1
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
2
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
|
4
|
Singh P, Adhikari A, Singh D, Gond C, Tiwari AK. The 18-kDa Translocator Protein PET Tracers as a Diagnostic Marker for Neuroinflammation: Development and Current Standing. ACS OMEGA 2022; 7:14412-14429. [PMID: 35557664 PMCID: PMC9089361 DOI: 10.1021/acsomega.2c00588] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
Translocator protein (TSPO, 18 kDa) is an evolutionary, well-preserved, and tryptophan-rich 169-amino-acid protein which localizes on the contact sites between the outer and inner mitochondrial membranes of steroid-synthesizing cells. This mitochondrial protein is implicated in an extensive range of cellular activities, including steroid synthesis, cholesterol transport, apoptosis, mitochondrial respiration, and cell proliferation. The upregulation of TSPO is well documented in diverse disease conditions including neuroinflammation, cancer, brain injury, and inflammation in peripheral organs. On the basis of these outcomes, TSPO has been assumed to be a fascinating subcellular target for early stage imaging of the diseased state and for therapeutic purposes. The main outline of this Review is to give an update on dealing with the advances made in TSPO PET tracers for neuroinflammation, synchronously emphasizing the approaches applied for the design and advancement of new tracers with reference to their structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Priya Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anupriya Adhikari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Deepika Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Chandraprakash Gond
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anjani Kumar Tiwari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
- Address:
Department of Chemistry,
Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh. Tel.: +91-7503381343. Fax: +91-522-2440821. E-mail:
| |
Collapse
|
5
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Pauton M, Aubert C, Bluet G, Gruss-Leleu F, Roy S, Perrio C. Development, Optimization, and Scope of the Radiosynthesis of 3/5-[18F]Fluoropyridines from Readily Prepared Aryl(pyridinyl) Iodonium Salts: The Importance of TEMPO and K2CO3. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mathilde Pauton
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Catherine Aubert
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Guillaume Bluet
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | | | - Sébastien Roy
- Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine Cedex, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT UMR 6030, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
7
|
Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, Shah NJ, Egan GF. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp 2018; 39:5126-5144. [PMID: 30076750 DOI: 10.1002/hbm.24314] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Simultaneous Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scanning is a recent major development in biomedical imaging. The full integration of the PET detector ring and electronics within the MR system has been a technologically challenging design to develop but provides capacity for simultaneous imaging and the potential for new diagnostic and research capability. This article reviews state-of-the-art MR-PET hardware and software, and discusses future developments focusing on neuroimaging methodologies for MR-PET scanning. We particularly focus on the methodologies that lead to an improved synergy between MRI and PET, including optimal data acquisition, PET attenuation and motion correction, and joint image reconstruction and processing methods based on the underlying complementary and mutual information. We further review the current and potential future applications of simultaneous MR-PET in both systems neuroscience and clinical neuroimaging research. We demonstrate a simultaneous data acquisition protocol to highlight new applications of MR-PET neuroimaging research studies.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | - Sharna D Jamadar
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Shenpeng Li
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Jakub Baran
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Department of Biophysics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
| | - Nicholas Ferris
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Imaging, Monash Health, Clayton, Victoria, Australia
| | - Nadim Jon Shah
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum, Jülich, Germany
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Preclinical comparison study between [ 18F]fluoromethyl-PBR28 and its deuterated analog in a rat model of neuroinflammation. Bioorg Med Chem Lett 2018; 28:2925-2929. [PMID: 30122224 DOI: 10.1016/j.bmcl.2018.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/30/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
We designed and synthesized deuterium-substituted [18F]fluoromethyl-PBR28 ([18F]1-d2) as a novel translocator protein 18 kDa (TSPO)-targeted radioligand with enhanced in vivo stability. The comparison studies between [18F]fluoromethyl-PBR28 ([18F]1) and its deuterate analog ([18F]1-d2) were investigated in terms of in vitro binding affinity, lipophilicity and in vivo stability. In addition, the accuracies of both radioligands were determined by comparing the PET imaging data in the same LPS-induced neuroinflammation rat model. Both aryloxyanilide analogs showed similar lipophilicity and in vitro affinity for TSPO. However, [18F]1-d2 provided significantly lower femur uptake than [18F]1 (1.5 ± 1.2 vs. 4.1 ± 1.7%ID/g at 2 h post-injection) in an ex vivo biodistribution study. [18F]1-d2 was also selectively accumulated in the inflammatory lesion with the binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND = 3.17 ± 0.48), in a LPS-induced acute neuroinflammation rat model, comparable to that of [18F]1 (BPND = 2.13 ± 0.51). These results indicate that [18F]1-d2 had higher in vivo stability, which resulted in an enhanced target-to-background ratio compared to that induced by [18F]1.
Collapse
|
9
|
Naumiec GR, Cai L, Lu S, Pike VW. Quinuclidine and DABCO Enhance the Radiofluorinations of 5-Substituted 2-Halopyridines. European J Org Chem 2017; 2017:6593-6603. [PMID: 29497348 PMCID: PMC5826632 DOI: 10.1002/ejoc.201700970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 11/06/2022]
Abstract
Positron emission tomography (PET) is an important molecular imaging technique for medical diagnosis, biomedical research and drug development. PET tracers for molecular imaging contain β+-emitting radionuclides, such as carbon-11 (t1/2 = 20.4 min) or fluorine-18 (t1/2 = 109.8 min). The [18F]2-fluoro-pyridyl moiety features in a few prominent PET radiotracers, not least because this moiety is usually resistant to unwanted radiodefluorination in vivo. Various methods have been developed for labeling these radiotracers from cyclotron-produced no-carrier-added [18F]fluoride ion, mainly based on substitution of a leaving group, such as halide (Cl or Br), or preferably a better leaving group, such as nitro or trimethylammonium. However, precursors with a good leaving group are sometimes more challenging or lengthy to prepare. Methods for enhancing the reactivity of more readily accessible 2-halopyridyl precursors are therefore desirable, especially for early radiotracer screening programs that may require the quick labeling of several homologous radiotracer candidates. In this work, we explored a wide range of additives for beneficial effect on nucleophilic substitution by [18F]fluoride ion in 5-subsituted 2-halopyridines (halo = Cl or Br). The nucleophilic cyclic tertiary amines, quinuclidine and DABCO, proved effective for increasing yields to practically useful levels (> 15%). Quinuclidine and DABCO likely promote radiofluorination through reversible formation of quaternary ammonium intermediates.
Collapse
Affiliation(s)
- Gregory R. Naumiec
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm B3C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| |
Collapse
|
10
|
Alam MM, Lee J, Lee SY. Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases. Nucl Med Mol Imaging 2017; 51:283-296. [PMID: 29242722 DOI: 10.1007/s13139-017-0475-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is heavily associated with various neurological diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. It is strongly characterized by the activation of microglia which can be visualized using position emission tomography (PET). Traditionally, translocator protein 18 kDa (TSPO) has been the preferred target for imaging the inflammatory progression of the microglial component. TSPO is expressed in the outer mitochondrial membrane and present in very low concentrations in the healthy human brain, but is markedly upregulated in response to brain injury and inflammation. Due to its value as a marker of microglial activation and subsequent utility for evaluating neuroinflammation in CNS disorders, several classes of TSPO radioligands have been developed and evaluated. However, the application of these second-generation TSPO radiotracers has been subject to several limiting factors, including a polymorphism that affects TSPO binding. This review focuses on recent developments in TSPO imaging, as well as current limitations and suggestions for future directions from a medical imaging perspective.
Collapse
Affiliation(s)
- Md Maqusood Alam
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea
| | - Jihye Lee
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea.,Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936 South Korea
| |
Collapse
|
11
|
Lee J, Jung JH, Lee BC, Lee SY. Design and Synthesis of Phenoxypyridyl Acetamide or Aryl-oxodihydropurine Derivatives for the Development of Novel PET Ligands Targeting the Translocator Protein 18 kDa (TSPO). B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihye Lee
- Neuroscience Research Institute; Gachon University; Incheon 21565 Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine; Seoul National University College of Medicine, Seoul National University Bundang Hospital; Seongnam 13620 Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine; Seoul National University College of Medicine, Seoul National University Bundang Hospital; Seongnam 13620 Korea
- Center for Nanomolecular Imaging and Innovative Drug Development; Advanced Institutes of Convergence Technology; Suwon 16229 Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute; Gachon University; Incheon 21565 Korea
- Department of Neuroscience, College of Medicine; Gachon University; Incheon 21936 Korea
| |
Collapse
|
12
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Damont A, Médran-Navarrete V, Cacheux F, Kuhnast B, Pottier G, Bernards N, Marguet F, Puech F, Boisgard R, Dollé F. Novel Pyrazolo[1,5-a]pyrimidines as Translocator Protein 18 kDa (TSPO) Ligands: Synthesis, in Vitro Biological Evaluation, [(18)F]-Labeling, and in Vivo Neuroinflammation PET Images. J Med Chem 2015; 58:7449-64. [PMID: 26280386 DOI: 10.1021/acs.jmedchem.5b00932] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of novel pyrazolo[1,5-a]pyrimidines, closely related to N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (2, DPA-714), were synthesized and biologically in vitro evaluated for their potential to bind the translocator protein 18 kDa (TSPO), a protein today recognized as an early biomarker of neuroinflammatory processes. This series is composed of fluoroalkyl- and fluoroalkynyl- analogues, prepared from a common iodinated intermediate via Sonogashira coupling reactions. All derivatives displayed subnanomolar affinity for the TSPO (0.37 to 0.86 nM), comparable to that of 2 (0.91 nM). Two of them were radiolabeled with fluorine-18, and their biodistribution was investigated by in vitro autoradiography and positron emission tomography (PET) imaging on a rodent model of neuroinflammation. Brain uptake and local accumulation of both compounds in the AMPA-mediated lesion confirm their potential as in vivo PET-radiotracers. In particular, [(18)F]23 exhibited a significantly higher ipsi- to contralateral ratio at 60 min than the parent molecule [(18)F]2 in vivo.
Collapse
Affiliation(s)
- Annelaure Damont
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Vincent Médran-Navarrete
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Fanny Cacheux
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Bertrand Kuhnast
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Géraldine Pottier
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Nicholas Bernards
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | | | | | - Raphaël Boisgard
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| |
Collapse
|
14
|
Xiong H, Hoye AT, Fan KH, Li X, Clemens J, Horchler CL, Lim NC, Attardo G. Facile Route to 2-Fluoropyridines via 2-Pyridyltrialkylammonium Salts Prepared from Pyridine N-Oxides and Application to 18F-Labeling. Org Lett 2015; 17:3726-9. [DOI: 10.1021/acs.orglett.5b01703] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hui Xiong
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Adam T. Hoye
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Kuo-Hsien Fan
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Ximin Li
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Jennifer Clemens
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Carey L. Horchler
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Nathaniel C. Lim
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| | - Giorgio Attardo
- Avid Radiopharmaceuticals, 3711 Market Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Exploration of the impact of stereochemistry on the identification of the novel translocator protein PET imaging agent [(18)F]GE-180. Nucl Med Biol 2015; 42:711-9. [PMID: 26072270 DOI: 10.1016/j.nucmedbio.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/08/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The tricyclic indole compound, [(18)F]GE-180 has been previously identified as a promising positron emission tomography (PET) imaging agent of the translocator protein (TSPO) with the potential to aid in the diagnosis, prognosis and therapy monitoring of degenerative neuroinflammatory conditions such as multiple sclerosis. [(18)F]GE-180 was first identified and evaluated as a racemate, but subsequent evaluations of the resolved enantiomers have shown that the S-enantiomer has a higher affinity for TSPO and an improved in vivo biodistribution performance, in terms of higher uptake in specific brain regions and good clearance (as described previously). Here we describe the additional biological evaluations carried out to confirm the improved performance of the S-enantiomer and including experiments which have demonstrated the stability of the chiral centre to chemical and biological factors. MATERIALS AND METHODS GE-180 and the corresponding radiolabelling precursor were separated into single enantiomers using semi-preparative chiral supercritical fluid chromatography (SFC). A detailed comparison of the individual enantiomers and the racemate was carried out in a number of biological studies. TSPO binding affinity was assessed using a radioligand binding assay. Incubation with rat hepatic S9 fractions was used to monitor metabolic stability. In vivo biodistribution studies up to 60 min post injection (PI) in naïve rats were carried out to monitor uptake and clearance. Achiral and chiral in vivo metabolite detection methods were developed to assess the presence of metabolite/s in plasma and brain samples, with the chiral method also determining potential racemisation at the chiral centre. RESULTS Evaluation of the chiral stability of the two enantiomers to metabolism by rat S9 fractions, showed no racemisation of enantiomers. There were notable differences in the biodistribution between the racemate and the R- and S-enantiomers. All compounds had similar initial brain uptake between 0.99 and 1.01% injected dose (id) at 2 min PI, with S-[(18)F]GE-180 showing significantly greater retention than the R-enantiomer at 10 and 30 min PI (P<0.05). S-[(18)F]GE-180 uptake to the TSPO-expressing olfactory bulbs was 0.45% id (SD ± 0.17) at 30 min PI in comparison to RS-[(18)F]GE-180 or R-[(18)F]GE-180 levels of 0.41% id ± 0.09 and 0.23% id ± 0.02 respectively, at the same timepoint (P > 0.05). The signal-to-noise ratio (ratio olfactory bulb to striata binding) were similar for both RS-[(18)F]GE-180 and S-[(18)F]GE-180 (3.2 and 3.4 respectively). Initial uptake to the lungs (an organ with high TSPO expression) was more than 3-fold greater with S-[(18)F]GE-180 than R-[(18)F]GE-180, and significantly higher at 10 and 30 min PI (P < 0.05). Furthermore lung uptake of S-[(18)F]GE-180 at 2 and 10 min PI was also significant when compared to the racemate (P < 0.05). The majority of the radioactivity in the rat brain following administration of RS-[(18)F]GE-180 or S-[(18)F]GE-180 was due to the presence of the parent compound (91% ± 1.5 and 94% ± 2.0 of total radioactivity at 60 min PI respectively). In contrast at 60 min PI for the plasma samples, the parent compounds accounted for only 28% ± 1.2 and 21% ± 4.6 of total radioactivity for RS-[(18)F]GE-180 and S-[(18)F]GE-180 respectively. Chiral assessment confirmed that the S-enantiomer was chirally stable in vivo, with no stereochemical conversion in brain and plasma samples up to 60 min PI. CONCLUSIONS Developing racemic radiotracers, as for racemic therapeutics, is a considerable challenge due to differences of the enantiomers in pharmacokinetics, efficacy and potential toxicity. We have shown that the enantiomers of the promising racemic PET ligand [(18)F]GE-180 do not share identical performance, with S-[(18)F]GE-180 demonstrating higher TSPO affinity, higher brain uptake and better retention to the high TSPO-expressing lungs. Furthermore, S-[(18)F]GE-180 has also been shown to be enantiomerically stable in vivo, with no observed conversation of the eutomer to the distomer. As a single enantiomer, S-[(18)F]GE-180 retains the beneficial characteristics of the racemate and is a promising imaging agent for imaging neuroinflammation in vivo.
Collapse
|
16
|
Imaging neuroinflammation in Alzheimer's disease and other dementias: Recent advances and future directions. Alzheimers Dement 2014; 11:1110-20. [DOI: 10.1016/j.jalz.2014.08.105] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
|
17
|
Ermert J. 18F-labelled intermediates for radiosynthesis by modular build-up reactions: newer developments. BIOMED RESEARCH INTERNATIONAL 2014; 2014:812973. [PMID: 25343144 PMCID: PMC4197889 DOI: 10.1155/2014/812973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
This brief review gives an overview of newer developments in (18)F-chemistry with the focus on small (18)F-labelled molecules as intermediates for modular build-up syntheses. The short half-life (<2 h) of the radionuclide requires efficient syntheses of these intermediates considering that multistep syntheses are often time consuming and characterized by a loss of yield in each reaction step. Recent examples of improved synthesis of (18)F-labelled intermediates show new possibilities for no-carrier-added ring-fluorinated arenes, novel intermediates for tri[(18)F]fluoromethylation reactions, and (18)F-fluorovinylation methods.
Collapse
Affiliation(s)
- Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Médran-Navarrete V, Damont A, Peyronneau MA, Kuhnast B, Bernards N, Pottier G, Marguet F, Puech F, Boisgard R, Dollé F. Preparation and evaluation of novel pyrazolo[1,5-a]pyrimidine acetamides, closely related to DPA-714, as potent ligands for imaging the TSPO 18kDa with PET. Bioorg Med Chem Lett 2014; 24:1550-6. [DOI: 10.1016/j.bmcl.2014.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
|
19
|
Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N. Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque. J Labelled Comp Radiopharm 2013; 57:323-31. [PMID: 24327420 DOI: 10.1002/jlcr.3158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 55 Fruit St., White 427, Boston, Massachusetts, 02114, USA; Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, 2232, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Damont A, Lemée F, Raggiri G, Dollé F. Novel 2,4,5-Trisubstituted Pyridines as Key Intermediates for the Preparation of the TSPO Ligand 6-F-PBR28: Synthesis and Full1H and13C NMR Characterization. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Frédéric Lemée
- CEA; I²BM, Service Hospitalier Frédéric Joliot; Orsay France
| | | | - Frédéric Dollé
- CEA; I²BM, Service Hospitalier Frédéric Joliot; Orsay France
| |
Collapse
|
21
|
Damont A, Roeda D, Dollé F. The potential of carbon-11 and fluorine-18 chemistry: illustration through the development of positron emission tomography radioligands targeting the translocator protein 18 kDa. J Labelled Comp Radiopharm 2013; 56:96-104. [DOI: 10.1002/jlcr.2992] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Annelaure Damont
- CEA, I2BM, Service Hospitalier Frédéric Joliot; 4 place du Général Leclerc; F-91406; Orsay; France
| | - Dirk Roeda
- CEA, I2BM, Service Hospitalier Frédéric Joliot; 4 place du Général Leclerc; F-91406; Orsay; France
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot; 4 place du Général Leclerc; F-91406; Orsay; France
| |
Collapse
|
22
|
Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, Cawthorne C, Julyan P, Wilkinson SM, Banister SD, Brown G, Herholz K, Kassiou M, Rothwell NJ. [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One 2013; 8:e56441. [PMID: 23418569 PMCID: PMC3572061 DOI: 10.1371/journal.pone.0056441] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/11/2013] [Indexed: 12/11/2022] Open
Abstract
Purpose Neuroinflammation is involved in several brain disorders and can be monitored through expression of the translocator protein 18 kDa (TSPO) on activated microglia. In recent years, several new PET radioligands for TSPO have been evaluated in disease models. [18F]DPA-714 is a TSPO radiotracer with great promise; however results vary between different experimental models of neuroinflammation. To further examine the potential of [18F]DPA-714, it was compared directly to [11C]PK11195 in experimental cerebral ischaemia in rats. Methods Under anaesthesia, the middle cerebral artery of adult rats was occluded for 60 min using the filament model. Rats were allowed recovery for 5 to 7 days before one hour dynamic PET scans with [11C]PK11195 and/or [18F]DPA-714 under anaesthesia. Results Uptake of [11C]PK11195 vs [18F]DPA-714 in the ischemic lesion was similar (core/contralateral ratio: 2.84±0.67 vs 2.28±0.34 respectively), but severity of the brain ischemia and hence ligand uptake in the lesion appeared to vary greatly between animals scanned with [11C]PK11195 or with [18F]DPA-714. To solve this issue of inter-individual variability, we performed a direct comparison of [11C]PK11195 and [18F]DPA-714 by scanning the same animals sequentially with both tracers within 24 h. In this direct comparison, the core/contralateral ratio (3.35±1.21 vs 4.66±2.50 for [11C]PK11195 vs [18F]DPA-714 respectively) showed a significantly better signal-to-noise ratio (1.6 (1.3–1.9, 95%CI) fold by linear regression) for [18F]DPA-714. Conclusions In a clinically relevant model of neuroinflammation, uptake for both radiotracers appeared to be similar at first, but a high variability was observed in our model. Therefore, to truly compare tracers in such models, we performed scans with both tracers in the same animals. By doing so, our result demonstrated that [18F]DPA-714 displayed a higher signal-to-noise ratio than [11C]PK11195. Our results suggest that, with the longer half-life of [18F] which facilitates distribution of the tracer across PET centre, [18F]DPA-714 is a good alternative for TSPO imaging.
Collapse
Affiliation(s)
- Hervé Boutin
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nucleophilic Substitution of Hydrogen in Arenes and Heteroarenes. TOPICS IN HETEROCYCLIC CHEMISTRY 2013. [DOI: 10.1007/7081_2013_115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|