1
|
Kawasaki M, Shirai T, Yatsuzuka K, Shirai R. Synthesis of Novel Pseudo-Enantiomeric Phase-Transfer Catalysts from Cinchona Alkaloids and Application to the Hydrolytic Dynamic Kinetic Resolution of Racemic 3-Phenyl-2-oxetanone. Chem Pharm Bull (Tokyo) 2024; 72:913-916. [PMID: 39462548 DOI: 10.1248/cpb.c24-00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Naturally occurring Cinchona alkaloids such as quinidine (QD)/cinchonine (CN) and their diastereomers, quinine (QN)/cinchonidine (CD), have been recognized as pseudo-enantiomeric pairs. Utilizing these pseudo-enantiomeric alkaloids as chiral resources provides complementary enantioselectivity in many asymmetric reactions. During the screening of Cinchona alkaloid phase-transfer catalysts (PTCs) in the hydrolytic dynamic kinetic resolution of racemic 3-phenyl-2-oxetanone (1) to tropic acid (2), we found that the introduction of a 4-trifluoromethylphenyl group at the vinyl terminus of BnQN significantly reduced the enantioselectivity to 41% enantiomeric excess (ee). The optimized structure of tetrahedral intermediates (TI, PTC + 1 + OH-) of hydrolysis obtained by density functional theory (DFT) calculations shows that the orientation of the quinoline and benzene rings of QD class PTC are nearly parallel to each other and to construct a greatly extended π-electron cloud surface, allowing good π-π interaction with the benzene ring of 1.
Collapse
Affiliation(s)
- Midori Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Takahiro Shirai
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kenji Yatsuzuka
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Ryuichi Shirai
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
2
|
Singh R, Singh R, Srihari V, Makde RD. In Vitro Investigation Unveiling New Insights into the Antimalarial Mechanism of Chloroquine: Role in Perturbing Nucleation Events during Heme to β-Hematin Transformation. ACS Infect Dis 2023; 9:1647-1657. [PMID: 37471056 DOI: 10.1021/acsinfecdis.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Malaria parasites generate toxic heme during hemoglobin digestion, which is neutralized by crystallizing into inert hemozoin (β-hematin). Chloroquine blocks this detoxification process, resulting in heme-mediated toxicity in malaria parasites. However, the exact mechanism of chloroquine's action remains unknown. This study investigates the impact of chloroquine on the transformation of heme into β-hematin. The results show that chloroquine does not completely halt the transformation process but rather slows it down. Additionally, chloroquine complexation with free heme does not affect substrate availability or inhibit β-hematin formation. Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) studies indicate that the size of β-hematin crystal particles and crystallites increases in the presence of chloroquine, suggesting that chloroquine does not impede crystal growth. These findings suggest that chloroquine delays hemozoin production by perturbing the nucleation events of crystals and/or the stability of crystal nuclei. Thus, contrary to prevailing beliefs, this study provides a new perspective on the working mechanism of chloroquine.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Rashmi Singh
- Laser & Functional Materials Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Velaga Srihari
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 40008, Maharashtra, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| |
Collapse
|
3
|
Yahya MH, Babalola SA, Idris AY, Hamza AN, Igie N, Odeyemi I, Musa AM, Olorukooba AB. Therapeutic Potency of Mono- and Diprenylated Acetophenones: A Case Study of In-Vivo Antimalarial Evaluation. PHARMACEUTICAL FRONTS 2023. [DOI: 10.1055/s-0043-1764210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
AbstractMalaria remains a febrile infection of public health concern in many countries especially tropical countries in Africa and certain countries in Southern and North America such as Brazil, Costa Rica, Mexico, Dominican Republic, Colombia, and Ecuador. Hence this has made research into this area paramount. Acetophenones are active fragments in many compounds with promising antimalarial activity, such as chalcones. The aim of the present study was to investigate antimalarial activity of 3,5-diprenyl acetophenone (I) and 5-diprenyl acetophenone (II) in in vivo. In this study, compounds I and II were synthesized using an aromatic substitution reaction. The in-vivo antimalarial potential of compounds I and II was analyzed in Plasmodium berghei-infected mice. Our data showed that compound I (25, 50, and 100 mg/kg) had promising antimalarial activity, with parasitemia inhibited rate being 68.03, 65.16, and 69.75%, respectively. Compound II dose-dependently inhibited parasitemia levels, it demonstrated an infinitesimally higher activity (72.12%) when compared with compound I (69.75%) at 100 mg/kg dose. The two compounds passed the rule of three, Lipinski's rule of five, predicted plausible pharmacokinetic profile (ADME), and apparent safety profile, and demonstrated drug-like fragments. The study provided guidance in exploring novel antimalarial compounds based on the scaffolds of prenylated acetophenones.
Collapse
Affiliation(s)
- Muhammad H. Yahya
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sodeeq A. Babalola
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abdullahi Y. Idris
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Asmau N. Hamza
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Nosakhare Igie
- Department of Chemistry and Biochemistry, The University of Dallas, Richardson, Texas, United States
| | - Isaiah Odeyemi
- Department of Chemistry and Biochemistry, The University of Dallas, Richardson, Texas, United States
| | - Aliyu M. Musa
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Amina B. Olorukooba
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Arifian H, Maharani R, Megantara S, Gazzali AM, Muchtaridi M. Amino-Acid-Conjugated Natural Compounds: Aims, Designs and Results. Molecules 2022; 27:molecules27217631. [PMID: 36364457 PMCID: PMC9654077 DOI: 10.3390/molecules27217631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein is one of the essential macronutrients required by all living things. The breakdown of protein produces monomers known as amino acids. The concept of conjugating natural compounds with amino acids for therapeutic applications emerged from the fact that amino acids are important building blocks of life and are abundantly available; thus, a greater shift can result in structural modification, since amino acids contain a variety of sidechains. This review discusses the data available on amino acid–natural compound conjugates that were reported with respect to their backgrounds, the synthetic approach and their bioactivity. Several amino acid–natural compound conjugates have shown enhanced pharmacokinetic characteristics, including absorption and distribution properties, reduced toxicity and increased physiological effects. This approach could offer a potentially effective system of drug discovery that can enable the development of pharmacologically active and pharmacokinetically acceptable molecules.
Collapse
Affiliation(s)
- Hanggara Arifian
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Rani Maharani
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Saisn Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Correspondence:
| |
Collapse
|
5
|
Guevara‐Pulido J, Jiménez RA, Morantes SJ, Jaramillo DN, Acosta‐Guzmán P. Design, Synthesis, and Development of 4‐[(7‐Chloroquinoline‐4‐yl)amino]phenol as a Potential SARS‐CoV‐2 Mpro Inhibitor. ChemistrySelect 2022; 7:e202200125. [PMID: 35601684 PMCID: PMC9111044 DOI: 10.1002/slct.202200125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
A series of chloroquine analogs were designed to search for a less toxic chloroquine derivative as a potential SARS‐CoV‐2 Mpro inhibitor. Herein, an ANN‐based QSAR model was built to predict the IC50 values of each analog using the experimental values of other 4‐aminoquinolines as the training set. Subsequently, molecular docking was used to evaluate each analog's binding affinity to Mpro. The analog that showed the greatest affinity and lowest IC50 values was synthesized and characterized for its posterior incorporation into a polycaprolactone‐based nanoparticulate system. After characterizing the loaded nanoparticles, an in vitro drug release assay was carried out, and the cytotoxicity of the analog and loaded nanoparticles was evaluated using murine fibroblast (L929) and human lung adenocarcinoma (A549) cell lines. Results show that the synthesized analog is much less toxic than chloroquine and that the nanoparticulate system allowed for the prolonged release of the analog without evidence of adverse effects on the cell lines used; therefore, suggesting that the analog could be a potential therapeutic option for COVID‐19.
Collapse
|
6
|
Konan KE, Abollé A, Barré E, Aka EC, Coeffard V, Felpin FX. Developing flow photo-thiol–ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Continuous flow photo-thiol–ene reactions on cinchona alkaloids with a variety of organic thiols have been developed using enabling technologies such as a self-optimizing flow photochemical reactor.
Collapse
Affiliation(s)
- Kouakou Eric Konan
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Abollé Abollé
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Elvina Barré
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Ehu Camille Aka
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Vincent Coeffard
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - François-Xavier Felpin
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
7
|
Verma L, Vekilov PG, Palmer JC. Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals. J Phys Chem B 2021; 125:11264-11274. [PMID: 34609878 DOI: 10.1021/acs.jpcb.1c06589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hematin crystallization, which is an essential component of the physiology of malaria parasites and the most successful target for antimalarial drugs, proceeds in mixed organic-aqueous solvents both in vivo and in vitro. Here we employ molecular dynamics simulations to examine the structuring and dynamics of a water-normal octanol mixture (a solvent that mimics the environment hosting hematin crystallization in vivo) in the vicinity of the typical faces in the habit of a hematin crystal. The simulations reveal that the properties of the solvent in the layer adjacent to the crystal are strongly impacted by the distinct chemical and topological features presented by each crystal face. The solvent organizes into at least three distinct layers. We also show that structuring of the solvent near the different faces of β-hematin strongly impacts the interfacial dynamics. The relaxation time of n-octanol molecules is longest in the contact layers and correlates with the degree of structural ordering at the respective face. We show that the macroscopically homogeneous water-octanol solution holds clusters of water and n-octanol connected by hydrogen bonds that entrap the majority of the water but are mostly smaller than 30 water molecules. Near the crystal surface the clusters anchor on hematin carboxyl groups. These results provide a direct example that solvent structuring is not restricted to aqueous and other hydrogen-bonded solutions. Our findings illuminate two fundamental features of the mechanisms of hematin crystallization: the elongated shapes of natural and synthetic hematin crystals and the stabilization of charged groups of hematin and antimalarials by encasing in water clusters. In addition, these findings suggest that hematin crystallization may be controlled by additives that disrupt or reinforce solvent structuring.
Collapse
Affiliation(s)
- Laksmanji Verma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.,Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C Palmer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
8
|
Kom FM, Baane MP, Mbody M, Sanda MA, Bilong BN, Ndongo FA, Mben Ii JM. COVID-19 mimics endemic tropical diseases at an early stage: a report of two symptomatic COVID-19 patients treated in a polymerase chain reaction void zone in Cameroon. Pan Afr Med J 2021; 37:212. [PMID: 33520051 PMCID: PMC7821791 DOI: 10.11604/pamj.2020.37.212.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/22/2020] [Indexed: 01/19/2023] Open
Abstract
At the end of December 2019, they emerged a new coronavirus (SARS-CoV-2), triggering a pandemic of an acute respiratory syndrome (COVID-19) in humans. We report the relevant features of the first two confirmed cases of COVID-19 recorded from the 29th April 2020 in the Far North Region of Cameroon. We did a review of the files of these two patients who were admitted to the internal medicine ward of a medical Centre in Maroua Town, Far North Region. We present 2 cases of symptomatic COVID-19 patients, both males and health personnel, with an average age of 53 years, with no recent history of travel to a COVID-19 zone at risk and working in a then COVID-19 free region. They presented with extreme fatigue as their main symptom. Both were treated initially for severe malaria with quinine sulfate infusion with initial relief of symptoms. In the first confirmed case, at his re-hospitalization with an acute respiratory syndrome, a polymerase chain reaction (PCR) test in search of SARS-CoV-2 was requested with his results available 7 days into admission. For the second case, he had his results 48 hours on admission while he was prepared to be discharged. Both control PCR tests for COVID-19 came back negative 14 days after hospitalization. Health personnel remains a group at risk for the COVID-19 infection. The clinical manifestation at an early stage may be atypical mimicking endemic tropical infections. Also, the therapeutic potential of quinine salts in the relief of symptoms of COVID-19 is questionable and remains a subject to explore in our context.
Collapse
Affiliation(s)
- Franklin Mogo Kom
- Department of Epidemiology, School of Health Science, Catholic University for Central Africa, Yaoundé, Cameroon.,Clinical Research Education, Networking and Consultancy, Douala, Cameroon.,Institute of Health Science, Adventist University Cosendai, Nanga-Eboko, Cameroon
| | - Martin Paul Baane
- Institute of Health Science, Adventist University Cosendai, Nanga-Eboko, Cameroon.,Medico-Social Centre of the National Social Insurance Fund, Maroua, Cameroon.,Faculty of Sciences, University of Maroua, Maroua, Cameroon
| | - Marius Mbody
- Medico-Social Centre of the National Social Insurance Fund, Maroua, Cameroon.,Faculty of Sciences, University of Maroua, Maroua, Cameroon
| | - Moussa Abame Sanda
- Medico-Social Centre of the National Social Insurance Fund, Maroua, Cameroon
| | - Bi Ndongo Bilong
- Medico-Social Centre of the National Social Insurance Fund, Maroua, Cameroon
| | - Francis Ateba Ndongo
- Department of Epidemiology, School of Health Science, Catholic University for Central Africa, Yaoundé, Cameroon.,Center for Mother and Child, Chantal Biya Foundation, Yaoundé, Cameroon
| | - Jean-Marc Mben Ii
- Institute of Health Science, Adventist University Cosendai, Nanga-Eboko, Cameroon.,Medico-Social Centre of the National Social Insurance Fund, Maroua, Cameroon.,Faculty of Sciences, University of Maroua, Maroua, Cameroon
| |
Collapse
|
9
|
Ma R, Guo DX, Li HF, Liu HX, Zhang YR, Ji JB, Xing J, Wang SQ. Spectroscopic methodologies and molecular docking studies on the interaction of antimalarial drug piperaquine and its metabolites with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117158. [PMID: 31181505 DOI: 10.1016/j.saa.2019.117158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/19/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Artemisinin-based combination therapy is widely used for the treatment of uncomplicated Plasmodium falciparum malaria, and piperaquine (PQ) is one of the important partner drugs. During the biotransformation of PQ, M1 (N-oxidation product), M2 (N-oxidation product), M3 (carboxylic acid product), M4 (N-dealkylation product), and M5 (N-oxidated product of M4) are formed by cytochrome P450 pathways. Despite decades of clinical use, the interactions between PQ and its main metabolites (PQs) with human serum albumin (HSA) have not been reported. In the present study, the binding of PQs with HSA under physiological conditions was investigated systematically through fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods. The experimental results show that the intrinsic fluorescence quenching of HSA was induced by those compounds resulting from the formation of stable HSA-compound complexes. The main forces involved in the interactions between PQ, M1, and M2 which bind to HSA were hydrogen s and van der Waals forces, while the interactions of M3, M4, and M5 were driven by hydrophobic forces. The main binding sites of the compounds to HSA were also examined by classical fluorescent marker experiments and molecular docking studies. Binding constants (Kb) revealed that the affinities of the PQ, M1, M2, M3, and M4 to HSA were stronger than that of M5. Additionally, the binding rates of PQs with HSA were determined by ultrafiltration methods. Consistent with the binding constant results, the binding rate of M5 was lower than the binding rates of PQ, M1, M2, M3, and M4. Furthermore, PQs binding to HSA led to conformational and structural alterations of HSA, as revealed by multi-spectroscopic studies. In order to investigate one possible mechanism by which PQs inhibit the growth of malaria-causing Plasmodium parasites, 1H NMR spectroscopy was performed to investigate the interaction of the PQs with heme. This study is beneficial to enhance our understanding of the ecotoxicology and environmental behaviors of PQ and its metabolites.
Collapse
Affiliation(s)
- Rui Ma
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dong-Xiao Guo
- Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, China
| | - Hui-Fen Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Hui-Xiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yun-Rui Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jian-Bo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shu-Qi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
10
|
Jiang Y, Deiana L, Zhang K, Lin S, Córdova A. Total Asymmetric Synthesis of Quinine, Quinidine, and Analogues via Catalytic Enantioselective Cascade Transformations. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Jiang
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
- The Berzelii Center EXSELENT; Stockholm University; 106 91 Stockholm Sweden
| | - Luca Deiana
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
- The Berzelii Center EXSELENT; Stockholm University; 106 91 Stockholm Sweden
| | - Kaiheng Zhang
- Department of Natural Sciences; Mid Sweden University; 851 70 Sundsvall Sweden
| | - Shuangzheng Lin
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
- The Berzelii Center EXSELENT; Stockholm University; 106 91 Stockholm Sweden
| | - Armando Córdova
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
- The Berzelii Center EXSELENT; Stockholm University; 106 91 Stockholm Sweden
- Department of Natural Sciences; Mid Sweden University; 851 70 Sundsvall Sweden
| |
Collapse
|
11
|
Boratyński PJ, Zielińska-Błajet M, Skarżewski J. Cinchona Alkaloids-Derivatives and Applications. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2019; 82:29-145. [PMID: 30850032 DOI: 10.1016/bs.alkal.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Major Cinchona alkaloids quinine, quinidine, cinchonine, and cinchonidine are available chiral natural compounds (chiral pool). Unlike many other natural products, these alkaloids are available in multiple diastereomeric forms which are separated on an industrial scale. The introduction discusses in short conformational equilibria, traditional separation scheme, biosynthesis, and de novo chemical syntheses. The second section concerns useful chemical applications of the alkaloids as chiral recognition agents and effective chiral catalysts. Besides the Sharpless ethers and quaternary ammonium salts (chiral PTC), the most successful bifunctional organocatalysts are based on 9-amino derivatives: thioureas and squaramides. The third section reports the main transformations of Cinchona alkaloids. This covers reactions of the 9-hydroxyl group with the retention or inversion of configuration. Specific Cinchona rearrangements enlarging [2.2.2]bicycle of quinuclidine to [3.2.2] products are connected to the 9-OH substitution. The syntheses of numerous esterification and etherification products are described, including many examples of bi-Cinchona alkaloid ethers. Further derivatives comprise 9-N-substituted compounds. The amino group is introduced via an azido function with the inversion of configuration at the stereogenic center C9. The 9-epi-amino-alkaloids provide imines, amides, imides, thioureas, and squaramides. The syntheses of 9-carbon-, 9-sulfur-, and 9-selenium-substituted derivatives are discussed. Oxidation of the hydroxyl group of any alkaloid gives ketones, which can be selectively reduced, reacted with Grignard reagents, or subjected to the Corey-Chaykovsky reaction. The alkaloids were also partially degraded by splitting C4'-C9 or N1-C8 bonds. In order to immobilize Cinchona alkaloids the transformations of the 3-vinyl group were often exploited. Finally, miscellaneous functionalizations of quinuclidine, quinoline, and examples of various metal complexes of the alkaloids are considered.
Collapse
Affiliation(s)
| | | | - Jacek Skarżewski
- Department of Organic Chemistry, Wrocław University of Technology, Wrocław, Poland.
| |
Collapse
|
12
|
O' Donovan DH, Aillard P, Berger M, de la Torre A, Petkova D, Knittl‐Frank C, Geerdink D, Kaiser M, Maulide N. C‐H‐Aktivierung ermöglicht eine kurze Totalsynthese von Chinin und Analoga mit erhöhter Anti‐Malaria‐Aktivität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel H. O' Donovan
- AstraZenecaOncology, IMED Biotech Unit 1 Francis Crick Avenue Cambridge CB2 0RE Großbritannien
| | - Paul Aillard
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Martin Berger
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Aurélien de la Torre
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Desislava Petkova
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | | | - Danny Geerdink
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| | - Marcel Kaiser
- Schweizerisches Tropen- und Public-Health-Institut Socinstrasse 57 4002 Basel Schweiz
- Universität Basel 4003 Basel Schweiz
| | - Nuno Maulide
- Institut für Organische ChemieUniversität Wien Währinger Straße 38 1090 Wien Österreich
| |
Collapse
|
13
|
Tang XF, Feng SH, Wang YK, Yang F, Zheng ZH, Zhao JN, Wu YF, Yin H, Liu GZ, Meng QW. Bifunctional metal-free photo-organocatalysts for enantioselective aerobic oxidation of β-dicarbonyl compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
O' Donovan DH, Aillard P, Berger M, de la Torre A, Petkova D, Knittl-Frank C, Geerdink D, Kaiser M, Maulide N. C-H Activation Enables a Concise Total Synthesis of Quinine and Analogues with Enhanced Antimalarial Activity. Angew Chem Int Ed Engl 2018; 57:10737-10741. [PMID: 29761878 PMCID: PMC6146912 DOI: 10.1002/anie.201804551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 11/09/2022]
Abstract
We report a novel approach to the classical natural product quinine that is based on two stereoselective key steps, namely a C-H activation and an aldol reaction, to unite the two heterocyclic moieties of the target molecule. This straightforward and flexible strategy enables a concise synthesis of natural (-)-quinine, the first synthesis of unnatural (+)-quinine, and also provides access to unprecedented C3-aryl analogues, which were prepared in only six steps. We additionally demonstrate that these structural analogues exhibit improved antimalarial activity compared with (-)-quinine both in vitro and in mice infected with Plasmodium berghei.
Collapse
Affiliation(s)
- Daniel H O' Donovan
- AstraZeneca, Oncology, IMED Biotech Unit, 1 Francis Crick Avenue, Cambridge, CB2 0RE, UK
| | - Paul Aillard
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Martin Berger
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Aurélien de la Torre
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Desislava Petkova
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Christian Knittl-Frank
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Danny Geerdink
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, 4003, Basel, Switzerland
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
15
|
Prediction Model for Antimalarial Activities of Hemozoin Inhibitors by Using Physicochemical Properties. Antimicrob Agents Chemother 2018; 62:AAC.02424-17. [PMID: 29439979 DOI: 10.1128/aac.02424-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 12/22/2022] Open
Abstract
The rapid spread of strains of malaria parasites that are resistant to several drugs has threatened global malaria control. Hence, the aim of this study was to predict the antimalarial activity of chemical compounds that possess anti-hemozoin-formation activity as a new means of antimalarial drug discovery. After the initial in vitro anti-hemozoin-formation high-throughput screening (HTS) of 9,600 compounds, a total of 224 hit compounds were identified as hemozoin inhibitors. These 224 compounds were tested for in vitro erythrocytic antimalarial activity at 10 μM by using chloroquine-mefloquine-sensitive Plasmodium falciparum strain 3D7A. Two independent experiments were conducted. The physicochemical properties of the active compounds were extracted from the ChemSpider and SciFinder databases. We analyzed the extracted data by using Bayesian model averaging (BMA). Our findings revealed that lower numbers of S atoms; lower distribution coefficient (log D) values at pH 3, 4, and 5; and higher predicted distribution coefficient (ACD log D) values at pH 7.4 had significant associations with antimalarial activity among compounds that possess anti-hemozoin-formation activity. The BMA model revealed an accuracy of 91.23%. We report new prediction models containing physicochemical properties that shed light on effective chemical groups for synthetic antimalarial compounds and help with in silico screening for novel antimalarial drugs.
Collapse
|
16
|
Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma cruzi. Future Med Chem 2018; 10:391-408. [PMID: 29380636 DOI: 10.4155/fmc-2017-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Chagas disease is a tropical disease caused by the hemoflagellate protozoan Trypanosoma cruzi. There is no vaccine for Chagas disease and available drugs (e.g., benznidazole) are effective only during the acute phase, displaying a variable curative activity in the established chronic form of the disease. New leads with high efficacy and better toxicity profiles are urgently required. Materials & methods: A library of novel quinine derivatives was synthesized using Heck chemistry and evaluated against the various developmental forms of T. cruzi. RESULTS AND CONCLUSION Several novel quinine analogs with trypanocidal activity have been identified with the para-nitro-substituted derivative displaying a submicromolar IC50, which is 83-times lower than quinine and three-times lower than benznidazole. Transmission electron microscopy analysis demonstrated that these compounds induced a marked vacuolization of the kinetoplast of intracellular amastigotes and cell-derived trypomastigotes.
Collapse
|
17
|
Olafson KN, Nguyen TQ, Vekilov PG, Rimer JD. Deconstructing Quinoline-Class Antimalarials to Identify Fundamental Physicochemical Properties of Beta-Hematin Crystal Growth Inhibitors. Chemistry 2017; 23:13638-13647. [PMID: 28833627 DOI: 10.1002/chem.201702251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/12/2022]
Abstract
A versatile approach to control crystallization involves the use of modifiers, which are additives that interact with crystal surfaces and alter their growth rates. Elucidating a modifier's binding specificity to anisotropic crystal surfaces is a ubiquitous challenge that is critical to their design. In this study, we select hematin, a byproduct of malaria parasites, as a model system to examine the complementarity of modifiers (i.e., antimalarial drugs) to β-hematin crystal surfaces. We divide two antimalarials, chloroquine and amodiaquine, into segments consisting of a quinoline base, common to both drugs, and side chains that differentiate their modes of action. Using a combination of scanning probe microscopy, bulk crystallization, and analytical techniques, we show that the base and side chain work synergistically to reduce the rate of hematin crystallization. In contrast to general observations that modifiers retain their function upon segmentation, we show that the constituents do not act as modifiers. A systematic study of quinoline isomers and analogues shows how subtle rearrangement and removal of functional moieties can create effective constituents from previously ineffective modifiers, along with tuning their inhibitory modes of action. These findings highlight the importance of specific functional moieties in drug compounds, leading to an improved understanding of modifier-crystal interactions that could prove to be applicable to the design of new antimalarials.
Collapse
Affiliation(s)
- Katy N Olafson
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Tam Q Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA.,Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77204, USA
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, TX 77204, USA.,Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|
18
|
Antimalarials inhibit hematin crystallization by unique drug-surface site interactions. Proc Natl Acad Sci U S A 2017; 114:7531-7536. [PMID: 28559329 DOI: 10.1073/pnas.1700125114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In malaria pathophysiology, divergent hypotheses on the inhibition of hematin crystallization posit that drugs act either by the sequestration of soluble hematin or their interaction with crystal surfaces. We use physiologically relevant, time-resolved in situ surface observations and show that quinoline antimalarials inhibit β-hematin crystal surfaces by three distinct modes of action: step pinning, kink blocking, and step bunch induction. Detailed experimental evidence of kink blocking validates classical theory and demonstrates that this mechanism is not the most effective inhibition pathway. Quinolines also form various complexes with soluble hematin, but complexation is insufficient to suppress heme detoxification and is a poor indicator of drug specificity. Collectively, our findings reveal the significance of drug-crystal interactions and open avenues for rationally designing antimalarial compounds.
Collapse
|
19
|
Ciardiello JJ, Stewart HL, Sore HF, Galloway WRJD, Spring DR. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Bioorg Med Chem 2017; 25:2825-2843. [PMID: 28283333 DOI: 10.1016/j.bmc.2017.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 01/15/2023]
Abstract
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated.
Collapse
Affiliation(s)
- J J Ciardiello
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H L Stewart
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H F Sore
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W R J D Galloway
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D R Spring
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
20
|
Qi Y, Pradipta AR, Li M, Zhao X, Lu L, Fu X, Wei J, Hsung RP, Tanaka K, Zhou L. Cinchonine induces apoptosis of HeLa and A549 cells through targeting TRAF6. J Exp Clin Cancer Res 2017; 36:35. [PMID: 28231796 PMCID: PMC5324264 DOI: 10.1186/s13046-017-0502-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/11/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cancer cells are known to over-express TRAF6 that is critical for both AKT and TAK1 activations. The Really Interesting New Gene (RING) domain of TRAF6 is believed to be responsible for the E3 ligase activity, ZINC fingers of TRAF6 provide critical support for the activity of the RING domain which is critical for both AKT and TAK1 activations. METHODS We employed computational docking program to identify small molecules that could effectively and competitively bind with the RING domain of TRAF6, which is believed to be responsible for its E3 ligase activity. MTT assay and flow cytometry were employed to analyze apoptosis of cancer cells. Signaling pathways were detected using immunoprecipitation and western blotting, and immunofluorescence was pursued to assess the nature of binding of cinchonine to TRAF6. We also performed animal experiments to test effect of cinchonine in vivo. RESULTS Cinchonine, a naturally occurring Cinchona alkaloid identified from the docking study, could bind to TRAF6 in HeLa and A549 cells and induce apoptosis of these cancer cells. We found that AKT ubiquitination and phosphorylation as well as phosphorylation of TAK1 were decreased. These activities would lead to subsequent suppression anti-apoptotic protein Bcl-2, while elevating pro-apoptotic protein Bax. Immunofluorescence staining unambiguously demonstrated the binding of cinchonine specifically at the RING domain of TRAF6 in cells, thereby validating the computational modeling. Animal experiments showed that cinchonine could suppress tumor growth in mice without showing significant acute toxicity. CONCLUSION These investigations suggest that through competitive binding with the RING domain of TRAF6, cinchonine could induce apoptosis via inhibiting AKT and TAK1 signaling pathways.
Collapse
Affiliation(s)
- Yonghao Qi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| | - Ambara R. Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2–1 Hirosawa, Saitama, Wako 351-0198 Japan
| | - Miao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| | - Xuan Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| | - Lulu Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| | - Xuegang Fu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| | - Richard P. Hsung
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222 USA
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2–1 Hirosawa, Saitama, Wako 351-0198 Japan
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222 USA
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008 Russia
- JST-PRESTO, 2-1 Hirosawa, Saitama, Wako 351-0198 Japan
| | - Lijun Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District 300072 People’s Republic of China
| |
Collapse
|
21
|
High-Throughput Screening and Prediction Model Building for Novel Hemozoin Inhibitors Using Physicochemical Properties. Antimicrob Agents Chemother 2017; 61:AAC.01607-16. [PMID: 27919903 DOI: 10.1128/aac.01607-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
It is essential to continue the search for novel antimalarial drugs due to the current spread of resistance against artemisinin by Plasmodium falciparum parasites. In this study, we developed in silico models to predict hemozoin inhibitors as a potential first-step screening for novel antimalarials. An in vitro colorimetric high-throughput screening assay of hemozoin formation was used to identify hemozoin inhibitors from 9,600 structurally diverse compounds. The physicochemical properties of positive hits and randomly selected compounds were extracted from the ChemSpider database; they were used for developing prediction models to predict hemozoin inhibitors using two different approaches, i.e., traditional multivariate logistic regression and Bayesian model averaging. Our results showed that a total of 224 positive-hit compounds exhibited the ability to inhibit hemozoin formation, with 50% inhibitory concentrations (IC50s) ranging from 3.1 μM to 199.5 μM. The best model according to traditional multivariate logistic regression included the three variables octanol-water partition coefficient, number of hydrogen bond donors, and number of atoms of hydrogen, while the best model according to Bayesian model averaging included the three variables octanol-water partition coefficient, number of hydrogen bond donors, and index of refraction. Both models had a good discriminatory power, with area under the curve values of 0.736 and 0.781 for the traditional multivariate model and Bayesian model averaging, respectively. In conclusion, the prediction models can be a new, useful, and cost-effective approach for the first screen of hemozoin inhibition-based antimalarial drug discovery.
Collapse
|
22
|
Kaur K, Kumar R, Goel S, Uppal S, Bhatia A, Mehta SK. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. ULTRASONICS SONOCHEMISTRY 2017; 34:173-182. [PMID: 27773233 DOI: 10.1016/j.ultsonch.2016.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
The main aim of the present work was to prepare TPGS stabilized D-α-Tocopherol, lemon oil, tween-80, and water nanoemulsion by low cost and highly effective sonication method. The prepared nanoemulsion showed good stability for 60days at variable temperature conditions i.e. 4, 25 and 37°C. The tolerance of the prepared nanoemulsion to salt (50mM-500mM) and pH (pH 2-pH 7.4) was also studied. The morphology and droplet size of pure and quinine loaded nanoemulsion was characterized with transmission electron microscopy. The prepared formulation was transparent and the obtained average particle size ranged between 25nm and 35nm. The nanoemulsion was found to be non toxic. The cell viability study of pure nanoemulsion carried out on Hep G2 cells revealed that the cell viability was 100%. The formulation further exhibited high quinine loading and release capacity with cumulative release up to 76±2% and 65±2% at pH 7.4 and pH 5.5 respectively. The interaction between quinine and vitamins (riboflavin, thiamine and biotin) was also carried out (aqueous medium). The study revealed that riboflavin had strong interaction with quinine and vitamins vis-à-vis thiamine and biotin.
Collapse
Affiliation(s)
- Khushwinder Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| | - Raj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Sumit Goel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shivani Uppal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - S K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
| |
Collapse
|
23
|
Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine. Proc Natl Acad Sci U S A 2015; 112:4946-51. [PMID: 25831526 DOI: 10.1073/pnas.1501023112] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.
Collapse
|
24
|
Jones RA, Panda SS, Hall CD. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur J Med Chem 2015; 97:335-55. [PMID: 25683799 DOI: 10.1016/j.ejmech.2015.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.
Collapse
Affiliation(s)
- Rachel A Jones
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA.
| | - Siva S Panda
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| | - C Dennis Hall
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| |
Collapse
|
25
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
26
|
Leven M, Held J, Duffy S, Tschan S, Sax S, Kamber J, Frank W, Kuna K, Geffken D, Siethoff C, Barth S, Avery VM, Wittlin S, Mordmüller B, Kurz T. Blood schizontocidal and gametocytocidal activity of 3-hydroxy-N'-arylidenepropanehydrazonamides: a new class of antiplasmodial compounds. J Med Chem 2014; 57:7971-6. [PMID: 25195945 DOI: 10.1021/jm500811p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
3-Hydroxy-N'-arylidenepropanehydrazonamides represent a new class of antiplasmodial compounds. The two most active phenanthrene-based derivatives showed potent in vitro antiplasmodial activity against the 3D7 (sensitive) and Dd2 (multidrug-resistant) strains of Plasmodium falciparum with nanomolar IC50 values in the range of 8-28 nM. Further studies revealed that the most promising derivative, bearing a 4-fluorobenzylidene moiety, demonstrated in vivo antiplasmodial activity after oral administration in a P. berghei malaria model, although no complete parasite elimination was achieved with a four-dose regimen. The in vivo efficacy correlated well with the plasma concentration levels, and no acute toxicity symptoms (e.g., death or changes in general behavior or physiological activities) were observed, which is in agreement with a >1000-fold lower activity against L6 cells, a primary cell line derived from mammalian (rat) skeletal myoblasts. This indicates that lead compound 29 displays selective activity against P. falciparum. Moreover, both phenanthrene-based derivatives were active against stage IV/V gametocytes of P. falciparum in vitro.
Collapse
Affiliation(s)
- Michael Leven
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Panda SS, Ibrahim MA, Küçükbay H, Meyers MJ, Sverdrup FM, El-Feky SA, Katritzky AR. Synthesis and antimalarial bioassay of quinine - peptide conjugates. Chem Biol Drug Des 2014; 82:361-6. [PMID: 23497252 DOI: 10.1111/cbdd.12134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/01/2013] [Indexed: 11/28/2022]
Abstract
Amino acid and peptide conjugates of quinine were synthesized using microwave irradiation in 52-95% yields using benzotriazole methodology. The majority of these conjugates retain in vitro antimalarial activity with IC50 values below 100 nm, similar to quinine.
Collapse
Affiliation(s)
- Siva S Panda
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Parvez MM, Haraguchi N, Itsuno S. Synthesis of Cinchona Alkaloid-Derived Chiral Polymers by Mizoroki–Heck Polymerization and Their Application to Asymmetric Catalysis. Macromolecules 2014. [DOI: 10.1021/ma5001018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Md. Masud Parvez
- Department of Environmental & Life Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Naoki Haraguchi
- Department of Environmental & Life Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Shinichi Itsuno
- Department of Environmental & Life Sciences, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| |
Collapse
|
29
|
Antimalarial efficacy of hydroxyethylapoquinine (SN-119) and its derivatives. Antimicrob Agents Chemother 2013; 58:820-7. [PMID: 24247136 DOI: 10.1128/aac.01704-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Quinine and other cinchona-derived alkaloids, although recently supplanted by the artemisinins (ARTs), continue to be important for treatment of severe malaria. Quinine and quinidine have narrow therapeutic indices, and a safer quinine analog is desirable, particularly with the continued threat of antimalarial drug resistance. Hydroxyethylapoquinine (HEAQ), used at 8 g a day for dosing in humans in the 1930s and halving mortality from bacterial pneumonias, was shown to cure bird malaria in the 1940s and was also reported as treatment for human malaria cases. Here we describe synthesis of HEAQ and its novel stereoisomer hydroxyethylapoquinidine (HEAQD) along with two intermediates, hydroxyethylquinine (HEQ) and hydroxyethylquinidine (HEQD), and demonstrate comparable but elevated antimalarial 50% inhibitory concentrations (IC50) of 100 to 200 nM against Plasmodium falciparum quinine-sensitive strain 3D7 (IC50, 56 nM). Only HEAQD demonstrated activity against quinine-tolerant P. falciparum strains Dd2 and INDO with IC50s of 300 to 700 nM. HEQD had activity only against Dd2 with an IC50 of 313 nM. In the lethal mouse malaria model Plasmodium berghei ANKA, only HEQD had activity at 20 mg/kg of body weight comparable to that of the parent quinine or quinidine drugs measured by parasite inhibition and 30-day survival. In addition, HEQ, HEQD, and HEAQ (IC50 ≥ 90 μM) have little to no human ether-à-go-go-related gene (hERG) channel inhibition expressed in CHO cells compared to HEAQD, quinine, and quinidine (hERG IC50s of 27, 42, and 4 μM, respectively). HEQD more closely resembled quinine in vitro and in vivo for Plasmodium inhibition and demonstrated little hERG channel inhibition, suggesting that further optimization and preclinical studies are warranted for this molecule.
Collapse
|
30
|
Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013; 56:5231-46. [PMID: 23586757 DOI: 10.1021/jm400282d] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.
Collapse
Affiliation(s)
- Alexander P Gorka
- Department of Chemistry, Department of Biochemistry, Cellular, and Molecular Biology, and Center for Infectious Diseases, Georgetown University , 37th and O Streets, NW, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
31
|
Relative to quinine and quinidine, their 9-epimers exhibit decreased cytostatic activity and altered heme binding but similar cytocidal activity versus Plasmodium falciparum. Antimicrob Agents Chemother 2012; 57:365-74. [PMID: 23114754 DOI: 10.1128/aac.01234-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 9-epimers of quinine (QN) and quinidine (QD) are known to exhibit poor cytostatic potency against P. falciparum (Karle JM, Karle IL, Gerena L, Milhous WK, Antimicrob. Agents Chemother. 36:1538-1544, 1992). We synthesized 9-epi-QN (eQN) and 9-epi-QD (eQD) via Mitsunobu esterification-saponification and evaluated both cytostatic and cytocidal antimalarial activities. Relative to the cytostatic activity of QN and QD, we observed a large decrease in cytostatic activity (higher 50% inhibitory concentration [IC(50)s]) against QN-sensitive strain HB3, QN-resistant strain Dd2, and QN-hypersensitive strain K76I, consistent with previous work. However, we observed relatively small changes in cytocidal activity (the 50% lethal dose), similar to observations with chloroquine (CQ) analogues with a wide range of IC(50)s (see the accompanying paper [A. P. Gorka, J. N. Alumasa, K. S. Sherlach, L. M. Jacobs, K. B. Nickley, J. P. Brower, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:356-364, 2013]). Compared to QN and QD, the 9-epimers had significantly reduced hemozoin inhibition efficiency and did not affect pH-dependent aggregation of ferriprotoporphyrin IX (FPIX) heme. Magnetic susceptibility measurements showed that the 9-epimers perturb FPIX monomer-dimer equilibrium in favor of monomer, and UV-visible (VIS) titrations showed that eQN and eQD bind monomer with similar affinity relative to QN and QD. However, unique ring proton shifts in the presence of zinc(II) protoporphyrin IX (ZnPIX) indicate that binding of the 9-epimers to monomeric heme is via a distinct geometry. We isolated eQN- and eQD-FPIX complexes formed under aqueous conditions and analyzed them by mass, fluorescence, and UV-VIS spectroscopies. The 9-epimers produced low-fluorescent adducts with a 2:1 stoichiometry (drug to FPIX) which did not survive electrospray ionization, in contrast to QN and QD complexes. The data offer important insight into the relevance of heme interactions as a drug target for cytostatic versus cytocidal dosages of quinoline antimalarial drugs and further elucidate a surprising structural diversity of quinoline antimalarial drug-heme complexes.
Collapse
|
32
|
Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth. Antimicrob Agents Chemother 2012; 57:356-64. [PMID: 23114783 DOI: 10.1128/aac.01709-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of β-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).
Collapse
|