1
|
Jiang Q, Zhou W, Chen Y, Peng Z, Li C. Impacts of the quinone-functionalized biochar on anaerobic digestion: Beyond the redox property of biochar. PLoS One 2025; 20:e0322275. [PMID: 40261889 PMCID: PMC12013935 DOI: 10.1371/journal.pone.0322275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Recent developments in biochar materials have led to renewed interest in biochar modification for environmental applications, however, much uncertainty still exists about the impact of engineered biochar on a given biotechnological process. The redox properties of biochar were considered to be the key property for enhancing the methanogenic process, and the redox activity of biochar was closely related to the type and amount of oxygen-containing functional groups, especially quinone groups. Therefore, anthraquinone-2-sulfonate (AQS) was immobilized on algal biochar (ABC) by surface doping method, and the impacts of the quinone-functionalization process on algal biochar for regulating methane production were investigated in this study. Results showed that the immobilization capacity of AQS on ABC (ABC-AQS) reached 0.289 mmol/g. The acidogenesis rate was improved by 26.3% with the addition of ABC-AQS during anaerobic digestion test. However, methane production was inhibited rather than enhanced by the ABC-AQS, which could be attributed to the strong acid treatment stage involved in the biochar modification process. pH interferences, the generation and/or dissolution of inhibitory substances, and the release of Zn2+ should be the major mechanisms of microbial inhibition by ABC-AQS. The findings of this study give us an important clue that when designing a biochar modification procedure for anaerobic digestion, attentions should be paid to the possible influences of chemical side reactions during biochar modification process on subsequent microbial metabolism, which would be valuable in designing engineered biochar for practical applications.
Collapse
Affiliation(s)
- Qian Jiang
- School of Biological and Materials Engineering, Suqian University, Suqian, China
- Jiangsu Engineering Research Center of Novel Functional Film and Technology, Biological and Materials Engineering, Suqian University, Suqian, China
| | - Wentao Zhou
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| | - Yue Chen
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| | - Zhenglong Peng
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| | - Chengcheng Li
- School of Biological and Materials Engineering, Suqian University, Suqian, China
| |
Collapse
|
2
|
Liao X, Mao S, Gao W, Wang S, Hu J, Malghani S. Risk of increasing soil nitrous oxide emissions by chemical oxidation modification on biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124336. [PMID: 39884197 DOI: 10.1016/j.jenvman.2025.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Biochar is widely recognized as a soil amendment capable of mitigating soil nitrous oxide (N2O) emissions. However, the effects of biochar modification, particularly through chemical oxidation, remain relatively unexplored. This study modified wood and corn straw biochars using H2O2 and acid (H2SO4/HNO3). Laboratory incubations were conducted to assess their effects on N2O emissions in agricultural and forest soils. The results revealed that acid modification significantly reduced biochar pH (<3) and introduced additional nitrogen, leading to substantial increases in N2O emissions by up to 181% and 7476% for wood and corn straw biochar, respectively. In contrast, H2O2-treated biochar caused limited changes in biochar properties and had minimal effects on soil N2O emissions. Correlation analyses suggest distinct pathways for N2O production, with forest soil emissions being negatively associated with potential denitrification enzyme activity, while agricultural soil emissions were positively linked to labile organic carbon and potential nitrification rates. While mild oxidation (e.g., H2O2) may better mimic natural aging process, stronger treatments (e.g., acid oxidation) pose risks of increased soil N2O emissions. This study provides valuable insights for optimizing biochar modifications to balance environmental and ecological benefits.
Collapse
Affiliation(s)
- Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Shuxia Mao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wenran Gao
- College of Material Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jing Hu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, USA, Orlando, FL, 32816, USA
| | - Saadatullah Malghani
- Department of Plant and Environmental Sciences, University of Copenhagen, DK, Frederiksberg C, 1871, Copenhagen, Denmark.
| |
Collapse
|
3
|
Palai SP, Sahoo BP, Senapati S, Panda AK, Bastia TK, Rath P, Parhi PK. A review on exploring pyrolysis potential of invasive aquatic plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123017. [PMID: 39476678 DOI: 10.1016/j.jenvman.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The rapid spread of invasive aquatic plants poses significant ecological and economic challenges, necessitating effective management strategies. Pyrolysis, a thermochemical decomposition process in an oxygen-free environment, offers a promising solution for converting these plant-based biomass sources into biochar. Biochar, produced through the pyrolysis of organic materials in low-oxygen environments, has high carbon content, excellent resistance to degradation, and high aromaticity, making it a valuable resource for various industries, including agriculture, environment, and energy sectors and supports the circular economy. Invasive aquatic plants are widely distributed and are ideal resources for biochar production. Pyrolysis of invasive aquatic plants offers multiple benefits, including protecting ecosystems from aggressive species, promoting human health, mitigating aquatic weed proliferation, and generating other renewable energy resources. Invasive plant-derived biochar has emerged as a novel material, distinguished from traditional biochar by its unique structure and composition. This study explores the pyrolysis potential of various invasive aquatic plants by examining biochar's origins, analysing how pyrolysis conditions affect the conversion of these invasive aquatic plants, and exploring characterization methods, applications, and future potential of biochar derived from these plants. An economic analysis of biochar pyrolyzed from invasive aquatic plants is also reviewed and reported.
Collapse
Affiliation(s)
- S P Palai
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - B P Sahoo
- KIIT-TBI, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - S Senapati
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - A K Panda
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - T K Bastia
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - P Rath
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - P K Parhi
- Department of Chemistry, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India.
| |
Collapse
|
4
|
Yang K, Guo B, Shen K, Luo W, Zhang B, Hua Y, Zhang Y. Unraveling immobilization mechanisms of Cd in soil by MgO-modified palygorskite/biochar composite: DFT calculation and combined-artificial aging. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122576. [PMID: 39307083 DOI: 10.1016/j.jenvman.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
In this study, a combination method of freeze-thaw cycle, dry-wet cycle, and chemical agings was used to investigate the aging effect of MgO-modified palygorskite/biochar composite (MPBC) in soil, and its immobilization capacity on Cd under aging. The immobilization mechanisms of MPBC for Cd were explored through several characterizations and DFT calculations. The results showed that MPBC effectively reduced the activate state of Cd by 56.63% at 8 mg/kg Cd concentration. Additionally, MPBC treatment improved physicochemical properties of soil, notably increasing soil pH by 0.26-0.64 units, thereby facilitating Cd immobilization. The predominant mechanism underlying Cd immobilization by MPBC involved the Cd-π complexation, ions exchange, precipitation, and complexation of surface functional groups, including C-O and C=O, with Cd. The citric acid emerged as a milder oxidizing agent combined with freeze-thaw and dry-wet aging conducive to studying the aging effect of MPBC. The dynamic calculation showed that MgO played an important role in the Cd adsorption, with a maximum probability function of 18.35 for Cd. Moreover, within the temperature range of 20 °C-30 °C, the distance between MPBC and Cd was the closest. This study provides a new idea for artificial aging of biochar and a practical method for the remediation of Cd pollution in soil.
Collapse
Affiliation(s)
- Kunpeng Yang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Bingyue Guo
- Jiangsu Geology&Mineral Exploration Bureau, Nanjing, 210018, PR China
| | - Kai Shen
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China; Nanjing Gekof Institute of Environmental Protection Technology Equipment Co., Ltd. Nanjing, 211106, PR China
| | - Wenxuan Luo
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Bin Zhang
- Jiangsu Geology&Mineral Exploration Bureau, Nanjing, 210018, PR China
| | - Yuxuan Hua
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
5
|
Zeng L, Yang S, Chen Q, Fu W, Wu M, Oleszczuk P, Pan B, Xing B. The critical role of electron donating rate of pyrogenic carbon in mediating the degradation of phenols in the aquatic environment. WATER RESEARCH 2024; 265:122217. [PMID: 39128335 DOI: 10.1016/j.watres.2024.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Phenols are the widely detected contaminants in the aquatic environment. Pyrogenic carbon (PyC) can mediate phenols degradation, but the specific properties of PyC or phenols influencing this reaction remain unknown. The present study investigated the kinetic process and mechanism of removal of various phenols by different PyC in aqueous phase system. To avoid the impact of the accumulated degradation byproducts on the overall reaction, we conducted a short-term experiment, quantified adsorption and degradation, and obtained reaction rate constants using a two-compartment first-order kinetics model. The adsorption rate constants (ka) of phenols by PyC were 10-220 times higher than degradation rate constants (kd), and they were positively correlated. Interestingly, no correlation was found between kd and common PyC properties, including functional groups, electron transfer capacities, and surface properties. Phenols were primarily attacked by •OH in the adsorbed phase. But neither the instantly trapped •OH, nor the accumulated •OH could explain phenol degradation. Chemical redox titration revealed that the electron transfer parameters, such as the electron donating rate constant (kED) of PyC, correlated well with kd (r>0.87, P < 0.05) of phenols. Analysis of 13 phenols showed that Egap and ELUMO negatively correlated with their kd, confirming the importance of the electronic properties of phenols to their degradation kinetics. This study highlights the importance of PyC electron transfer kinetics parameters for phenols degradation and manipulation of PyC electron transfer rate may accelerate organic pollutant removal, which contributes to a deeper understanding of the environmental behavior and application of PyC systems.
Collapse
Affiliation(s)
- Liang Zeng
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Sizhe Yang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Quan Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China.
| | - Wang Fu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, PR China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
6
|
Zhang W, Zhang Y, Zhao M, Wang S, Fan X, Zhou N, Fan S. Preparation of mesoporous biogas residue biochar via a self-template strategy for efficient removal of ciprofloxacin: Effect of pyrolysis temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121140. [PMID: 38754190 DOI: 10.1016/j.jenvman.2024.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Biochar preparation and application is an anticipated pathway for the resource utilization of biogas residue. In this study, biochars were prepared by the pyrolysis of biogas residue from food waste anaerobic digestion (named as BRBCs) under various pyrolysis temperatures (300, 500, 700, and 900 °C), and the effect of pyrolysis temperatures on the physicochemical characteristics of BRBCs was examined. The adsorption performance toward ciprofloxacin (CIP), a typical antibiotic in waterbodies, was also investigated. The results showed that pyrolysis temperature significantly changed the physicochemical properties of BRBCs. In addition, the minerals in the biogas residue, especially SiO2, were rearranged to form a mesoporous structure in biochar through a self-template strategy (without activator). BRBC prepared at 900 °C exhibited a high specific surface area and pore volume, well-developed mesopore structure, and more carbon structure defects, and exhibited the largest CIP adsorption capacity with 70.29 mg g-1, which was ascribed to the combined interaction of pore diffusion, π-π interactions, hydrogen bonding, complexation, and electrostatic forces. Furthermore, the adsorption of CIP by BRBC900 was well described by two-compartment kinetic and Langmuir isotherm models. BRBC900 showed good adsorption performance toward CIP at pH 7-9. The adsorption of CIP by BRBC is a spontaneous, exothermic, entropy-increasing process. Moreover, BRBC also presented a good recycling potential. Therefore, the preparation of mesoporous biochar based on a self-template strategy not only provides an option for the resource utilization of biogas residue but also offers a new option for the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yushan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Manquan Zhao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xinru Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Na Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Umare S, Thawait AK, Dhawane SH. Remediation of arsenic and fluoride from groundwater: a critical review on bioadsorption, mechanism, future application, and challenges for water purification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37877-37906. [PMID: 38771540 DOI: 10.1007/s11356-024-33679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
In the past few decades, the excessive and inadequate use of technological advances has led to groundwater contamination, mainly caused by organic and inorganic pollutants, which are highly harmful to human health, agriculture, water bodies, and aquaculture. Among all toxic pollutants, As and F- play a significant role in groundwater contamination due to their excellent reactivity with other elements. To mitigate the prevalence of arsenic and fluoride within the water system, the use of biochar gives an attractive strategy for removing them mainly because of the substantial surface area, pore size, pH, aromatic structure, and functional groups inherent in biochar, which are primarily dependent upon its raw material and pyrolysis temperature. Researcher develops different methods like physiochemical and electrochemical for treating arsenic and fluoride contamination. Among all removal methods, bioadsorption using agricultural waste residues shows effective/feasible removal of As and F- due to its low cost, ecofriendly nature, readily available, and efficient reuse compared with several other harmful synthetic materials that demand costly design specifications. This study discusses current developments in bioadsorption methods for As and F- that use agricultural-based biomaterials and describes the prevailing state of arsenic and fluoride removal strategies that use biomaterials precisely.
Collapse
Affiliation(s)
- Shubhangi Umare
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Ajay K Thawait
- Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India
| | - Sumit H Dhawane
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, India.
| |
Collapse
|
8
|
Elbagory M, Shaker EM, El-Nahrawy S, Omara AED, Khalifa TH. The Concurrent Application of Phosphogypsum and Modified Biochar as Soil Amendments Influence Sandy Soil Quality and Wheat Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1492. [PMID: 38891301 PMCID: PMC11174802 DOI: 10.3390/plants13111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Sandy soil covers a significant portion of Egypt's total land area, representing a crucial agricultural resource for future food security and economic growth. This research adopts the hypothesis of maximizing the utilization of secondary products for soil improvement to reduce ecosystem pollution. The study focuses on assessing the impact of combining phosphogypsum and modified biochar as environmentally friendly soil amendments on loamy sand soil quality parameters such as soil organic carbon, cation exchange capacity, nutrient levels, and wheat yield. The treatments were T1: the recommended NPK fertilizer (control); T2: 2.5 kg phosphogypsum m-2 soil; T3: 2.5 kg rice straw biochar m-2 soil; T4: 2.5 kg cotton stalk biochar m-2 soil; T5: 2.5 kg rice-straw-modified biochar m-2 soil; T6: 2.5 kg cotton-stalk-modified biochar m-2 soil; and T7 to T10: mixed phosphogypsum and biochar treatments. The results revealed that the combined use of phosphogypsum and modified cotton stalk biochar (T10) significantly enhanced soil organic carbon (SOC) by 73.66% and 99.46% in both seasons, the soil available N both seasons by 130.12 and 161.45%, the available P by 89.49% and 102.02%, and the available K by 39.84 and 70.45% when compared to the control treatment. Additionally, this treatment led to the highest grain yield of wheat (2.72 and 2.92 Mg ha-1), along with a significant increase in straw yield (52.69% and 59.32%) compared to the control treatment. Overall, the findings suggest that the combined use of phosphogypsum and modified biochar, particularly cotton-stalk biochar, holds promise for improving loamy sand-soil quality and wheat productivity.
Collapse
Affiliation(s)
- Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail 61321, Assir, Saudi Arabia;
| | - Eman M. Shaker
- Soil Improvement and Conservation Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt;
| | - Sahar El-Nahrawy
- Soil Microbiology Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt;
| | - Alaa El-Dein Omara
- Soil Microbiology Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt;
| | - Tamer H. Khalifa
- Soil Improvement and Conservation Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt;
| |
Collapse
|
9
|
Katibi KK, Shitu IG, Yunos KFM, Azis RS, Iwar RT, Adamu SB, Umar AM, Adebayo KR. Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:492. [PMID: 38691228 DOI: 10.1007/s10661-024-12574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ibrahim Garba Shitu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khairul Faezah Md Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rabaah Syahidah Azis
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Raphael Terungwa Iwar
- Department of Agricultural and Environmental Engineering, College of Engineering, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Suleiman Bashir Adamu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi, 650221, Nigeria
| | - Kehinde Raheef Adebayo
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria
| |
Collapse
|
10
|
Liao X, Mao S, Shan Y, Gao W, Wang S, Malghani S. Impact of iron-modified biochars on soil nitrous oxide emissions: Variations with iron salts and soil fertility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120571. [PMID: 38513584 DOI: 10.1016/j.jenvman.2024.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Nitrous oxide (N2O) emissions from soils are a significant environmental concern due to their contribution to greenhouse gas emissions. Biochar has been considered as a promising soil amendment for its potential to influence soil processes. Iron modification of biochar has been extensively discussed for its ability to enhance adsorption of pollutants, yet its impact on mitigating soil N2O emissions remains poorly understood. In the present study, corn straw (CB) and wood (WB) biochars were treated with FeSO4/FeCl3 (SCB and SWB) and Fe(NO3)3 (NCB and NWB). The effects of these biochars on soil N2O emissions were investigated using soils with varying fertility levels over a 35-day incubation period at 20 °C. Results revealed significant variations in biochar surface chemistry depending on biochar feedstock and iron salts. Compared to pristine biochars, NWB and NCB exhibited higher pH, total N content, and dissolved NO3-N concentrations (246 ± 17 and 298 ± 35 mg kg-1, respectively), but lower bulk and surface C content. In contrast, SWB and SCB demonstrated acidic pH and elevated dissolved NH4-N concentrations (5.38 ± 0.43 and 4.19 ± 0.22 mg kg-1, respectively). In forest soils, NWB and NCB increased cumulative N2O emission by 28.5% and 67.0%, respectively, likely due to the introduction of mineral nitrogen evidenced by significant positive correlation with NO3-N or NH4-N. Conversely, SWB and SCB reduced emissions in the same soil by 28.5% and 6.9%, respectively. In agricultural soil, most biochars, except SWB, enhanced N2O emissions, possibly through the release of labile organic carbon facilitating denitrification. These findings underscore the significance of changes in biochar surface chemistry and the associated potential risk in triggering soil N2O emissions. This study highlights the need for a balanced design of biochar that considers both engineering benefits and climate change mitigation.
Collapse
Affiliation(s)
- Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Shuxia Mao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yongxin Shan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wenran Gao
- College of Material Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Saadatullah Malghani
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
11
|
Duarah P, Haldar D, Singhania RR, Dong CD, Patel AK, Purkait MK. Sustainable management of tea wastes: resource recovery and conversion techniques. Crit Rev Biotechnol 2024; 44:255-274. [PMID: 36658718 DOI: 10.1080/07388551.2022.2157701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
12
|
Chon K, Mo Kim Y, Bae S. Advances in Fe-modified lignocellulosic biochar: Impact of iron species and characteristics on wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 395:130332. [PMID: 38224787 DOI: 10.1016/j.biortech.2024.130332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Lignocellulosic biomass is an attractive feedstock for biochar production owing to its high abundance and renewability. Various modified biochars have been extensively studied for wastewater treatment to improve the physical and chemical properties of lignocellulosic biochar (L-BC). Particularly, Fe-modified L-BCs have garnered attention owing to the abundance and eco-friendliness of Fe and the outstanding ability to remove various organic and inorganic contaminants via adsorption, oxidation, reduction, and catalytic reactions. Different iron species (e.g., Fe(0), Fe (hydr)oxide, Fe sulfide, and Fe-Metal) are formed during the preparation of Fe-L-BCs, which can completely differentiate the physical and chemical properties of BCs. This review discusses the advances in the synthesis of different Fe-L-BCs, specific changes in the physical and chemical properties of Fe-L-BCs upon Fe addition, and their impacts on wastewater treatment. The results of this review can demonstrate the unique advantages and drawbacks of Fe-L-BCs for the removal of different types of pollutants.
Collapse
Affiliation(s)
- Kangmin Chon
- Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
14
|
Wang W, Chang JS, Lee DJ. Machine learning applications for biochar studies: A mini-review. BIORESOURCE TECHNOLOGY 2024; 394:130291. [PMID: 38184089 DOI: 10.1016/j.biortech.2023.130291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Biochar is a promising carbon sink whose application can assist in reducing carbon emissions. Development of this technology currently relies on experimental trials, which are time-consuming and labor-intensive. Machine learning (ML) technology presents a potential solution for streamlining this process. This review summarizes the current research on ML's applications in biochar production, characterization, and applications. It briefly explains commonly used machine learning algorithms and discusses prospects and challenges. A hybrid model that combines ML with mechanism-based analysis could be a future trend, addressing the ML's black-box nature. While biochar studies have adopted ML technology, current works mostly use lab-scale data for model training. Further work is needed to develop ML models based on pilot or industrial-scale data to realize the use of ML techniques for the field application of biochar.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
15
|
Marcińczyk M, Krasucka P, Duan W, Pan B, Oleszczuk P. Effect of zinc-biochar composite aging on its physicochemical and ecotoxicological properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122856. [PMID: 37923050 DOI: 10.1016/j.envpol.2023.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The stability of Zn-biochar composites is determined by environmental factors, including the aging processes. This paper focused on the ecotoxicological evaluation of Zn-biochar (Zn-BC) composites subjected to chemical aging. Pristine biochars and composites produced at 500 or 700 °C were incubated at 60 and 90 °C for six months. All biochars were characterized in terms of their physicochemical (elemental composition, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and porous structure), ecotoxicological properties (tested with Folsomia candida and Aliivibrio fischeri) and contaminant content (polycyclic aromatic hydrocarbons (PAH), heavy metals (HM) and environmentally persistent free radicals (EPFR)). An increase in the number of surface oxygen functional groups and increased hydrophilicity and polarity of all Zn-BC composites were observed due to oxidation during aging. It was also found that Zn-BC aging at 90 °C resulted in a 28-30% decrease in solvent-extractable PAHs (Ʃ16 Ctot PAHs) compared to nonaged composites. The aging process at both temperatures also caused a 104 fold reduction in EPFRs in Zn-BC composites produced at 500 °C. The changes in the physicochemical properties of Zn-BC composites after chemical aging at 90 °C (such as pH and HM content) caused an increase in the toxicity of the composites to Folsomia candida (reproduction inhibition from 19 to 24%) and Aliivibrio fischeri (luminescence inhibition from 96 to 99%). The aging of composites for a long time may increase the adverse environmental impact of BC-Zn composites due to changes in physicochemical properties (itself and its interactions with pollutants) and the release of Zn from the composite.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Wenyan Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
| |
Collapse
|
16
|
Huang WH, Chang YJ, Lee DJ. Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water. BIORESOURCE TECHNOLOGY 2024; 391:129984. [PMID: 37931764 DOI: 10.1016/j.biortech.2023.129984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
This study modified pinecone biochar with a novel layered double hydroxide (LDH) to enhance its capacity to adsorb heavy metal and phosphate ions from water. The unmodified pinecone biochar demonstrated moderate adsorption capacities for Cu2+ (25.0 mg/g), Co2+ (24 mg/g), Pb2+ (22.9 mg/g), and phosphate (36.0 mg/g). However, after LDH modification, the LDH-biochar showed significantly improved adsorption capacities for Pb2+ (135.9 mg/g) and phosphate (160.8 mg/g) and a slight increase for Cu2+ (30.6 mg/g) and Co2+ (28.0 mg/g). The LDH layer enhances the adsorption of Pb2+ through ion exchange, phosphate through surface precipitation, and Cu2+ and Co2+ through surface complexation. The integration of LDH creates a multifaceted layer that utilizes various mechanisms to boost the biochar's adsorption capacity.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
17
|
Huang KX, Vadiveloo A, Zhong H, Li C, Gao F. High-efficiency harvesting of microalgae enabled by chitosan-coated magnetic biochar. BIORESOURCE TECHNOLOGY 2023; 390:129860. [PMID: 37838019 DOI: 10.1016/j.biortech.2023.129860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Magnetic flocculation which uses magnetic particles is an emerging technology for harvesting microalgae. However, the potential modification and use of cost-effective and sustainable biochar-based composites is still in its infancy. As such, this study aimed to compare the harvesting efficiency of peanut shell biochar (BC), biochar modified with FeCl3 (FeBC), and biochar dual-modified with chitosan and FeCl3 (CTS@FeBC) on microalgae. The results showed CTS@FeBC exhibited significantly higher microalgae harvesting efficiency compared to BC and FeBC. Both acidic and alkaline conditions were favorable for harvesting microalgae by CTS@FeBC. At pH 2 and pH 12, the harvesting efficiency reached 96.9% and 98.8% within 2 min, respectively. The primary adsorption mechanism of CTS@FeBC on microalgae mainly involved electrostatic attraction and sweeping flocculation. Furthermore, CTS@FeBC also showed good biocompatibility and reusability. This study clearly demonstrated a promising technique for microalgae harvesting using biochar-based materials, offering valuable insights and potential applications in sustainable bioresource management.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Eastern Institute of Technology, Ningbo 315200, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Hua Zhong
- Eastern Institute of Technology, Ningbo 315200, China
| | - Chen Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
18
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
19
|
Wang H, Zang S, Xu J, Sheng L. Dynamic simulation analysis of city tail water treatment by constructed wetland with biochar substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108582-108595. [PMID: 37752393 DOI: 10.1007/s11356-023-30002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Constructed wetland (CW) is an important method of ecological water treatment, and CW has obvious advantage in treating low-pollution water. In order to improve the treatment efficiency of CW, the first-order and second-order kinetics simulations of pollutant removal in CW were carried out to optimize operating conditions. The experimental study of city tail water treatment under unmodified biochar (different additions) or different modified biochar conditions showed that the first-order kinetic equation relatively accurately reflect the removal of pollutants by substrate. The relatively optimal range of biochar addition (2.21-3.79%) in the first-order kinetic analysis covered the relatively optimal mass ratio (2.95%). The first-order kinetic equation fitting showed that the half-life of ammonia nitrogen removal by NaOH (0.1 mol·L-1)-modified biochar was reduced by about 10% without plant. The half-life of total phosphorus removal by KMnO4 (0.1 mol·L-1) modified biochar was reduced by about 50%. The half-life of chemical oxygen demand removal by H2SO4 (0.75 mol·L-1) + 8 freeze-thaw cycles modified biochar was reduced by about 9.0%. When the half-life was small, the pollutant removal rate was high. The results of this study further confirmed the effectiveness of the simulation results of pollutant removal in CW with biochar by the first-order kinetic equation. This study further optimized the CW operating conditions and improved the treatment efficiency of nitrogen and phosphorus in the CW.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
20
|
Lin W, Zhou J, Sun S. Cadmium and lead removal by Mg/Fe bimetallic oxide-loaded sludge-derived biochar: batch adsorption, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86866-86878. [PMID: 37410325 DOI: 10.1007/s11356-023-28574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Biochar is a valuable adsorbent for the removal of heavy metals from water, and it is important to explore ways to increase its heavy metal adsorption capacity. In this study, Mg/Fe bimetallic oxide was loaded onto sewage sludge-derived biochar to enhance its heavy metal adsorption capacity. Batch adsorption experiments for the removal of Pb(II) and Cd(II) were performed to evaluate the removal efficiency of Mg/Fe layer bimetallic oxide-loaded sludge-derived biochar ((Mg/Fe)LDO-ASB). The physicochemical properties of (Mg/Fe)LDO-ASB and corresponding adsorption mechanisms were studied. The maximum adsorption capacities of (Mg/Fe)LDO-ASB for Pb(II) and Cd(II), which were calculated by isotherm model, were 408.31 and 270.41 mg/g, respectively. Adsorption kinetics and isotherms analysis showed that the dominant adsorption process of Pb(II) and Cd(II) uptake by (Mg/Fe)LDO-ASB was spontaneous chemisorption and heterogeneous multilayer adsorption, and film diffusion was the rate-limiting step. SEM-EDS, FTIR, XRD, and XPS analyses revealed that the Pb and Cd adsorption processes of (Mg/Fe)LDO-ASB involved oxygen-containing functional group complexation, mineral precipitation, electron-π-metal interactions, and ion exchange. The order of their contribution was as follows: mineral precipitation (Pb: 87.92% and Cd: 79.91%) > ion exchange (Pb: 9.84% and Cd: 16.45%) > metal-π interaction (Pb: 0.85% and Cd: 0.73%) > oxygen-containing functional group complexation (Pb: 1.39% and Cd: 2.91%). Mineral precipitation was the main adsorption mechanism, and ion exchange played a crucial role in Pb and Cd adsorption.
Collapse
Affiliation(s)
- Weixiong Lin
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiali Zhou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| |
Collapse
|
21
|
Wang J, Riaz M, Babar S, Xia H, Li Y, Xia X, Wang X, Jiang C. Iron-modified biochar reduces nitrogen loss and improves nitrogen retention in Luvisols by adsorption and microbial regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163196. [PMID: 37004773 DOI: 10.1016/j.scitotenv.2023.163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., β-glucosidase (βG), β-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.
Collapse
Affiliation(s)
- Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
22
|
Tagade A, Sawarkar AN. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. BIORESOURCE TECHNOLOGY 2023:129335. [PMID: 37343798 DOI: 10.1016/j.biortech.2023.129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Millets are receiving increasing attention, lately, in view of their preeminent agronomic traits, nutritional significance, and renewed emphasis on highlighting their health benefits through national and international programs. As a consequence, a variety of millets are being cultivated in different parts of the world resulting in significant amount of millet agro-residues. Present study comprehends critical analysis of reported investigations on pyrolysis of different millet agro-residues encompassing (i) physico-chemical characterization (ii) kinetics and thermodynamic parameters (iii) reactors employed and (iv) relationship between the reaction conditions and characteristics of millets-derived biochar and its prospective applications. Based on the analysis of reported investigations, specific research gaps have been figured out. Finally, future directions for leveraging the energy potential of millet agro-residues are also discussed. The analysis elucidated is expected to be useful for the researchers for making further inroads pertaining to sustainable utilization of millet agro-residues in tandem with other commonly employed agro-residues.
Collapse
Affiliation(s)
- Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
23
|
Huang WH, Chang YJ, Wu RM, Chang JS, Chuang XY, Lee DJ. Type-wide biochars loaded with Mg/Al layered double hydroxide as adsorbent for phosphate and mixed heavy metal ions in water. ENVIRONMENTAL RESEARCH 2023; 224:115520. [PMID: 36842698 DOI: 10.1016/j.envres.2023.115520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This study discussed the adsorption of mixed heavy metal ions (Cu2+, Co2+, Pb2+) and phosphate ions by ten pristine biochars and those with precipitated Mg/Al layered double hydroxide (LDH). The pristine biochars have adsorption capacities of 6.9-13.4 mg/g for Cu2+, 1.1-9.7 mg/g for Co2+, 7.8-20.7 mg/g for Pb2+, and 0.8-4.9 mg/g for PO43-. The LDH-biochars have markedly increased adsorption capacities of 20.4-25.8 mg/g for Cu2+, 8.6-15.0 mg/g for Co2+, 26.5-40.4 mg/g for Pb2+ with mixed metal ions, and 13.0-21.8 mg/g for PO43-. Part of the Mg ions but Al ions are released from the LDH-biochars during adsorption, counting less than 7.2% of the adsorbed ions. The pristine biochars have specific adsorption sites for Cu2+ and Co2+, separate Pb2+ sites related to ether groups on biochar, and areal-dependent sites for PO43-. There is no universal adsorption mechanism corresponding to mixed metal ion adsorption for individual pristine biochar involving different contributions of C-O-C, C-O-H, and CO groups and graphitic-N, pyrrolic-N, and pyridine-N groups. The LDH complexes with hydroxyl and carbonyl groups of biochar, and the LDH interacts with biochar's ether groups, which contributes to metal adsorption, against the conception that the biochar is merely a carrier of LDH as adsorbents.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Rome-Ming Wu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gong-Juan Rd., Taishan, New Taipei, 243, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Xiang-Ying Chuang
- Institute of Environmental Engineering, National Yang-Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
24
|
Guel-Nájar NA, Rios-Hurtado JC, Muzquiz-Ramos EM, Dávila-Pulido GI, González-Ibarra AA, Pat-Espadas AM. Magnetic Biochar Obtained by Chemical Coprecipitation and Pyrolysis of Corn Cob Residues: Characterization and Methylene Blue Adsorption. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3127. [PMID: 37109964 PMCID: PMC10140941 DOI: 10.3390/ma16083127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Biochar is a carbonaceous and porous material with limited adsorption capacity, which increases by modifying its surface. Many of the biochars modified with magnetic nanoparticles reported previously were obtained in two steps: first, the biomass was pyrolyzed, and then the modification was performed. In this research, a biochar with Fe3O4 particles was obtained during the pyrolysis process. Corn cob residues were used to obtain the biochar (i.e., BCM) and the magnetic one (i.e., BCMFe). The BCMFe biochar was synthesized by a chemical coprecipitation technique prior to the pyrolysis process. The biochars obtained were characterized to determine their physicochemical, surface, and structural properties. The characterization revealed a porous surface with a 1013.52 m2/g area for BCM and 903.67 m2/g for BCMFe. The pores were uniformly distributed, as observed in SEM images. BCMFe showed Fe3O4 particles on the surface with a spherical shape and a uniform distribution. According to FTIR analysis, the functional groups formed on the surface were aliphatic and carbonyl functional groups. Ash content in the biochar was 4.0% in BCM and 8.0% in BCMFe; the difference corresponded to the presence of inorganic elements. The TGA showed that BCM lost 93.8 wt% while BCMFe was more thermally stable due to the inorganic species on the biochar surface, with a weight loss of 78.6%. Both biochars were tested as adsorbent materials for methylene blue. BCM and BCMFe obtained a maximum adsorption capacity (qm) of 23.17 mg/g and 39.66 mg/g, respectively. The obtained biochars are promising materials for the efficient removal of organic pollutants.
Collapse
Affiliation(s)
- Norma Araceli Guel-Nájar
- Facultad de Metalurgia, Universidad Autónoma de Coahuila, Carretera 57 Km 5, Monclova 25710, Coahuila, Mexico
| | - Jorge Carlos Rios-Hurtado
- Facultad de Metalurgia, Universidad Autónoma de Coahuila, Carretera 57 Km 5, Monclova 25710, Coahuila, Mexico
| | - Elia Martha Muzquiz-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza S/N, República, Saltillo 25280, Coahuila, Mexico
| | - Gloria I Dávila-Pulido
- Escuela Superior de Ingeniería, Universidad Autónoma de Coahuila, Boulevard Adolfo López Mateos S/N, Independencia, Nueva Rosita 26830, Coahuila, Mexico
| | - Adrián A González-Ibarra
- Escuela Superior de Ingeniería, Universidad Autónoma de Coahuila, Boulevard Adolfo López Mateos S/N, Independencia, Nueva Rosita 26830, Coahuila, Mexico
| | - Aurora M Pat-Espadas
- CONACyT, Estación Regional del Noroeste del Instituto de Geología de la UNAM, Luis D Colosio S/N Esquina Madrid, Hermosillo 83200, Sonora, Mexico
| |
Collapse
|
25
|
Yang L, Liang C, Shen F, Hu M, Zhu W, Dai L. A critical review on the development of lanthanum-engineered biochar for environmental applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117318. [PMID: 36701829 DOI: 10.1016/j.jenvman.2023.117318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Biochar and lanthanum (La) have been widely used in environment. However, there is a lack of knowledge and perspective on the development of La-engineered biochar (LEB) for environmental applications. This review shows that LEBs with a variety of La species via pre-/post-doping routes are developed for environmental applications. Specifically, precipitation, gelation, and calcination are the common sub-processes involved in the pre-/post-doping of La on the resultant LEB. The dominant La species for LEBs is La(OH)3, which is formed through precipitation of La ions with various bases. Various La carbonates, e.g., LaOHCO3, La2(CO3)3, La2CO5, and NaLa(CO3)2, are also involved in the preparation of LEBs. The LEBs are high-efficient in the adsorption of phosphate, arsenic, antimonate and fluoride ions, attributed to the strong affinity of La to oxyanions and Lewis hard base. Lanthanum is also favorable for co-doping with transition metal species to further enhance the performances in adsorption or catalysis. This review also analyzes the prospects and future challenges for the preparation and application of LEBs in environment. Finally, this review is beneficial to inspire new breakthroughs on the preparation and environmental application of LEBs.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Chenghu Liang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lichun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China.
| |
Collapse
|
26
|
Wang ZK, Liu QH, Yang ZM. Nano magnetite-loaded biochar boosted methanogenesis through shifting microbial community composition and modulating electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160597. [PMID: 36464047 DOI: 10.1016/j.scitotenv.2022.160597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
A batch anaerobic fermentation system was employed to clarify how nano magnetite-loaded biochar can improve methanogenic performance of the propionate-degrading consortia (PDC). The nano magnetite-loaded biochar was prepared in a sequential hydrothermal and pyrolysis procedure using the household waste (HW), biogas residue (BR) and Fe (NO3)3 as pristine materials. Comprehensive characterization showed that the nano magnetite-loaded biochar ameliorated the biochar properties with large specific surface area, high electrochemical response and low electron transfer resistance. PDC supplemented with the magnetite/BR-originated biochar composites displayed excellent methanogenic performance, where the methane production rate was enhanced by 1.6-fold compared with the control. The nano magnetite-loaded biochar promoted methane production probably by promoting direct interspecies electron transfer between syntrophic bacteria (e.g., Syntrophobacter and Thauera) and their partners (e.g., Methanosaeta). In this process, magnetite might be responsible for triggering rapidly extracellular electron release, whereas both external functional groups and intrinsic graphitic matrices of biochar might work as electron bridges for electron transport.
Collapse
Affiliation(s)
- Zhao-Kai Wang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; Third Institute of Oceanography, Ministry of Natural Resources, China
| | - Qing-Hua Liu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
27
|
Gu C, Cai M, He P, Zhu J, Gan M. Biogenic carbon encapsulated iron oxides mediated oxalic acid for Cr(VI) reduction in aqueous: Efficient performance, electron transfer and radical mechanisms. CHEMOSPHERE 2023; 313:137557. [PMID: 36535500 DOI: 10.1016/j.chemosphere.2022.137557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Carbonaceous materials have a potential to mediated oxalic acid (OA) for Cr(VI) reduction, but the rational modification is needed for boosting the mediation of electron transfer. Herein, we utilized polyvinyl alcohol to envelop schwertmannite synthesized by Acidithiobacillus ferrooxidans biomineralization, and pyrolyzed them to obtain the carbon encapsulated iron oxides (C-2.0-Sch-PVA). SEM and TEM results demonstrated that a moderate calcination temperature would yield a neural network-like carbon encapsulated structure. C-2.0-Sch-PVA efficiently mediated OA to reduce Cr(VI), 98.4% of Cr(VI) (40 mg L-1) was reduced with 0.75 g L-1 C-2.0-Sch-PVA and 4 mM OA in 60 min. It still performed excellent results in a wide pH range, multiple anions and different water matrixes. The carbon encapsulated structure as electron shuttle mediated the electron transfer, and the O-moieties on its surface were a premise for initiating the Cr(VI) reduction process. The electron transfer from the inner iron oxides to the conjugated structure of the outer carbon shells facilitated Cr(VI) reduction as well. Moreover, OA raised the persistent free radicals' level in C-2.0-Sch-PVA as another important pathway for Cr(VI) reduction. Overall, C-2.0-Sch-PVA provides an excellent demonstration in the carbonaceous materials modification for mediating OA to reduce Cr(VI) in aqueous.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Miao Cai
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
28
|
Tomczyk A, Kondracki B, Szewczuk-Karpisz K. Chemical modification of biochars as a method to improve its surface properties and efficiency in removing xenobiotics from aqueous media. CHEMOSPHERE 2023; 312:137238. [PMID: 36375614 DOI: 10.1016/j.chemosphere.2022.137238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Biochar (BC) is a carbonaceous material produced by pyrolysis of biomass, applied in various areas such as water purification, fuel production, soil amendment, etc. Many types of BC are characterized by insufficient textural parameters or poor surface chemistry, and hence by low adsorption capacity. This makes innovative chemical methods increasing BC ability to remove xenobiotics from aquatic environments highly needed. Many of them have already been described in the literature. This review presents them in detail and evaluates their effectiveness in improving textural parameters, surface chemistry, and adsorption capacity of BC.
Collapse
Affiliation(s)
- Agnieszka Tomczyk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Bartosz Kondracki
- Chair and Department of Cardiology, Medical University in Lublin, Jaczewskiego 8 (SPSK Nr 4), 20-954 Lublin, Poland
| | | |
Collapse
|
29
|
Liao X, Chen C, Liang Z, Zhao Z, Cui F. Selective adsorption of antibiotics on manganese oxide-loaded biochar and mechanism based on quantitative structure-property relationship model. BIORESOURCE TECHNOLOGY 2023; 367:128262. [PMID: 36343776 DOI: 10.1016/j.biortech.2022.128262] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, MnCl2-impregnated biomass was oxygen-limited pyrolyzed to produce manganese oxide-loaded biochar (MBC), its adsorption behaviors and influencing factors on tetracycline (TTC), norfloxacin (NOR), and sulfamethoxazole (SMX) were systematically investigated. Three antibiotics exhibited enhanced adsorption behavior on MBC, with maximum adsorption capacity as accurately described by Sips isotherm: TTC (534 mg/g) > NOR (67 mg/g) > SMX (28 mg/g). Hydrogen bonding, n/π-π interactions, electrostatic interaction, surface coordination, and hydrophobic interaction are the major mechanisms for the improved adsorption. Manganese oxide particles on MBC promoted surface coordination and hydrogen bonding. Antibiotic molecules with more hydroxyl oxygen-containing functional groups are more susceptible to migrate to biochar surfaces and to be adhered. Moreover, the quantitative structure-property relationship (QSPR) model was constructed and revealed that hydrogen bonding and π-π interactions were crucial for tetracycline antibiotics selective adsorption. Hence, MBC was a prospective adsorbent with promising applications for antibiotic removal in sewage processing.
Collapse
Affiliation(s)
- Xinyi Liao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Chen Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhijie Liang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
30
|
Huang WH, Wu RM, Chang JS, Juang SY, Lee DJ. Manganese ferrite modified agricultural waste-derived biochars for copper ions adsorption. BIORESOURCE TECHNOLOGY 2023; 367:128303. [PMID: 36368488 DOI: 10.1016/j.biortech.2022.128303] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Biochar is an eco-friendly, low-cost, and carbon-rich material. This study synthesized the biochars from three agricultural wastes, pinecone, white popinac, and sugarcane bagasse, and then modified them by manganese ferrite (MnFe2O4) co-precipitation. These biochars were applied as adsorbents for the removal of Cu(II) ions from water. All three different MnFe2O4-biochars have similar adsorption performances: rapid adsorption kinetics with equilibrium being reached within 5 hr of contact and significantly enhanced adsorption capacities of Cu(II) ions from water. The principal adsorption mechanisms were identified as complexation reactions, contributed by the carboxyl and hydroxyl groups by pristine biochars and by the Mn-O and Fe-O groups for all three MnFe2O4-biochars. The MnFe2O4-biochars can be reused for three cycles, with the maximum adsorption capacities of Cu(II) of the regenerated biochars declining with the loss of precipitated MnFe2O4.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Rome-Ming Wu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gong-Juan Rd., Taishan, New Taipei 243, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Shiang-Ying Juang
- Institute of Environmental Engineering, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical and Material Sciences, Yuan-Ze University, Chungli 320 Taiwan.
| |
Collapse
|
31
|
Ajien A, Idris J, Md Sofwan N, Husen R, Seli H. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:37-51. [PMID: 36346183 PMCID: PMC9925910 DOI: 10.1177/0734242x221127167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
The coconut industry generates a relatively large amount of coconut shell and husk biomass, which can be utilized for industrial and environmental purposes. Immense potential for added value when coconut shell and husk biomass are turned into biochar and limited studies are available, making this review paper significant. This paper specifically presents the production and activation technology, economic and financial aspect and application of biochar from coconut shell and husk biomass. Pyrolysis, gasification and self-sustained carbonization are among the production technology discussed to convert this biomass into carbon-rich materials with distinctive characteristics. The surface characteristics of coconut-based biochar, that is, Brunauer-Emmett-Teller (BET) surface area (SBET), pore volume (Vp), pore diameter (dp) and surface functional group can be enhanced by physical and chemical activation and metal impregnation. Due to their favourable characteristics, coconut shell and husk-activated biochar exhibit their potential as valuable adsorption materials for industrial and environmental application including biodiesel production, capacitive deionization, soil amendment, water treatment and carbon sequestration. With the knowledge of the potential, the coconut industry can contribute to both the local and global biocircular economy by producing coconut shell and husk biochar for economic development and environmental remediation. The capital and operating cost for production and activation processes must be taken into account to ensure bioeconomy sustainability, hence coconut shell and husk biomass have a great potential for income generation.
Collapse
Affiliation(s)
- Azrine Ajien
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Juferi Idris
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| | - Nurzawani Md Sofwan
- Faculty of Health Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Rafidah Husen
- Faculty of Applied Sciences, Universiti
Teknologi MARA (UiTM) Sarawak Branch, Samarahan 2 Campus, Kota Samarahan, Sarawak,
Malaysia
| | - Hazman Seli
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Sarawak Branch, Kota Samarahan,
Sarawak, Malaysia
- School of Chemical Engineering, College
of Engineering, Universiti Teknologi MARA (UiTM) Selangor Branch, Shah Alam,
Selangor, Malaysia
| |
Collapse
|
32
|
Sun L, Gong P, Sun Y, Qin Q, Song K, Ye J, Zhang H, Zhou B, Xue Y. Modified chicken manure biochar enhanced the adsorption for Cd 2+ in aqueous and immobilization of Cd in contaminated agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158252. [PMID: 36028042 DOI: 10.1016/j.scitotenv.2022.158252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Biochar is thought to be good sorbent for heavy metal and exploring ways to increase the efficiency of heavy metal adsorption by biochar is of great importance. Chicken manure biochar was modified with sulfur, hydroxyapatite and MnFe2O4 respectively. The properties and composition of the pristine and modified biochar was characterized. The pH and ash content of biochar was significantly increased after modification. Energy dispersive spectroscopy results showed that biochar modified with sulfur, hydroxyapatite and MnFe2O4 was successfully loaded on S, Ca/P and Fe/Mn respectively. The adsorption kinetic of Cd2+ absorption by pristine and modified biochar was better fitted by the pseudo second-order kinetic model, suggesting that the adsorption of Cd2+ on biochar followed the process of chemisorption. The Cd2+ adsorption isotherms of sulfur modified chicken manure biochar (SCMB), hydroxyapatite modified chicken manure biochar (HCMB) and MnFe2O4 modified chicken manure biochar (FMCMB) was better fitted by Freundlich model, while the Cd2+ adsorption by pristine chicken manure biochar (CMB) was well fitted by Langmuir model. The maximum Cd2+ adsorption capacity of SCMB, HCMB, FMCMB and CMB was 188.20, 111.53, 109.94 and 19.65 mg·g-1 respectively. Quantitative analysis of Cd2+ adsorption mechanism by biochar showed that the contribution of ion exchange for Cd2+ adsorption of CMB accounted for 58 %, while SCMB, HCMB and FMCMB decreased to only 12 %, 8 % and 4 % respectively. Meanwhile, the contribution of precipitation, complexion and metal-Cπ coordination for Cd2+ adsorption increased after modification. Pot experiment showed that application of SCMB significantly increased soil pH value, decreased the bioavailable Cd in soil and Cd uptake by brassica chinensis shoots, suggesting that SCMB can be a potential material for the safety use of Cd contaminated agricultural soil.
Collapse
Affiliation(s)
- Lijuan Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Peiyun Gong
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Yafei Sun
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Qin Qin
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Ke Song
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hong Zhang
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Bin Zhou
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China
| | - Yong Xue
- ECO-Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai, 201403, China.
| |
Collapse
|
33
|
Amalina F, Syukor Abd Razak A, Krishnan S, Sulaiman H, Zularisam A, Nasrullah M. Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. CLEANER MATERIALS 2022; 6:100137. [DOI: 10.1016/j.clema.2022.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Luo Q, Chen D, Cui T, Duan R, Wen Y, Deng F, Li L, Wang H, Zhang Y, Xu R. Selenite elimination via zero-valent iron modified biochar synthesized from tobacco straw and copper slag: Mechanisms and agro-industrial practicality. Front Bioeng Biotechnol 2022; 10:1054801. [PMID: 36452212 PMCID: PMC9701720 DOI: 10.3389/fbioe.2022.1054801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/20/2024] Open
Abstract
Cost-effectively improving the performance of biochar is essential for its large-scale practical application. In this work, the agro-industrial by-products copper slag and tobacco straw were employed for the preparation of modified biochar (CSBC). The obtained CSBC exhibited satisfactory capacity on Se(IV) immobilization of 190.53 mg/g, with surface interactions determined by the monolayer and mainly chemisorption. The removal mechanisms included chemical reduction, electrostatic attraction, co-precipitation, and formation of complexations. Interestingly, the existence of Cu2Se structure after adsorption indicated the involvement of Cu species within Se(IV) elimination. Moreover, the industrial agricultural practicality of CSBC was evaluated by regeneration tests, economic assessment, and pot experiments. The results demonstrate that iron species-modified biochar prepared from two agro-industrial by-products is a promising and feasible candidate for selenite removal from wastewater.
Collapse
|
35
|
Yin X, Wang Y, Wei L, Huang H, Zhou C. Reduced cadmium (Cd) accumulation in lettuce plants by applying KMnO4 modified water hyacinth biochar. Heliyon 2022; 8:e11304. [PMID: 36411895 PMCID: PMC9674871 DOI: 10.1016/j.heliyon.2022.e11304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, water hyacinth was adopted to prepare biochar followed by modification using KMnO4. And the modified biochars were applied in Cd contaminated soil, exploring the effects of water hyacinth biochar on lettuce growth, Cd enrichment, soil enzyme activities and microbial changes by pot experiments. Modified biochar application significantly reduced the Cd accumulation in lettuce shoots and roots. Compared to the control, the application of water hyacinth biochar at 1% rate resulted in significant reduction of Cd contents by 40.7% and 33.7% in the shoots and roots of lettuce. Also, the reduction was 33.3% and 20.8% compared with the application rate of unmodified biochar. With the increase of biochar application, the amount of Cd was absorbed by lettuce shoots and roots showing significant reduction of plant Cd accumulation in response to the biochar application rate. Additionally, the lowest available Cd concentration in soil (1.34 mg kg−1) was obtained with the application of modified biochar at 1% rate, which might be the main reason for the lower Cd concentration in lettuce shoot and root parts. Furthermore, structural analysis showed that Cd was fixed on the modified biochar, in a passivated state, by larger specific surface area, more active sites and more stable covalent binding complexes leading to a strong decrease of the available Cd in the soil. Moreover, it was concluded that the increment of the enzyme activities in the soil was up to 2.51 times significantly following the application of modified water hyacinth biochar with 3% amount. Lastly, 16sRNA sequencing showed that biochar addition may lead to changes of microbial structure and abundance in soil.
Collapse
|
36
|
Zhang X, Liu Y. Resource recovery from municipal wastewater: A critical paradigm shift in the post era of activated sludge. BIORESOURCE TECHNOLOGY 2022; 363:127932. [PMID: 36096327 DOI: 10.1016/j.biortech.2022.127932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The conventional activated sludge (CAS) process as one of the greatest engineering marvels has made irreplaceable contributions towards the human development in the past one hundred years. However, the underlying principle of CAS which is primarily based on biological oxidation has been challenged by accelerating global climate change. In such a situation, a fundamental question that urgently needs to be answered is what wastewater treatment technology would be in the post era of activated sludge? Thus, this article illustrates the necessity of a technology paradigm shift from the current linear economy to circular economy with the energy and resource recovery from municipal wastewater being a major driver. It is argued that ammonium recovery should be considered towards the sustainable municipal wastewater reclamation. Meanwhile, the potential novel processes with enhanced energy and resource recovery are also discussed, which may offer useful insights into the ways to achieve the carbon-neutral municipal wastewater reclamation.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
37
|
Seo JY, Tokmurzin D, Lee D, Lee SH, Seo MW, Park YK. Production of biochar from crop residues and its application for biofuel production processes - An overview. BIORESOURCE TECHNOLOGY 2022; 361:127740. [PMID: 35934249 DOI: 10.1016/j.biortech.2022.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A sustainable carbon-neutral society is imperative for future generations, and biochars and biofuels are inevitable choice to achieve this goal. Crop residues (CR) such as sugarcane bagasse, corn stover, and rice husk are promising sustainable resources as a feedstock for biochars and biofuels. Extensive research has been conducted on CR-based biochar production not only in environmental remediation areas but also in application for biofuel production. Here, the distribution and resource potential of major crop residues are presented. The production of CR-biochar and its applications in biofuel production processes, focusing on the latest research are discussed. Finally, the challenges and areas of opportunity for future research in terms of CR supply, CR-biochar production, and CR-biochar utilization for biofuel production are proposed. Compared with other literature reviews, this study can serve as a guide for the establishment of sustainable, economical, commercial CR-based biorefineries.
Collapse
Affiliation(s)
- Jung Yoon Seo
- National Climate Technology Center, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Diyar Tokmurzin
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Doyeon Lee
- Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, Republic of Korea
| | - See Hoon Lee
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea; Department of Environment & Energy, Jeonbuk National University 567 Baekje-daero, Deokjin-gu, Jeonju, Republic of Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
38
|
MOHAMAD FATHI NORKHAIRUNNISA, MOHAMAD BUKHORI MOHAMADFHAIZAL, ABD AZIZ ABDULLAH SHARIFAHMONA, WAHI RAFEAH, ZAILANI MOHDALHAFIIZH, RAJA GOPAL MELISAMALINI. EFFECT OF SAGO BARK BIOCHAR APPLICATION ON Capsicum annuum L. var. Kulai GROWTH AND FRUIT YIELD. MALAYSIAN APPLIED BIOLOGY 2022; 51:127-135. [DOI: 10.55230/mabjournal.v51i3.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Applying biochar in crop farming or agriculture activity generally increases productivity through improved soil fertility and water holding capacity. However, there is a lack of empirical data on the effects of sago bark waste-derived biochar on the growth media of Capsicum annuum L. This work, reported the effect of sago bark biochar and acid-base treated sago bark biochar on Capsicum annuum L. var. Kulai growth media fertility. The plant growth study was carried out using completely random design experimental layouts with five replicates and 8 treatments at various biochar application rates (0.5,1.5, & 3.0%, w/w). Results showed that plant grown with 1.5% sago bark biochar has the highest number of the leaf (122.90). Plant with 1.5% acid-base treated sago bark biochar showed a significantly (p<0.05) higher number of flower buds (1.90) and stem height (69.00 cm) during 4 months of the vegetative period. Meanwhile, plants with 3% acid-base treated sago bark biochar obtained the highest yield of fruit fresh weight (67.64 g). In general, acid-base treated sago bark biochar application increase the yield of Capsicum annuum L. var. Kulai.
Collapse
|
39
|
Huang WH, Wu RM, Chang JS, Juang SY, Lee DJ. Pristine and manganese ferrite modified biochars for copper ion adsorption: Type-wide comparison. BIORESOURCE TECHNOLOGY 2022; 360:127529. [PMID: 35764277 DOI: 10.1016/j.biortech.2022.127529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
This study synthesized nine biochars from different feedstocks and chemically modified their surfaces using MnFe2O4 precipitation at pH 11 (MnFe2O4-biochars). The maximum adsorption quantities (qmax) of Cu(II) at pH 6 and 25 °C for pristine biochars based on Langmuir model ranged 10.4-23.6 mg/g and for MnFe2O4-biochars, 32.7-43.1 mg/g, with enhancement from 65.6% (bamboo biochar) to 246% (white popinac biochar). Type-wide comparison shows no correlation between surface area of pristine or MnFe2O4-biochars on the adsorption performance. Conversely, the carboxyl groups on the nine biochar surfaces have contributed to Cu(II) adsorption. The type-dependence for qmax of different MnFe2O4-biochars becomes insignificant, confirming the role of biochars being principally an oxide carrier instead of an adsorbent.
Collapse
Affiliation(s)
- Wei-Hao Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Rome-Ming Wu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gong-Juan Rd., Taishan, New Taipei 243, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Shiang-Ying Juang
- Institute of Environmental Engineering, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
40
|
Duan L, Wang Q, Li J, Wang F, Yang H, Guo B, Hashimoto Y. Zero valent iron or Fe 3O 4-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119702. [PMID: 35787422 DOI: 10.1016/j.envpol.2022.119702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the feasibility of using zero-valent iron (ZVI) and Fe3O4-loaded biochar for Pb immobilization in contaminated sandy soil was investigated. A 180-day incubation study, combined with dry magnetic separation, chemical extraction, mineralogical characterization, and model plant (ryegrass, namely the Lilium perenne L.) growth experiment was conducted to verify the performance of these two materials. The results showed that both amendments significantly transferred the available Pb (the exchangeable and carbonates fraction) into more stable fractions (mainly Fe/Mn oxides-bound Pb), and ZVI alone showed a better performance than the magnetic biochar alone. The magnetic separation and extended X-ray absorption fine structure (EXAFS) analysis proved that Fe (oxyhydr)oxides on aged ZVI particles were the major scavengers of Pb in ZVI-amended soils. In comparison, the reduced Pb availability in magnetic biochar-amended soil could be explained by the association of Pb with Fe/Mn (oxyhydr)oxides in aged magnetic biochar, also the possible precipitation of soil Pb with soluble anions (e.g. OH-, PO43-, and SO42-) released from magnetic biochar. ZVI increased ryegrass production while Fe3O4-loaded biochar had a negative effect on the ryegrass growth. Moreover, both markedly decreased the Pb accumulation in aboveground and root tissues. The simple dry magnetic separation presents opportunities for the removal of Pb from soils, even though the efficiencies were not high (17.5% and 12.9% of total Pb from ZVI and biochar-treated soils, respectively). However, it should be noted that the ageing process easily result in the loss of magnetism of ZVI while the magnetic biochar tends to be more stable and has high retrievability during the dry magnetic separation application.
Collapse
Affiliation(s)
- Lunchao Duan
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China; Jiangsu Province Science and Technology Resources Coordination and Service Center, Nanjing, Jiangsu, 210000, China
| | - Qianhui Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China.
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Binglin Guo
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
41
|
Zhang W, Feng S, Ma J, Zhu F, Komarneni S. Degradation of tetracycline by activating persulfate using biochar-based CuFe 2O 4 composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67003-67013. [PMID: 35513627 DOI: 10.1007/s11356-022-20500-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Biochar derived from Lentinus edodes (LBC) and CuFe2O4 (CuFe2O4@LBC) composites were prepared by the hydrothermal method, and were applied to activate persulfate (PDS) for degrading tetracycline (TC) in a wide pH range. The CuFe2O4@LBC composites were characterized by XRD, FTIR, SEM, and XPS. LBC-derived biochars greatly reduced the aggregation of CuFe2O4 particles and enhanced the catalytic performance of CuFe2O4. CuFe2O4@LBC catalyst could remove 85% of tetracycline within 100 min under visible light. In addition, the removal rate of TC reached 76% after five cycles, indicating that the composite had good stability and reusability. Simple classical quenching experiments suggested that the degradation of TC could be mainly attributed to •OH and •S [Formula: see text].
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Shijun Feng
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Fang Zhu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
42
|
Patel AK, Katiyar R, Chen CW, Singhania RR, Awasthi MK, Bhatia S, Bhaskar T, Dong CD. Antibiotic bioremediation by new generation biochar: Recent updates. BIORESOURCE TECHNOLOGY 2022; 358:127384. [PMID: 35644454 DOI: 10.1016/j.biortech.2022.127384] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The evolving multidrug resistance in microbes with increasing antibiotic pollution is becoming a severe global crisis. Recent developments on antibiotic remediations by biochar are promising. Advancements in biochar engineering enhanced biochar remediation efficiency to another level through developing new interactions and bonding abilities with antibiotic pollutants. Especially chemical/metal-composite modification significantly increased catalysis of biochar. The review's main focus is to underline biochar efficiency for the abatement of emerging antibiotic pollutants. Moreover, to relate feedstock, production conditions, and engineering techniques with biochar properties. Also, modification strategies are reviewed to obtain biochar or their composites before examining improved remediation potential ranging from 20 to 552 mg g-1 for various antibiotics. Biochar offers different interactions depending on the surface functionalities e.g., π-π stacking, electrostatic, H-bonding, etc. Biochar and related composites have also been reviewed for remarkable properties e.g., photocatalysis, adsorption, and oxidation processes. Furthermore, future research directions and opportunities for biochar research are discussed.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Ravi Katiyar
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Shashikant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Thallada Bhaskar
- Academy of Scientific and Innovation Research (AcSIR) at CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India; Biomass Conversion Area (BCA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, Uttarakhand, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
43
|
Gao Y, Chen Y, Song T, Su R, Luo J. Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: characteristics, influencing factors, reaction mechanism and reuse performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022. [DOI: 10.3390/catal12070798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biochar (BC) based materials are solid carbon enriched materials produced via different thermochemical techniques such as pyrolysis. However, the non-modified/non-activated BC-based materials obtained from the low-temperature pyrolysis of biomass cannot perform well in energy storage applications due to the mismatched physicochemical and electrical properties such as low surface area, poor pore features, and low density and conductivity. Therefore, to improve the surface features and structure of the BC and surface functionalities, surface modifications and activations are introduced to improve its properties to achieve enhanced electrochemical performance. The surface modifications use various activation methods to modify the surface properties of BC to achieve enhanced performance for supercapacitors in energy storage applications. This article provides a detailed review of surface modification methods and the application of modified BC to be used for the synthesis of electrodes for supercapacitors. The effect of those activation methods on physicochemical and electrical properties is critically presented. Finally, the research gap and future prospects are also elucidated.
Collapse
|
45
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
46
|
Zuhara S, Mackey HR, Al-Ansari T, McKay G. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. BIOMASS CONVERSION AND BIOREFINERY 2022:1-30. [PMID: 35855911 PMCID: PMC9277991 DOI: 10.1007/s13399-022-03011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 °C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.
Collapse
Affiliation(s)
- Shifa Zuhara
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish R. Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
47
|
Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils. SUSTAINABILITY 2022. [DOI: 10.3390/su14138190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil salinity and sodicity is a potential soil risk and a major reason for reduced soil productivity in many areas of the world. This study was conducted to investigate the effect of different biochar raw materials and the effects of acid-modified biochar on alleviating abiotic stresses from saline-sodic soil and its effect on biochemical properties of maize and wheat productivity. A field experiment was conducted as a randomized complete block design during the seasons of 2019/2020, with five treatments and three replicates: untreated soil (CK), rice straw biochar (RSB), cotton stalk biochar (CSB), rice straw-modified biochar (RSMB), and cotton stalk-modified biochar (CSMB). FTIR and X-ray diffraction patterns indicated that acid modification of biochar has potential effects for improving its properties via porous functions, surface functional groups and mineral compositions. The CSMB treatment enhanced the soil’s physical and chemical properties and porosity via EC, ESP, CEC, SOC and BD by 28.79%, 20.95%, 11.49%, 9.09%, 11.51% and 12.68% in the upper 0–20 cm, respectively, compared to the initial properties after the second season. Soil-available N, P and K increased with modified biochar treatments compared to original biochar types. Data showed increases in grain/straw yield with CSMB amendments by 34.15% and 29.82% for maize and 25.11% and 15.03% for wheat plants, respectively, compared to the control. Total N, P and K contents in both maize and wheat plants increased significantly with biochar application. CSMB recorded the highest accumulations of proline contents and SOD, POD and CAT antioxidant enzyme activity. These results suggest that the acid-modified biochar can be considered an eco-friendly, cheaper and effective choice in alleviating abiotic stresses from saline-sodic soil and positively effects maize and wheat productivity.
Collapse
|
48
|
Mao W, Wu P, Zhang Y, Lai K, Dong L, Qian X, Zhang Y, Zhu J. Manganese oxide-modified biochar derived from discarded mushroom-stick for the removal of Sb(III) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49322-49334. [PMID: 35220532 DOI: 10.1007/s11356-021-18276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, discarded mushroom-stick, which is widely available, was selected as a precursor to prepare MnO2-modified biochar (MBC) for Sb(III) removal. Several characterisation methods (SEM, BET, XPS, FT-IR, and XRD) were used to explore the mechanisms of antimony adsorption onto MBC. The results showed that MBC is a mesoporous material with a fluffy structure and a higher specific surface area (23.56 and 32.09 m2·g-1) than PBC600 (13.62 m2·g-1), exhibiting superior and stable adsorption capacities for Sb(III) (50.30 mg·g-1 for 1/30MBC600 and 64·12 mg·g-1 for 1/20MBC600) across a wide pH range (pH 4-8). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy analyses indicated that the main oxides and functional groups involved in the adsorption were manganese oxides and hydroxyl groups. Forty-four per cent of the adsorbed Sb(III) was oxidised to Sb(V) by manganese oxides or hydroxyl groups both on the surface of biochar and in solution. According to adsorption kinetics and isotherms, the adsorption process of Sb(III) is chemisorption, which includes monolayer and multilayer heterogeneous chemisorption processes. To sum up, MBC is an excellent adsorbent for the capture of Sb(III) from contaminated water with strong potential for future application.
Collapse
Affiliation(s)
- Wenjian Mao
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Pan Wu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, People's Republic of China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, People's Republic of China
| | - Yuqin Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Kaidi Lai
- Guizhou Environment and Engineering Appraisal Center, Guiyang, 550002, People's Republic of China
| | - Lisha Dong
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xufeng Qian
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuntao Zhang
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jian Zhu
- Resource and Environmental Engineering College, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, People's Republic of China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
49
|
Hadiya V, Popat K, Vyas S, Varjani S, Vithanage M, Kumar Gupta V, Núñez Delgado A, Zhou Y, Loke Show P, Bilal M, Zhang Z, Sillanpää M, Sabyasachi Mohanty S, Patel Z. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. BIORESOURCE TECHNOLOGY 2022; 355:127303. [PMID: 35562022 DOI: 10.1016/j.biortech.2022.127303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In recent years, biomass has been reported to obtain a wide range of value-added products. Biochar can be obtained by heating biomass, which aids in carbon sinks, soil amendments, resource recovery, and water retention. Microwave technology stands out among various biomass heating technologies not only for its effectiveness in biomass pyrolysis for the production of biochar and biofuel but also for its speed, volumetrics, selectivity, and efficiency. The features of microwave-assisted biomass pyrolysis and biochar are briefly reviewed in this paper. An informative comparison has been drawn between microwave-assisted pyrolysis and conventional pyrolysis. It focuses mainly on technological and economic scenario of biochar production and environmental impacts of using biochar. This source of knowledge would aid in the exploration of new possibilities and scope for employing microwave-assisted pyrolysis technology to produce biochar.
Collapse
Affiliation(s)
- Vishal Hadiya
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009,Gujarat, India
| | - Kartik Popat
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar 382007, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, UK, Edinburgh EH9 3JG, United Kingdom; Centre for Safe and Improved Foods, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, UK, Edinburgh EH9 3JG, United Kingdom
| | - Avelino Núñez Delgado
- Department of Soil Science and Agricultura Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002 Lugo, Spain
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Zhien Zhang
- Department of Chemical and Biomedical Engineering, West Virginia University, 401 Evansdale Drive, Morgantown, WV 26506, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Zeel Patel
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009,Gujarat, India
| |
Collapse
|
50
|
Xu J, Zhang Y, Li B, Fan S, Xu H, Guan DX. Improved adsorption properties of tetracycline on KOH/KMnO 4 modified biochar derived from wheat straw. CHEMOSPHERE 2022; 296:133981. [PMID: 35176301 DOI: 10.1016/j.chemosphere.2022.133981] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 05/09/2023]
Abstract
Modification of pristine biochars has received increasing attentions due to the significant potential in enhancing adsorption performance. In this work, the co-modification of KOH and KMnO4 on biochar (K-Mn-BC) was performed, with the effect of KOH/KMnO4 modification on biochar properties and their adsorption toward tetracycline (TC) being extensively explored. Results showed that KOH/KMnO4 modification can significantly regulate biochars to form hierarchical structure. The obtained K-Mn-BC was characterized with a high specific surface area (1524.6 m2 g-1) and total pore volume (0.85 cm3 g-1). In addition, the K-Mn-BC exhibited a high adsorption capacity of 584.19 mg g-1 toward TC at 318 K, and pseudo-second-order (R2:0.993~0.998) and Langmuir (R2: 0.834~0.874) models can fit well with the adsorption behavior. Moreover, the obtained K-Mn-BC can efficiently adsorb TC within a wide pH range (3.0-10.0), and were not affected by the co-existing ions. The possible mechanisms for the high adsorption capacity were ascribed to the pore filling and π-π interaction, following by hydrogen bonding and metal complexation. The obtained K-Mn-BC is a suitable adsorbent for TC removal from water due to the hierarchical structure, high adsorption capacity, and stable adsorption effect.
Collapse
Affiliation(s)
- Jin Xu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yin Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Bin Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|