: PMC9023602 DOI: 10.1038/s41380-021-01302-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a multisystem disorder associated with multiple congenital anomalies, variable medical features, and neurodevelopmental differences resulting in diverse psychiatric phenotypes, including marked deficits in facial memory and social cognition. Neuroimaging in individuals with 22q11.2DS has revealed differences relative to matched controls in BOLD fMRI activation during facial affect processing tasks. However, time-varying interactions between brain areas during facial affect processing have not yet been studied with BOLD fMRI in 22q11.2DS. We applied constrained principal component analysis to identify temporally overlapping brain activation patterns from BOLD fMRI data acquired during an emotion identification task from 58 individuals with 22q11.2DS and 58 age-, race-, and sex-matched healthy controls. Delayed frontal-motor feedback signals were diminished in individuals with 22q11.2DS, as were delayed emotional memory signals engaging amygdala, hippocampus, and entorhinal cortex. Early task-related engagement of motor and visual cortices and salience-related insular activation were relatively preserved in 22q11.2DS. Insular activation was associated with task performance within the 22q11.2DS sample. Differences in cortical surface area, but not cortical thickness, showed spatial alignment with an activation pattern associated with face processing. These findings suggest that relative to matched controls, primary visual processing and insular function are relatively intact in individuals with 22q11.22DS, while motor feedback, face processing, and emotional memory processes are more affected. Such insights may help inform potential interventional targets and enhance the specificity of neuroimaging indices of cognitive dysfunction in 22q11.2DS.
Collapse
Affiliation(s)
- Eli J. Cornblath
- grid.25879.310000 0004 1936 8972Department of Neuroscience, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, PA USA
| | - Arun Mahadevan
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, PA USA
| | - Xiaosong He
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, PA USA
| | - Kosha Ruparel
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
| | - David M. Lydon-Staley
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, PA USA
| | - Tyler M. Moore
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
| | - Ruben C. Gur
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Neurology, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, Philadelphia, PA USA
| | - Elaine H. Zackai
- grid.239552.a0000 0001 0680 877022q and You and Clinical Genetics Centers, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Beverly Emanuel
- grid.239552.a0000 0001 0680 8770Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Donna M. McDonald-McGinn
- grid.239552.a0000 0001 0680 877022q and You and Clinical Genetics Centers, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Daniel H. Wolf
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
| | - Theodore D. Satterthwaite
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
| | - David R. Roalf
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
| | - Raquel E. Gur
- grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Neurology, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Radiology, Perelman School of Medicine, Philadelphia, PA USA
| | - Dani S. Bassett
- grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering & Applied Science, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Neurology, Perelman School of Medicine, Philadelphia, PA USA ,Department of Physics & Astronomy, College of Arts & Sciences, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Electrical & Systems Engineering, School of Engineering & Applied Science, Philadelphia, PA USA ,grid.209665.e0000 0001 1941 1940Santa Fe Institute, Santa Fe, NM USA ,grid.25879.310000 0004 1936 8972Department of Biostatistics, Epidemiology, & Informatics, Perelman School of Medicine, Philadelphia, PA USA
| |
Collapse
|
35
|
Benedetti A, Molent C, Barcik W, Papaleo F. Social behavior in 16p11.2 and 22q11.2 copy number variations: Insights from mice and humans. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12787. [PMID: 34889032 PMCID: PMC9744525 DOI: 10.1111/gbb.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Genetic 16p11.2 and 22q11.2 deletions and duplications in humans may alter behavioral developmental trajectories increasing the risk of autism and schizophrenia spectrum disorders, and of attention-deficit/hyperactivity disorder. In this review, we will concentrate on 16p11.2 and 22q11.2 deletions' effects on social functioning, beyond diagnostic categorization. We highlight diagnostic and social sub-constructs discrepancies. Notably, we contrast evidence from human studies with social profiling performed in several mouse models mimicking 16p11.2 and 22q11.2 deletion syndromes. Given the complexity of social behavior, there is a need to assess distinct social processes. This will be important to better understand the biology underlying such genetic-dependent dysfunctions, as well as to give perspective on how therapeutic strategies can be improved. Bridges and divergent points between human and mouse studies are highlighted. Overall, we give challenges and future perspectives to sort the genetics of social heterogeneity.
Collapse
Affiliation(s)
- Arianna Benedetti
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,CNRS, GREDEGUniversité Côte d'AzurNiceFrance
| | - Cinzia Molent
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,Dipartimento di Medicina Sperimentale(Di. Mes) Università degli Studi di GenovaGenoaItaly
| | - Weronika Barcik
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience areaIstituto Italiano di TecnologiaGenoaItaly,Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
36
|
[Heterogeneous neuropsychiatric phenotypes in two adult patients with 22q11.2 deletion syndrome (DiGeorge's syndrome): a case for RDoC?]. DER NERVENARZT 2021; 93:483-487. [PMID: 34735587 PMCID: PMC9061649 DOI: 10.1007/s00115-021-01226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
Das DiGeorge-Syndrom ist eines der häufigsten Mikrodeletionssyndrome und bedingt ein erhöhtes Risiko für neuropsychiatrische Störungen der Intelligenz, der sozialen Kommunikation und der Exekutivfunktionen sowie psychotische Störungen. Im Falle des vorgestellten männlichen Patienten handelt es sich um die seltene Beschreibung eines Tourette-Syndroms auf der Grundlage eines 22q11.2-Mikrodeletionssyndroms. Die folgenden zwei Fallbeispiele demonstrieren die Vielfalt assoziierter klinischer Präsentationen, selbst auf der Grundlage einer übereinstimmenden und umschriebenen genetischen Aberration. Eine Charakterisierung solcher Patient*innen im Kontext der klinisch-wissenschaftlichen Praxis anhand der Research Domain Criteria (RDoC) ermöglicht eine transdiagnostische Beschreibung der überlappenden wie auch spezifischen neuropsychiatrischen Funktionseinschränkungen. Eine solche dimensionale Charakterisierung erlaubt somit potenziell auch eine genauere Differenzierung pleiotroper Assoziationen zwischen Genotyp und Phänotyp.
Collapse
|
37
|
Pelgrim TAD, Bossong MG, Cuiza A, Alliende LM, Mena C, Tepper A, Ramirez-Mahaluf JP, Iruretagoyena B, Ornstein C, Fritsch R, Cruz JP, Tejos C, Repetto G, Crossley N. Abnormal nodal and global network organization in resting state functional MRI from subjects with the 22q11 deletion syndrome. Sci Rep 2021; 11:21623. [PMID: 34732759 PMCID: PMC8566599 DOI: 10.1038/s41598-021-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The 22q11 deletion syndrome is a genetic disorder associated with a high risk of developing psychosis, and is therefore considered a neurodevelopmental model for studying the pathogenesis of schizophrenia. Studies have shown that localized abnormal functional brain connectivity is present in 22q11 deletion syndrome like in schizophrenia. However, it is less clear whether these abnormal cortical interactions lead to global or regional network disorganization as seen in schizophrenia. We analyzed from a graph-theory perspective fMRI data from 40 22q11 deletion syndrome patients and 67 healthy controls, and reconstructed functional networks from 105 brain regions. Between-group differences were examined by evaluating edge-wise strength and graph theoretical metrics of local (weighted degree, nodal efficiency, nodal local efficiency) and global topological properties (modularity, local and global efficiency). Connectivity strength was globally reduced in patients, driven by a large network comprising 147 reduced connections. The 22q11 deletion syndrome network presented with abnormal local topological properties, with decreased local efficiency and reductions in weighted degree particularly in hub nodes. We found evidence for abnormal integration but intact segregation of the 22q11 deletion syndrome network. Results suggest that 22q11 deletion syndrome patients present with similar aberrant local network organization as seen in schizophrenia, and this network configuration might represent a vulnerability factor to psychosis.
Collapse
Affiliation(s)
- Teuntje A D Pelgrim
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Analía Cuiza
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz María Alliende
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mena
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angeles Tepper
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Claudia Ornstein
- Departamento de Psiquiatria y Salud Mental, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Rosemarie Fritsch
- Departamento de Psiquiatria y Salud Mental, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Cruz
- Department of Radiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Repetto
- Genetic and Genomic Center, Universidad del Desarrollo, Santiago, Chile
| | - Nicolas Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Escuela de Medicina, Pontificia Universidad Católica, Diagonal Paraguay 362, Santiago, Chile.
| |
Collapse
|
38
|
Moreau CA, Raznahan A, Bellec P, Chakravarty M, Thompson PM, Jacquemont S. Dissecting autism and schizophrenia through neuroimaging genomics. Brain 2021; 144:1943-1957. [PMID: 33704401 PMCID: PMC8370419 DOI: 10.1093/brain/awab096] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada
- Human Genetics and Cognitive Functions, CNRS UMR 3571, Université de Paris, Institut Pasteur, Paris, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892, USA
| | - Pierre Bellec
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Québec H3W 1W5, Canada
| | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Hospital Mental Health University Institute, Verdun, Québec H4H 1R3, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Marina del Rey, CA 90033, USA
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, Montréal, Québec H3T 1C5, Canada
| |
Collapse
|
39
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
40
|
Modenato C, Kumar K, Moreau C, Martin-Brevet S, Huguet G, Schramm C, Jean-Louis M, Martin CO, Younis N, Tamer P, Douard E, Thébault-Dagher F, Côté V, Charlebois AR, Deguire F, Maillard AM, Rodriguez-Herreros B, Pain A, Richetin S, Melie-Garcia L, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Chakravarty M, Bzdok D, Bearden CE, Draganski B, Jacquemont S. Effects of eight neuropsychiatric copy number variants on human brain structure. Transl Psychiatry 2021; 11:399. [PMID: 34285187 PMCID: PMC8292542 DOI: 10.1038/s41398-021-01490-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen's d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.
Collapse
Affiliation(s)
- Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Clara Moreau
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Sandra Martin-Brevet
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Catherine Schramm
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Martineau Jean-Louis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Nadine Younis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Petra Tamer
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Valérie Côté
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Florence Deguire
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aurèlie Pain
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Richetin
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Lester Melie-Garcia
- Applied Signal Processing Group (ASPG), Swiss Federal Institute Lausanne (EPFL), Lausanne, Switzerland
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre; Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada.
| |
Collapse
|
41
|
MacCabe JH. Seeing is believing. Acta Psychiatr Scand 2021; 144:3-5. [PMID: 34231210 DOI: 10.1111/acps.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- James H MacCabe
- Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
42
|
Forsyth JK, Mennigen E, Lin A, Sun D, Vajdi A, Kushan-Wells L, Ching CRK, Villalon-Reina JE, Thompson PM, Bearden CE. Prioritizing Genetic Contributors to Cortical Alterations in 22q11.2 Deletion Syndrome Using Imaging Transcriptomics. Cereb Cortex 2021; 31:3285-3298. [PMID: 33638978 PMCID: PMC8196250 DOI: 10.1093/cercor/bhab008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
22q11.2 deletion syndrome (22q11DS) results from a hemizygous deletion that typically spans 46 protein-coding genes and is associated with widespread alterations in brain morphology. The specific genetic mechanisms underlying these alterations remain unclear. In the 22q11.2 ENIGMA Working Group, we characterized cortical alterations in individuals with 22q11DS (n = 232) versus healthy individuals (n = 290) and conducted spatial convergence analyses using gene expression data from the Allen Human Brain Atlas to prioritize individual genes that may contribute to altered surface area (SA) and cortical thickness (CT) in 22q11DS. Total SA was reduced in 22q11DS (Z-score deviance = -1.04), with prominent reductions in midline posterior and lateral association regions. Mean CT was thicker in 22q11DS (Z-score deviance = +0.64), with focal thinning in a subset of regions. Regional expression of DGCR8 was robustly associated with regional severity of SA deviance in 22q11DS; AIFM3 was also associated with SA deviance. Conversely, P2RX6 was associated with CT deviance. Exploratory analysis of gene targets of microRNAs previously identified as down-regulated due to DGCR8 deficiency suggested that DGCR8 haploinsufficiency may contribute to altered corticogenesis in 22q11DS by disrupting cell cycle modulation. These findings demonstrate the utility of combining neuroanatomic and transcriptomic datasets to derive molecular insights into complex, multigene copy number variants.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Interdepartmental Neuroscience Program, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Learning from atypical development: A systematic review of executive functioning in children and adolescents with the 22q11.2 deletion syndrome. DEVELOPMENTAL REVIEW 2021. [DOI: 10.1016/j.dr.2021.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Wang P, Li M, Zhao A, Ma J. Application of animal experimental models in the research of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2021; 186:209-227. [PMID: 34155806 DOI: 10.1002/ajmg.b.32863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a relatively common but serious mental illness that results in a heavy burden to patients, their families, and society. The disease can be triggered by multiple factors, while the specific pathogenesis remains unclear. The development of effective therapeutic drugs for schizophrenia relies on a comprehensive understanding of the basic biology and pathophysiology of the disease. Therefore, effective animal experimental models play a vital role in the study of schizophrenia. Based on different molecular mechanisms and modeling methods, the currently used experimental animal experimental models of schizophrenia can be divided into four categories that can better simulate the clinical symptoms and the interplay between susceptible genes and the environment: neurodevelopmental, drug-induced, genetic-engineering, and genetic-environmental interaction of animal experimental models. Each of these categories contains multiple subtypes, which has its own advantages and disadvantages and therefore requires careful selection in a research application. The emergence and utilization of these models are promising in the prediction of the risk of schizophrenia at the molecular level, which will shed light on effective and targeted treatment at the genetic level.
Collapse
Affiliation(s)
- Pengjie Wang
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Manling Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Gui Yang, Guizhou, China
| | - Aizhen Zhao
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Jie Ma
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China.,Department of Electron Microscope, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
45
|
Jalal R, Nair A, Lin A, Eckfeld A, Kushan L, Zinberg J, Karlsgodt KH, Cannon TD, Bearden CE. Social cognition in 22q11.2 deletion syndrome and idiopathic developmental neuropsychiatric disorders. J Neurodev Disord 2021; 13:15. [PMID: 33863277 PMCID: PMC8052741 DOI: 10.1186/s11689-021-09363-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is a common recurrent neurogenetic condition associated with elevated risk for developmental neuropsychiatric disorders and intellectual disability. Children and adults with 22q11DS often exhibit marked social impairment as well as neurocognitive deficits, and have elevated rates of both autism spectrum disorder (ASD) and psychosis. However, the relationship between the basic processes of social cognition and cognitive ability has not been well studied in 22q11DS. Here, we examined differences in social cognition in 22q11DS, relative to multiple groups of idiopathic neuropsychiatric disorders, and typically developing healthy controls (HC). Additionally, we examined differences in intellectual functioning and its relationship to social cognitive abilities. Finally, we examined the relationship between social cognitive abilities and real-world social behavior. METHODS We examined social cognition and intellectual functioning in 273 participants (mean age = 17.74 ± 5.18% female = 44.3%): 50 with 22q11DS, 49 youth with first episode psychosis (FEP), 48 at clinical high-risk (CHR) for psychosis, 24 participants with ASD, and 102 HC. Social cognition was assessed using The Awareness of Social Inference Test (TASIT), while reciprocal social behavior was assessed via parent/caregiver ratings on the Social Responsiveness Scale (SRS). Participants were also administered the Wechsler Abbreviated Scale of Intelligence, 2nd edition (WASI-II) to assess intellectual functioning. RESULTS The 22q11DS group exhibited significantly lower social cognitive abilities compared to CHR, FEP, and HC groups after controlling for intellectual functioning, but not in comparison to the ASD group. Significant positive correlations were found between social cognition, as measured by the TASIT and IQ across groups. In contrast, no significant relationships were found between TASIT and real-world social behavior (SRS) for any group. CONCLUSIONS Our findings indicate social cognitive deficits are more prominent in 22q11DS than idiopathic neuropsychiatric conditions across the age range, even after adjusting for global intellectual function. These results contribute to our understanding of the intellectual and social vulnerabilities of 22q11DS in comparison to idiopathic neuropsychiatric disorders. Our findings of robust associations between intellectual ability and social cognition emphasizes the importance of accounting for neurocognitive deficits in social skills interventions and tailoring these existing treatment models for 22q11DS and other populations with intellectual impairment.
Collapse
Affiliation(s)
- Rhideeta Jalal
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Aarti Nair
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA.
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ariel Eckfeld
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Jamie Zinberg
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Katherine H Karlsgodt
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Facon B, Magis D, Courbois Y. On the Developmental Trajectories of Relational Concepts Among Children and Adolescents With Intellectual Disability of Undifferentiated Etiology. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2021; 126:14-33. [PMID: 33370789 DOI: 10.1352/1944-7558-126.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to examine the developmental trajectories of comprehension of relational concepts among 557 participants with intellectual disability (ID) of undifferentiated etiology (M age = 12.20 years, SD = 3.18) and 557 typically developing (TD) participants (M age = 4.57 years, SD = 0.80). Logistic regression analyses, with nonverbal cognitive level entered first in the equations, showed only negligible differences with regard to the discriminative power of each of the 72 concepts used as outcome variables, and moderate differences in difficulty for only three items. A moderate mixed effect (i.e., combining a group difference in difficulty and discriminative power) was observed for a fourth item. It is concluded that the developmental trajectories of relational concepts are similar for participants with or without ID. The implications and limitations of the study are discussed.
Collapse
Affiliation(s)
- Bruno Facon
- Bruno Facon, Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France
| | | | - Yannick Courbois
- Yannick Courbois, Univ. Lille, EA 4072 - PSITEC - Psychologie : Interactions Temps Émotions Cognition, F-59000 Lille, France
| |
Collapse
|
47
|
Chawner SJRA, Mihaljevic M, Morrison S, Eser HY, Maillard AM, Nowakowska B, van den Bree MBM, Swillen A. Pan-european landscape of research into neurodevelopmental copy number variants: A survey by the MINDDS consortium. Eur J Med Genet 2020; 63:104093. [PMID: 33160096 DOI: 10.1016/j.ejmg.2020.104093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Several rare copy number variants have been identified to confer risk for neurodevelopmental disorders (NDD-CNVs), and increasingly NDD-CNVs are being identified in patients. There is a clinical need to understand the phenotypes of NDD-CNVs. However due to rarity of NDD-CNVs in the population, within individual countries there is a limited number of NDD-CNV carriers who can participate in research. The pan-european MINDDS (Maximizing Impact of Research in Neurodevelopmental Disorders) consortium was established in part to address this issue. METHODOLOGY A survey was developed to scope out the current landscape of NDD-CNV research across member countries of the MINDDS consortium, and to identify clinical cohorts with potential for future research. RESULTS 36 centres from across 16 countries completed the survey. We provide a list of centres who can be contacted for future collaborations. 3844 NDD-CNV carriers were identified across clinical and research centres spanning a range of medical specialties, including psychiatry, paediatrics, medical genetics. A broad range of phenotypic data was available; including medical history, developmental history, family history and anthropometric data. In 12/16 countries, over 75% of NDD-CNV carriers could be recontacted for future studies. CONCLUSION This survey has highlighted the potential within Europe for large multi-centre studies of NDD-CNV carriers, to improve knowledge of the complex relationship between NDD-CNV and clinical phenotype. The MINNDS consortium is in a position to facilitate collaboration, data-sharing and knowledge exchange on NDD-CNV phenotypes across Europe.
Collapse
Affiliation(s)
- Samuel J R A Chawner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK; Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, UK.
| | - Marina Mihaljevic
- Clinic for Psychiatry, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sinead Morrison
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Hale Yapici Eser
- Koç University School of Medicine, Department of Psychiatry, Istanbul, Turkey and Koç University Research Centre for Translational Medicine, Istanbul, Turkey
| | - Anne M Maillard
- Service des Troubles Du Spectre de L'Autisme et Apparentés, Lausanne University Hospital, Switzerland
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Ann Swillen
- Department of Human Genetics at the University of Leuven and Centre for Human Genetics, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
48
|
Delgado-Sequera A, Hidalgo-Figueroa M, Barrera-Conde M, Duran-Ruiz MC, Castro C, Fernández-Avilés C, de la Torre R, Sánchez-Gomar I, Pérez V, Geribaldi-Doldán N, Robledo P, Berrocoso E. Olfactory Neuroepithelium Cells from Cannabis Users Display Alterations to the Cytoskeleton and to Markers of Adhesion, Proliferation and Apoptosis. Mol Neurobiol 2020; 58:1695-1710. [PMID: 33237429 DOI: 10.1007/s12035-020-02205-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Cannabis is the third most commonly used psychoactive substance of abuse, yet it also receives considerable attention as a potential therapeutic drug. Therefore, it is essential to fully understand the actions of cannabis in the human brain. The olfactory neuroepithelium (ON) is a peripheral nervous tissue that represents an interesting surrogate model to study the effects of drugs in the brain, since it is closely related to the central nervous system, and sensory olfactory neurons are continually regenerated from populations of stem/progenitor cells that undergo neurogenesis throughout life. In this study, we used ON cells from chronic cannabis users and healthy control subjects to assess alterations in relevant cellular processes, and to identify changes in functional proteomic pathways due to cannabis consumption. The ON cells from cannabis users exhibited alterations in the expression of proteins that were related to the cytoskeleton, cell proliferation and cell death, as well as, changes in proteins implicated in cancer, gastrointestinal and neurodevelopmental pathologies. Subsequent studies showed cannabis provoked an increase in cell size and morphological alterations evident through β-Tubulin III staining, as well as, enhanced beta-actin expression and a decrease in the ability of ON cells to undergo cell attachment, suggesting abnormalities of the cytoskeleton and cell adhesion system. Furthermore, these cells proliferated more and underwent less cell death. Our results indicate that cannabis may alter key processes of the developing brain, some of which are similar to those reported in mental disorders like DiGeorge syndrome, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Alejandra Delgado-Sequera
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510, Puerto Real, Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Hidalgo-Figueroa
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510, Puerto Real, Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neurosciences Research Programme, IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Mª Carmen Duran-Ruiz
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
| | | | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neurosciences Research Programme, IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, 08003, Barcelona, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Ismael Sánchez-Gomar
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cádiz, Cádiz, Spain
| | - Víctor Pérez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, Barcelona, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Department of Human Anatomy and Embriology, University of Cádiz, Cádiz, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neurosciences Research Programme, IMIM-Hospital del Mar Research Institute, PRBB, Calle Dr. Aiguader 88, 08003, Barcelona, Spain.
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510, Puerto Real, Cadiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
49
|
Mancini V, Sandini C, Padula MC, Zöller D, Schneider M, Schaer M, Eliez S. Positive psychotic symptoms are associated with divergent developmental trajectories of hippocampal volume during late adolescence in patients with 22q11DS. Mol Psychiatry 2020; 25:2844-2859. [PMID: 31164700 DOI: 10.1038/s41380-019-0443-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Low hippocampal volume is a consistent finding in schizophrenia and across the psychosis spectrum. However, there is a lack of studies investigating longitudinal hippocampal development and its relationship with psychotic symptoms. The 22q11.2 deletion syndrome (22q11DS) has proven to be a remarkable model for the prospective study of individuals at high risk of schizophrenia to unravel the pathophysiological processes predating the onset of psychosis. Repeated cerebral MRIs were acquired from 140 patients with 22q11DS (53 experiencing moderate-to-severe psychotic symptoms) and 135 healthy controls aged from 6 to 35 years and with up to 5 time points per participant. Hippocampal subfield analysis was conducted using FreeSurfer-v.6 and FIRST-FSL. Then, whole hippocampal and subfield volumes were compared across the groups. Relative to controls, patients with 22q11DS showed a remarkably lower volume of all subfields except for CA2/3. No divergent trajectories in hippocampal development were found. When comparing patients with 22q11DS exhibiting psychotic symptoms to those without psychosis, we detected a volume decrease during late adolescence, starting in CA1 and spreading to other subfields. Our findings suggested that hippocampal volume is consistently smaller in patients with 22q11DS. Moreover, we have demonstrated that patients with 22q11DS and psychotic symptoms undergo a further decrease in volume during adolescence, a vulnerable period for the emergence of psychosis. Interestingly, CA2/3, despite being affected in patients with psychotic symptoms, was the only area not reduced in patients with 22q11DS relative to controls, thus suggesting that its atrophy exclusively correlates with the presence of positive psychotic symptoms.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maria C Padula
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
50
|
Moreau CA, Urchs SGW, Kuldeep K, Orban P, Schramm C, Dumas G, Labbe A, Huguet G, Douard E, Quirion PO, Lin A, Kushan L, Grot S, Luck D, Mendrek A, Potvin S, Stip E, Bourgeron T, Evans AC, Bearden CE, Bellec P, Jacquemont S. Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nat Commun 2020; 11:5272. [PMID: 33077750 PMCID: PMC7573583 DOI: 10.1038/s41467-020-18997-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
16p11.2 and 22q11.2 Copy Number Variants (CNVs) confer high risk for Autism Spectrum Disorder (ASD), schizophrenia (SZ), and Attention-Deficit-Hyperactivity-Disorder (ADHD), but their impact on functional connectivity (FC) remains unclear. Here we report an analysis of resting-state FC using magnetic resonance imaging data from 101 CNV carriers, 755 individuals with idiopathic ASD, SZ, or ADHD and 1,072 controls. We characterize CNV FC-signatures and use them to identify dimensions contributing to complex idiopathic conditions. CNVs have large mirror effects on FC at the global and regional level. Thalamus, somatomotor, and posterior insula regions play a critical role in dysconnectivity shared across deletions, duplications, idiopathic ASD, SZ but not ADHD. Individuals with higher similarity to deletion FC-signatures exhibit worse cognitive and behavioral symptoms. Deletion similarities identified at the connectivity level could be related to the redundant associations observed genome-wide between gene expression spatial patterns and FC-signatures. Results may explain why many CNVs affect a similar range of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada.
| | - Sebastian G W Urchs
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada.
- Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de l'Université, Montreal, QC, H3A 2B4, Canada.
| | - Kumar Kuldeep
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, Montreal, QC, H1N 3M5, Canada
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Catherine Schramm
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Guillaume Dumas
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, UMR3571 CNRS, Paris, France
| | - Aurélie Labbe
- Département des Sciences de la Décision, HEC, 3000, chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 2A7, Canada
| | - Guillaume Huguet
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Elise Douard
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre-Olivier Quirion
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center 740, Dr. Penfield Avenue, H3A 0G1, Montreal, Canada
| | - Amy Lin
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Stephanie Grot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, Montreal, QC, H1N 3M5, Canada
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - David Luck
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Adrianna Mendrek
- Department of Psychology, Bishop's University, 2600 College Street, Sherbrooke, QC, J1M IZ7, Canada
| | - Stephane Potvin
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Emmanuel Stip
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
- United Arab Emirates University, College of Medicine and health Sciences, PO 17666, Al Ain, QC, UAE
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, UMR3571 CNRS, Paris, France
| | - Alan C Evans
- Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de l'Université, Montreal, QC, H3A 2B4, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Pierre Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Department of Pediatrics, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|