1
|
Ye C, Liu H, Wang S, Zhang M, Zhang C, Yang F, Shen F, Wang L. Cascade-amplification-based electrochemical detection of Akashiwo sanguinea at pre-outbreak stage. Talanta 2025; 287:127671. [PMID: 39919474 DOI: 10.1016/j.talanta.2025.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Red tide events caused by Akashiwo sanguinea (A. sanguinea) pose a significant threat to ecosystems. However, studies that offer promising approaches for portable and onsite detection with precise identification of A. sanguinea remain insufficient. In this study, we developed an electrochemical biosensor (E-biosensor) for detecting A. sanguinea combined with cascade amplification strategies, termed TDW-E-biosensor. A predictive relationship was also established to predict algal cell density based on electrochemical signals. The experiment results showed that the TDW-E-biosensor was successfully applied for detecting A. sanguinea at the pre-outbreak stage and demonstrated excellent analytical performance, showing a low limit of detection (LOD) of 0.0676 fM and quantitation (LOQ) of 0.102 fM for the three-electrode system, and a low LOD of 6.873 fg μL-1 and LOQ of 20.460 fg μL-1 for the portable system. The accuracy of the TDW-E-biosensor was validated through comparison with droplet digital PCR (ddPCR) and Bland-Altman analysis, demonstrating a high level of agreement (a mean difference of 0.132 and a standard deviation of 0.184). The reliability of the predictive relationship was evidenced by controlled laboratory experiments and Bland-Altman analysis. The developed TDW-E-biosensor provides an innovative and promising tool for early warning efforts regarding harmful algae.
Collapse
Affiliation(s)
- Changrui Ye
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, PR China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, PR China.
| | - Shaopeng Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Chaoxin Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, PR China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, PR China
| | - Fang Shen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, PR China.
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
2
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025; 42:681-719. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
3
|
Wang L, Yi Z, Zhang P, Xiong Z, Zhang G, Zhang W. Comprehensive strategies for microcystin degradation: A review of the physical, chemical, and biological methods and genetic engineering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121707. [PMID: 38968883 DOI: 10.1016/j.jenvman.2024.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Addressing the threat of harmful cyanobacterial blooms (CyanoHABs) and their associated microcystins (MCs) is crucial for global drinking water safety. In this review, we comprehensively analyze and compares the physical, chemical, and biological methods and genetic engineering for MCs degradation in aquatic environments. Physical methods, such as UV treatments and photocatalytic reactions, have a high efficiency in breaking down MCs, with the potential for further enhancement in performance and reduction of hazardous byproducts. Chemical treatments using chlorine dioxide and potassium permanganate can reduce MC levels but require careful dosage management to avoid toxic by-products and protect aquatic ecosystems. Biological methods, including microbial degradation and phytoremediation techniques, show promise for the biodegradation of MCs, offering reduced environmental impact and increased sustainability. Genetic engineering, such as immobilization of microcystinase A (MlrA) in Escherichia coli and its expression in Synechocystis sp., has proven effective in decomposing MCs such as MC-LR. However, challenges related to specific environmental conditions such as temperature variations, pH levels, presence of other contaminants, nutrient availability, oxygen levels, and light exposure, as well as scalability of biological systems, necessitate further exploration. We provide a comprehensive evaluation of MCs degradation techniques, delving into their practicality, assessing the environmental impacts, and scrutinizing their efficiency to offer crucial insights into the multifaceted nature of these methods in various environmental contexts. The integration of various methodologies to enhance degradation efficiency is vital in the field of water safety, underscoring the need for ongoing innovation.
Collapse
Affiliation(s)
- Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhuoran Yi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
Yang X, Liu Z, Zhang Y, Shi X, Wu Z. Dinoflagellate-Bacteria Interactions: Physiology, Ecology, and Evolution. BIOLOGY 2024; 13:579. [PMID: 39194517 DOI: 10.3390/biology13080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
Dinoflagellates and heterotrophic bacteria are two major micro-organism groups within marine ecosystems. Their coexistence has led to a co-evolutionary relationship characterized by intricate interactions that not only alter their individual behaviors but also exert a significant influence on the broader biogeochemical cycles. Our review commenced with an analysis of bacterial populations, both free-living and adherent to dinoflagellate surfaces. Members of Alphaproteobacteria, Gammaproteobacteria, and the Cytophaga-Flavobacterium-Bacteroides group are repeatedly found to be associated with dinoflagellates, with representation by relatively few genera, such as Methylophaga, Marinobacter, and Alteromonas. These bacterial taxa engage with dinoflagellates in a limited capacity, involving nutrient exchange, the secretion of pathogenic substances, or participation in chemical production. Furthermore, the genomic evolution of dinoflagellates has been profoundly impacted by the horizontal gene transfer from bacteria. The integration of bacterial genes into dinoflagellates has been instrumental in defining their biological characteristics and nutritional strategies. This review aims to elucidate the nuanced interactions between dinoflagellates and their associated bacteria, offering a detailed perspective on their complex relationship.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Marine Geological Survey, Guangzhou 511458, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yanwen Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xinguo Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
5
|
Liu F, Feng S, Ali Nasser Mansoor Al-Haimi A, Zhu S, Chen H, Feng P, Wang Z, Qin L. Discovery of two novel bioactive algicidal substances from Brevibacillus sp. via metabolomics profiling and back-validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133985. [PMID: 38471378 DOI: 10.1016/j.jhazmat.2024.133985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Identifying potent bacterial algicidal agents is essential for the development of effective, safe, and economically viable algaecides. Challenges in isolating and purifying these substances from complex secretions have impeded progress in this field. Metabolomics profiling, an efficient strategy for identifying metabolites, was pioneered in identifying bacterial algicidal substances in this study. Extracellular secretions from different generations of the algicidal bacterium Brevibacillus sp. were isolated for comprehensive analysis. Specifically, a higher algicidal efficacy was observed in the secretion from Generation 3 (G3) of Brevibacillus sp. compared to Generation 1 (G1). Subsequent metabolomics profiling comparing G3 and 1 revealed 83 significantly up-regulated metabolites, of which 9 were identified as potential algicidal candidates. Back-validation highlighted the potency of 4-acetamidobutanoic acid (4-ABC) and 8-hydroxyquinoline (8-HQL), which exhibited robust algicidal activity with 3d-EC50 values of 6.40 mg/L and 92.90 µg/L, respectively. These substances disrupted photosynthetic activity in M. aeruginosa by ceasing electron transfer in PSⅡ, like the impact exerted by Brevibacillus sp. secretion. These findings confirmed that 4-ABC and 8-HQL were the main algicidal components derived from Brevibacillus sp.. Thus, this study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel and highly active algicidal substances. ENVIRONMENTAL IMPLICATION: Harmful cyanobacterial blooms (HCBs) pose significant environmental problems and health effects to humans and other organisms. The increasing frequency of HCBs has emerged as a pressing global concern. Bacterial-derived algicidal substances are expected to serve as effective, safe, and economically viable algaecides against HCBs. This study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel substances (4-ABC and 8-HQL). These two substances demonstrate remarkable algicidal activity and disrupt the photosynthetic system in M. aeruginosa. They hold potential as prospective algaecides for addressing HCBs.
Collapse
Affiliation(s)
- Fen Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Siran Feng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Akram Ali Nasser Mansoor Al-Haimi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
6
|
Li D, Chen X, Wang Y, Huang W, Wang Y, Zhao X, Song X, Cao X. Panoptic elucidation of algicidal mechanism of Raoultella sp. S1 against the Microcystis aeruginosa by TMT quantitative proteomics. CHEMOSPHERE 2024; 352:141287. [PMID: 38272139 DOI: 10.1016/j.chemosphere.2024.141287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
7
|
Geng Y, Xing R, Zhang H, Nan G, Chen L, Yu Z, Liu C, Li H. Inhibitory effect and mechanism of algicidal bacteria on Chaetomorpha valida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169850. [PMID: 38185176 DOI: 10.1016/j.scitotenv.2023.169850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Chaetomorpha valida, filamentous green tide algae, poses a significant threat to both aquatic ecosystems and aquaculture. Vibrio alginolyticus Y20 is a new algicidal bacterium with an algicidal effect on C. valida. This study aimed to investigate the physiological and molecular responses of C. valida to exposure to V. alginolyticus Y20. The inhibitory effect of V. alginolyticus Y20 on C. valida was content dependent, with the lowest inhibitory content being 3 × 105 CFU mL-1. The microscopic results revealed that C. valida experienced severe morphological damage under the influence of V. alginolyticus Y20, with a dispersion of intracellular pigments. V. alginolyticus Y20 caused the decrease in chlorophyll-a content and Fv/Fm in C. valida. At the molecular level, V. alginolyticus Y20 downregulated the expression of genes related to photosynthetic pigment synthesis, light capture, and electron transport. Furthermore, V. alginolyticus Y20 induced oxidative damage to algal cells. The production of reactive oxygen species significantly increased after 11 days of exposure. Malondialdehyde content significantly increased, and the cell membranes were severely damaged by lipid peroxidation. The content of superoxide dismutase and peroxidase also markedly increased, whereas catalase content decreased significantly. Additionally, peroxisomes were inhibited due to the downregulation of PEX expression, leading to irreversible oxidative damage to algal cells. Our findings provided a new theoretical basis for exploring the interaction between algicidal bacteria and green tide algae at the molecular level.
Collapse
Affiliation(s)
- Yaqi Geng
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Ronglian Xing
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Guoning Nan
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Lihong Chen
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Zhen Yu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Chuyao Liu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Huili Li
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
8
|
Cruz-Balladares V, Avalos V, Vera-Villalobos H, Cameron H, Gonzalez L, Leyton Y, Riquelme C. Identification of a Shewanella halifaxensis Strain with Algicidal Effects on Red Tide Dinoflagellate Prorocentrum triestinum in Culture. Mar Drugs 2023; 21:501. [PMID: 37755114 PMCID: PMC10532897 DOI: 10.3390/md21090501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
The dinoflagellate Prorocentrum triestinum forms high biomass blooms that discolor the water (red tides), which may pose a serious threat to marine fauna and aquaculture exploitations. In this study, the algicidal effect of a bacterial strain (0YLH) belonging to the genus Shewanella was identified and evaluated against P. triestinum. The algicidal effects on the dinoflagellate were observed when P. triestinum was exposed to cell-free supernatant (CFS) from stationary-phase cultures of the 0YLH strain. After 24 h exposure, a remarkable reduction in the photosynthetic efficiency of P. triestinum was achieved (55.9%), suggesting the presence of extracellular bioactive compounds produced by the bacteria with algicidal activity. Furthermore, the CFS exhibited stability and maintained its activity across a wide range of temperatures (20-120 °C) and pH values (3-11). These findings highlight the algicidal potential of the bacterium Shewanella halifaxensis 0YLH as a promising tool for the environmentally friendly biological control of P. triestinum blooms.
Collapse
Affiliation(s)
- Victoria Cruz-Balladares
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Vladimir Avalos
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Hernán Vera-Villalobos
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Henry Cameron
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Leonel Gonzalez
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Yanett Leyton
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
| | - Carlos Riquelme
- Centro de Bioinnovación de Antofagasta, Universidad de Antofagasta, Antofagasta 1240000, Chile (H.V.-V.); (H.C.); (C.R.)
- Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
9
|
Yu L, Li T, Li H, Ma M, Li L, Lin S. In Situ Molecular Ecological Analyses Illuminate Distinct Factors Regulating Formation and Demise of a Harmful Dinoflagellate Bloom. Microbiol Spectr 2023; 11:e0515722. [PMID: 37074171 PMCID: PMC10269597 DOI: 10.1128/spectrum.05157-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
The development and demise of a harmful algal bloom (HAB) are generally regulated by multiple processes; identifying specific critical drivers for a specific bloom is important yet challenging. Here, we conducted a whole-assemblage molecular ecological study on a dinoflagellate bloom to address the hypothesis that energy and nutrient acquisition, defense against grazing and microbial attacks, and sexual reproduction are critical to the rise and demise of the bloom. Microscopic and molecular analyses identified the bloom-causing species as Karenia longicanalis and showed that the ciliate Strombidinopsis sp. was dominant in a nonbloom plankton community, whereas the diatom Chaetoceros sp. dominated the after-bloom community, along with remarkable shifts in the community structure for both eukaryotes and prokaryotes. Metatranscriptomic analysis indicated that heightened energy and nutrient acquisition in K. longicanalis significantly contributed to bloom development. In contrast, active grazing by the ciliate Strombidinopsis sp. and attacks by algicidal bacteria (Rhodobacteracea, Cryomorphaceae, and Rhodobacteracea) and viruses prevented (at nonbloom stage) or collapsed the bloom (in after-bloom stage). Additionally, nutrition competition by the Chaetoceros diatoms plausibly contributed to bloom demise. The findings suggest the importance of energy and nutrients in promoting this K. longicanalis bloom and the failure of antimicrobial defense and competition of diatoms as the major bloom suppressor and terminator. This study provides novel insights into bloom-regulating mechanisms and the first transcriptomic data set of K. longicanalis, which will be a valuable resource and essential foundation for further elucidation of bloom regulators of this and related species of Kareniaceae in the future. IMPORTANCE HABs have increasingly occurred and impacted human health, aquatic ecosystems, and coastal economies. Despite great efforts, the factors that drive the development and termination of a bloom are poorly understood, largely due to inadequate in situ data about the physiology and metabolism of the causal species and the community. Using an integrative molecular ecological approach, we determined that heightened energy and nutrient acquisition promoted the bloom, while resource allocation in defense and failure to defend against grazing and microbial attacks likely prevented or terminated the bloom. Our findings reveal the differential roles of multiple abiotic and biotic environmental factors in driving the formation or demise of a toxic dinoflagellate bloom, suggesting the importance of a balanced biodiverse ecosystem in preventing a dinoflagellate bloom. The study also demonstrates the power of whole-assemblage metatranscriptomics coupled to DNA barcoding in illuminating plankton ecological processes and the underlying species and functional diversities.
Collapse
Affiliation(s)
- Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Central Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Minglei Ma
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
10
|
Wang Y, Lin R, Cao Y, Li S, Cui R, Guo W, Ho SH, Kit Leong Y, Lee DJ, Chang JS. Simultaneous Removal of Sulfamethoxazole during Fermentative Production of Short-Chain Fatty Acids. BIORESOURCE TECHNOLOGY 2023:129317. [PMID: 37315625 DOI: 10.1016/j.biortech.2023.129317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Rongrong Lin
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Yushuang Cao
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rong Cui
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
11
|
Liu F, Qin L, Zhu S, Chen H, Al-Haimi AANM, Xu J, Zhou W, Wang Z. Applications-oriented algicidal efficacy research and in-depth mechanism of a novel strain Brevibacillus sp. on Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121812. [PMID: 37178955 DOI: 10.1016/j.envpol.2023.121812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
The utilization of algicidal bacteria for the control of harmful algal blooms (HABs) is a promising technology for ecological remediation. In our most recent publication, a novel strain of Brevibacillus sp. was isolated and proved to have significant algicidal activity and stability against Microcystis aeruginosa. In order to verify the algicidal effect of the strain in the practical application scenario, the algicidal efficacy of Brevibacillus sp. under conditions close to water in the environment was investigated. Results indicated that the algicidal threshold of Brevibacillus sp. culture was 3‰ inoculation concentration, and the removal rate of M. aeruginosa reached 100%. The process of Chl-a degradation followed a first-order kinetic model, which could be used to predict the degradation effect of M. aeruginosa in practical applications. Additionally, the inoculation of Brevibacillus sp. culture introduced additional nutrients, some of which remained in the water. Furthermore, the algicidal substances demonstrated good sustainability, with a removal rate of up to 78.53% at 144 h after three repeated uses. At 12 h, the algicidal substances caused a 78.65% increase in malondialdehyde (MDA) content in M. aeruginosa compared to the control group, thereby triggering the antioxidant system of M. aeruginosa. Moreover, algal cell fragments were observed to aggregate. This study provides a promising direction for treating cyanobacterial blooms using algicidal bacteria in practical applications.
Collapse
Affiliation(s)
- Fen Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Huanjun Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Akram Ali Nasser Mansoor Al-Haimi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Weizheng Zhou
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| |
Collapse
|
12
|
Lu Q, Zhou X, Liu R, Shi G, Zheng N, Gao G, Wang Y. Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114451. [PMID: 38321670 DOI: 10.1016/j.ecoenv.2022.114451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Chlorella is a dominant species during harmful algal blooms (HABs) worldwide, which bring about great environmental problems and are also a serious threat to drinking water safety. Application of bacterial algicides is a promising way to control HABs. However, the identified bacterial algicides against Chlorella and the understanding of their effects on algal metabolism are very limited. Here, we isolated a novel bacterium Microbacterium paraoxydans strain M1 that has significant algicidal activities against Chlorella vulgaris (algicidal rate 64.38 %, at 120 h). Atrazine-desethyl (AD) was then identified from strain M1 as an effective bacterial algicide, with inhibition or algae-lysing concentration values (EC50) of 1.64 μg/mL and 1.38 μg/mL, at 72 h and 120 h, respectively. LAD (2 μg/mL AD) or HAD (20 μg/mL AD) causes morphology alteration and ultrastructure damage, chlorophyll a reduction, gene expression regulation (for example, psbA, 0.05 fold at 24 h, 2.97 fold at 72 h, and 0.23 fold of the control in HAD), oxidative stress, lipid oxidation (MDA, 2.09 and 3.08 fold of the control in LAD and HAD, respectively, at 120 h) and DNA damage (average percentage of tail DNA 6.23 % at 120 h in HAD, slight damage: 5∼20 %) in the algal cells. The impacts of AD on algal metabolites and metabolic pathways, as well as the algal response to the adverse effects were investigated. The results revealed that amino acids, amines, glycosides and urea decreased significantly compared to the control after 24 h exposure to AD (p < 0.05). The main up-regulated metabolic pathways implied metabonomic resistance and defense against osmotic pressure, oxidative stress, photosynthesis inhibition or partial cellular structure damage, such as phenylalanine metabolism, arginine biosynthesis. The down-regulated glycine, serine and threonine metabolism is a major lead in the algicidal mechanism according to the value of pathway impact. The down-regulated glycine, and serine are responsible for the downregulation of glyoxylate and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, glutathione metabolism, and sulfur metabolism, which strengthen the algae-lysing effect. It is the first time to highlight the pivotal role of glycine, serine and threonine metabolism in algicidal activities, which provided a new perspective for understanding the mechanism of bacterial algicides exerting on algal cells at the metabolic level.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Xinzhu Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ruidan Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guojing Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ningning Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guanghai Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; State key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| | - Yingying Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, China.
| |
Collapse
|
13
|
Shao X, Xie W, Liang Y, Luo G, Li L, Zheng W, Xu Q, Xu H. Algicidal characteristics of novel algicidal compounds, cyclic lipopeptide surfactins from Bacillus tequilensis strain D8, in eliminating Heterosigma akashiwo blooms. Front Microbiol 2022; 13:1066747. [PMID: 36532506 PMCID: PMC9748430 DOI: 10.3389/fmicb.2022.1066747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 04/17/2024] Open
Abstract
Heterosigma akashiwo blooms have caused severe damage to marine ecosystems, the aquaculture industry and human health worldwide. In this study, Bacillus tequilensis D8 isolated from an H. akashiwo bloom area was found to exert high algicidal activity via extracellular metabolite production. This activity remained stable after exposure to different temperatures and light intensities. Scanning electron microscopy observation and fluorescein diacetate staining indicated that the algicidal substances rapidly destroyed algal plasma membranes and decreased esterase activity. Significant decreases in the maximum photochemical quantum yield and relative electron transfer rate were observed, which indicated photosynthetic membrane destruction. Subsequently, the algicidal compounds were separated and purified by high-performance liquid chromatography and identified as three surfactin homologues by interpreting high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy data. Among these, surfactin-C13 and surfactin-C14 exhibited strong algicidal activity against three HAB-causing species, namely, H. akashiwo, Skeletonema costatum, and Prorocentrum donghaiense, with 24 h-LC50 values of 1.2-5.31 μg/ml. Surfactin-C15 showed strong algicidal activity against S. costatum and weak algicidal activity against H. akashiwo but little activity against P. donghaiense. The present study illuminates the algicidal characteristics and mechanisms of action of surfactins on H. akashiwo and their potential applicability in controlling harmful algal blooms.
Collapse
Affiliation(s)
- Xueping Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wanxin Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yiling Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guiying Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ling Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
14
|
Le VV, Srivastava A, Ko SR, Ahn CY, Oh HM. Microcystis colony formation: Extracellular polymeric substance, associated microorganisms, and its application. BIORESOURCE TECHNOLOGY 2022; 360:127610. [PMID: 35840029 DOI: 10.1016/j.biortech.2022.127610] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microcystis sp., amongst the most prevalent bloom-forming cyanobacteria, is typically found as a colonial form with multiple microorganisms embedded in the mucilage known as extracellular polymeric substance. The colony-forming ability of Microcystis has been thoroughly investigated, as has the connection between Microcystis and other microorganisms, which is crucial for colony development. The following are the key subjects to comprehend Microcystis bloom in depth: 1) key issues related to the Microcystis bloom, 2) features and functions of extracellular polymeric substance, as well as diversity of associated microorganisms, and 3) applications of Microcystis-microorganisms interaction including bloom control, polluted water bioremediation, and bioactive compound production. Future research possibilities and recommendations regarding Microcystis-microorganism interactions and their significance in Microcystis colony formation are also explored. More information on such interactions, as well as the mechanism of Microcystis colony formation, can bring new insights into cyanobacterial bloom regulation and a better understanding of the aquatic ecosystem.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Ankita Srivastava
- Department of Botany, Siddharth University, Kapilvastu, Siddharth Nagar 272202, Uttar Pradesh, India
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Xu S, Lyu P, Zheng X, Yang H, Xia B, Li H, Zhang H, Ma S. Monitoring and control methods of harmful algal blooms in Chinese freshwater system: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56908-56927. [PMID: 35708805 DOI: 10.1007/s11356-022-21382-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) are a worldwide problem with substantial adverse effects on the aquatic environment as well as human health, which have prompted researchers to study measures to stem and control them. Meanwhile, it is key to research and develop monitoring methods to establish early warning HABs. However, both the current monitoring methods and control methods have some shortcomings, making the field application limited. Thus, we need to improve current approaches for monitoring and controlling HABs efficiently. Based on the freshwater system features in China, we review various monitoring and control methods of HABs, summarize and discuss the problems with these methods, and propose the future development direction of monitoring and control HABs. Finally, we envision that it can combine physical, chemical, and biological methods to inhibit HAB expansion in the future, complementing each other with advantages. Further, we promise to establish a long-term strategy of controlling HABs with various algicidal bacteria co-cultivate for field applications in China. Efforts in studying algicidal bacteria must be increased to better control HABs and mitigate the risks of aquatic ecosystems and human health in China.
Collapse
Affiliation(s)
- Shengjun Xu
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ping Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haijun Yang
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Bing Xia
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hui Li
- Shenzhen BLY Landscape & Architecture Planning & Design Institute, Shenzhen, 518055, China
| | - Hao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
16
|
Oxidative stress of Microcystis aeruginosa induced by algicidal bacterium Stenotrophomonas sp. KT48. Appl Microbiol Biotechnol 2022; 106:4329-4340. [PMID: 35604440 DOI: 10.1007/s00253-022-11959-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
Cyanobacterial harmful algal blooms are a worldwide problem with substantial adverse effects on the aquatic environment as well as human health. Among the multiple physicochemical and biotic approaches, algicidal bacterium is one of the most promising and eco-friendly ways to control bloom expansion. In this study, Stenotrophomonas sp. KT48 isolated from the pond where cyanobacterial blooms occurred exhibited a strong inhibitory effect on Microcystis aeruginosa. However, the algicidal performance and mechanisms of Stenotrophomonas sp. remain under-documented. To explore the algicidal performance and physiological response againt M. aeruginosa, further works were implemented here. Our results indicated that the algicidal rate of strain KT48 cultured in 1/8 LB medium supplemented with 0.3% starch or glucose was about 30% higher than that in 1/8 LB medium. Strain KT48 culture, cell-free filtrate, and cells re-suspended were inoculated into the M. aeruginosa culture, and the Chl-a content was determined. Those results indicated that the algicidal activity of cells re-suspended was far higher than that of cell-free filtrate and culture. Thus, strain KT48 exhibited algicidal activity mainly through direct attacking M. aeruginosa rather than excretion of algicides. Furthermore, strain KT48 led to an increase in cellular reactive oxygen species (ROS) and caused lipid peroxidation as supported by the increase in malondialdehyde (MDA) levels. The ROS and MDA levels in algal cells treated with strain KT48 cells re-suspended were about 3.23-fold and 2.80-fold higher than those of untreated algal cells on day 11. And a further inhibition to the antioxidant system is suggested by a sharp decrease in the superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities. In addition, we also observed that the morphology of most algal cells changed from integrity to break. This study not only indicated strain KT48 with strong algicidal activity, but also explored the underlying algicidal mechanisms to provide a source of bacterial agent for the biocontrol of cyanobacterial blooms. KEY POINTS: • Strain KT48 exhibited strong algicidal activity mainly through direct attacking M. aeruginosa. • The addition of glucose could enhance the algicidal rate of strain KT48 by about 30%. • Strain KT48 led to an increase in cellular reactive oxygen species (ROS) level that causes membrane damage as supported by the increase in malondialdehyde (MDA) levels.
Collapse
|
17
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
18
|
Xu Q, Wang P, Huangleng J, Su H, Chen P, Chen X, Zhao H, Kang Z, Tang J, Jiang G, Li Z, Zou S, Dong K, Huang Y, Li N. Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150303. [PMID: 34537702 DOI: 10.1016/j.scitotenv.2021.150303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Accumulating research evidence has revealed that harmful algal blooms (HABs) can substantially affect the community structures of phytoplankton and heterotrophic bacteria in marine ecosystems. However, little is known about their species-specific interactions between phytoplankton and heterotrophic bacteria during the HABs period and about their interaction shifts in response to blooms. From this perspective, we investigated the co-occurrence of chromophytic phytoplankton and Vibrio during Phaeocystis globosa blooms in the Beibu Gulf. The results showed that Vibrio communities were distinct during the blooms, and P. globosa blooms resulted in a decline in phytoplankton alpha diversity, revealing that the blooms could affect their community compositions. The regression lines between the Shannon indices and Bray-Curtis distances of phytoplankton and Vibrio showed positive correlations with each other (p < 0.001), suggesting that they may have intrageneric symbiotic interactions overall. In addition, network analysis further demonstrated that relationships between phytoplankton and Vibrio were dominated by positive correlations, and more interaction modules were observed during the blooms, revealing that the blooms intensified synergistic association and mutual symbiotic interactions between them. Environmental factors (SiO32-, NH4+, NO3- and TN,) and P. globosa density more deeply affected network interactions between phytoplankton and Vibrio during the periods of P. globosa blooms than those before the blooms and after the blooms. This study provided new insight to elucidate community structure and interaction relationships between phytoplankton and Vibrio in response to P. globosa blooms and their ecological effects in marine ecosystems.
Collapse
Affiliation(s)
- Qiangsheng Xu
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou 310012, Zhejiang, People's Republic of China; Fourth Institute of Oceanography, Ministry of Natural Resources, 26 New Century Avenue, Beihai, 536000, Guangxi, People's Republic of China
| | - Jinghua Huangleng
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Huiqi Su
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Panyan Chen
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xing Chen
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China; College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Huaxian Zhao
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhenjun Kang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, 12 Binhai Avenue, Qinzhou 535011, Guangxi, People's Republic of China
| | - Jinli Tang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Gonglingxia Jiang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhuoting Li
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Shuqi Zou
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Yuqing Huang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Nan Li
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China.
| |
Collapse
|
19
|
Valença CAS, Barbosa AAT, Souto EB, Caramão EB, Jain S. Volatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds. Chem Biodivers 2021; 18:e2100549. [PMID: 34643327 DOI: 10.1002/cbdv.202100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.
Collapse
Affiliation(s)
- Camilla A S Valença
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Ana A T Barbosa
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eliana B Souto
- CEB - Center of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elina B Caramão
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil.,Instituto Nacional de Ciência e Tecnologia - Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
20
|
Pyrrolopyrazine derivatives: synthetic approaches and biological activities. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Li X, Xia Z, Wang B, Lai L, Wang J, Jiang L, Li T, Wu J, Wang L. Malformin C, an algicidal peptide from marine fungus Aspergillus species. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:996-1003. [PMID: 33755843 DOI: 10.1007/s10646-021-02389-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A natural compound with the algicidal effect was isolated from the culture medium of Aspergillus sp. SCSIOW2 and was identified as malformin C, which was based on the data of 1H-NMR, 13C-NMR, and ESI-MS. Malformin C exhibited dose-dependent algicidal activities against two strains of noxious red tide algae, Akashiwo sanguinea and Chattonella marina. The activity against A. sanguinea was stronger than that against C. marina (the algicidal activity of 58 and 36% at 50 μM treatment for 2 h, respectively). Morphology changes including perforation, plasmolysis, and fragmentation of algal cells were observed. Malformin C induced a significant increase in ROS level, caused the damage of SOD activity, and led to the massive generation of MDA contents in algae cells. To our knowledge, this is the first report of the cyclic peptide described as an algicidal compound against HABs.
Collapse
Affiliation(s)
- Xiaofan Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, PR China
| | - Zhenyao Xia
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, PR China
| | - Bing Wang
- Shenzhen Institute for drug control, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, 518057, PR China
| | - Liwen Lai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, PR China
| | - Jue Wang
- Shenzhen Institute for drug control, Shenzhen Key Laboratory of Drug Quality Standard Research, Shenzhen, 518057, PR China
| | - Linhai Jiang
- Instumental Analysis Center of Shenzhen University, Shenzhen, 518071, PR China
| | - Tuchan Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, PR China
| | - Jiahui Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, PR China
| | - Liyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518071, PR China.
| |
Collapse
|
22
|
Wang M, Yuan WQ, Chen S, Wang L, Zhao S, Li S. Algal Lysis by Sagittula stellata for the Production of Intracellular Valuables. Appl Biochem Biotechnol 2021; 193:2516-2533. [PMID: 33779932 DOI: 10.1007/s12010-021-03502-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to examine the efficacy of the algicidal bacterium Sagittula stellata on the cell lysis of Nannochloropsis oceanica, a microalga found in the marine environment, in order to extract intracellular valuables. Algicidal bacteria are capable of lysing algal cell walls while keeping lipids and proteins intact yet separated. We obtained these microbes from locations with consistent algae blooms and found that the bacterium Sagittula stellata displayed significant algicidal properties toward Nannochloropsis oceanica, achieving an algicidal rate of 80.1%. We detected a decrease of 66.2% in in vivo fluorescence intensity in algae cultures, obtained a recoverable crude lipid content of 23.3% and a polyunsaturated fatty acid (PUFA) ratio of 29.0% of bacteria-treated algae, and observed the lysis of the cell membrane and the structure of the nucleus of algae. We also identified the inhibited transcription of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS) gene and proliferating cell nuclear antigen (PCNA)-related genes and the upregulated heat shock protein (hsp) gene in algal cells during bacterial exposure. Our results indicate that Sagittula stellata effectively lysed microalgae cells, allowing the recovery of intracellular valuables. The algicidal method of Sagittula stellata on Nannochloropsis oceanica cells was confirmed to be a direct attack (or predation), followed by an indirect attack through the secretion of extracellular algicidal compounds. This study provides an important framework for the broad application of algicidal microorganisms in algal cell disruption and the production of intracellular valuables.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Wen Qiao Yuan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| | - Lifu Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Shuwen Zhao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Shanshan Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| |
Collapse
|